首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

This article presents a set of multi-gas emission pathways for different CO2-equivalent concentration stabilization levels, i.e. 400, 450, 500 and 550 ppm CO2-equivalent, along with an analysis of their global and regional reduction implications and implied probability of achieving the EU climate target of 2°C. For achieving the 2°C target with a probability of more than 60%, greenhouse gas concentrations need to be stabilized at 450 ppm CO2-equivalent or below, if the 90% uncertainty range for climate sensitivity is believed to be 1.5–4.5°C. A stabilization at 450 ppm CO2-equivalent or below (400 ppm) requires global emissions to peak around 2015, followed by substantial overall reductions of as much as 25% (45% for 400 ppm) compared to 1990 levels in 2050. In 2020, Annex I emissions need to be approximately 15% (30%) below 1990 levels, and non-Annex I emissions also need to be reduced by 15–20% compared to their baseline emissions. A further delay in peaking of global emissions by 10 years doubles maximum reduction rates to about 5% per year, and very probably leads to high costs. In order to keep the option open of stabilizing at 400 and 450 ppm CO2-equivalent, the USA and major advanced non-Annex I countries will have to participate in the reductions within the next 10–15 years.  相似文献   

2.
Using a coupled climate?Ccarbon cycle model, fossil fuel carbon dioxide (CO2) emissions are derived through a reverse approach of prescribing atmospheric CO2 concentrations according to observations and future projections, respectively. In the second half of the twentieth century, the implied fossil fuel emissions, and also the carbon uptake by land and ocean, are within the range of observational estimates. Larger discrepancies exist in the earlier period (1860?C1960), with small fossil fuel emissions and uncertain emissions from anthropogenic land cover change. In the IPCC SRES A1B scenario, the simulated fossil fuel emissions more than double until 2050 (17 GtC/year) and then decrease to 12 GtC/year by 2100. In addition to A1B, an aggressive mitigation scenario was employed, developed within the European ENSEMBLES project, that peaks at 530 ppm CO2(equiv) around 2050 and then decreases to approach 450 ppm during the twenty-second century. Consistent with the prescribed pathway of atmospheric CO2 in E1, the implied fossil fuel emissions increase from currently 8 GtC/year to about 10 by 2015 and decrease thereafter. In the 2050s (2090s) the emissions decrease to 3.4 (0.5) GtC/year, respectively. As in previous studies, our model simulates a positive climate?Ccarbon cycle feedback which tends to reduce the implied emissions by roughly 1 GtC/year per degree global warming. Further, our results suggest that the 450 ppm stabilization scenario may not be sufficient to fulfill the European Union climate policy goal of limiting the global temperature increase to a maximum of 2°C compared to pre-industrial levels.  相似文献   

3.
This paper assesses the implications of climate policy for exposure to water resources stresses. It compares a Reference scenario which leads to an increase in global mean temperature of 4 °C by the end of the 21st century with a Mitigation scenario which stabilises greenhouse gas concentrations at around 450 ppm CO2e and leads to a 2 °C increase in 2100. Associated changes in river runoff are simulated using a global hydrological model, for four spatial patterns of change in temperature and rainfall. There is a considerable difference in hydrological change between these four patterns, but the percentages of change avoided at the global scale are relatively robust. By the 2050s, the Mitigation scenario typically avoids between 16 and 30% of the change in runoff under the Reference scenario, and by 2100 it avoids between 43 and 65%. Two different measures of exposure to water resources stress are calculated, based on resources per capita and the ratio of withdrawals to resources. Using the first measure, the Mitigation scenario avoids 8-17% of the impact in 2050 and 20-31% in 2100; with the second measure, the avoided impacts are 5-21% and 15-47% respectively. However, at the same time, the Mitigation scenario also reduces the positive impacts of climate change on water scarcity in other areas. The absolute numbers and locations of people affected by climate change and climate policy vary considerably between the four climate model patterns.  相似文献   

4.
Summary A probabilistic risk assessment was conducted for the effects of future climate change on U.S. cold-water habitat. Damage functions for the loss of current cold-water fish habitat in the United States and the Rocky Mountain region were integrated with probability distributions for U.S. June/July/August (JJA) temperature change using Monte Carlo techniques. Damage functions indicated temperature thresholds for incipient losses (≥5%) of cold-water habitat in the United States and the Rocky Mountains of 0.6 and 0.4 C, respectively. Median impacts associated with different temperature distributions suggested habitat loss in 2025, 2050, and 2100 of approximately 10, 20, and 30%, respectively, for the United States and 20, 35, and 50%, respectively, in the Rocky Mountains. However, 2100 losses in excess of 60% and 90% were possible for the United States and the Rocky Mountains, respectively, albeit at low probabilities. The implementation of constraints on greenhouse gas emissions conforming to the WRE750/550/350 stabilization scenarios had little effect on reducing habitat loss out to 2050, but median effects in 2100 were reduced by up to 20, 30, and 60%, respectively. Increased focus on probabilistic risk assessment may be a profitable mechanism for enhancing understanding and communication of climate change impacts and, subsequently, risk management.  相似文献   

5.
Emission scenarios and global climate protection   总被引:1,自引:0,他引:1  
This paper evaluates the effectiveness of a wide range of emission scenarios in protecting climate (where ‘protecting climate’ Is used here to mean minimizing ‘dangerous anthropogenic interference with the climate system’ which results in impacts to society and the natural environment). Under baseline (no action) conditions there is a significant Increase in emissions, temperature and climate impacts. Controlling only CO2 emissions (ie freezing emissions in year 2000 at 1990 levels, and decreasing them afterwards at 1%/yr) and only in Annex I countries, does not significantly reduce the impacts observed under the baseline scenario. However, impacts are substantially reduced when emissions are controlled in both Annex I and non-Annex I countries, and when both CO2 and non-CO2 emissions are controlled. It was also found that stabilizing CO2 in the atmosphere below 450 ppm substantially reduces climate impacts. But in order to follow the pathway to stabilization at 450 ppm specified by the IPCC, global emissions can only slightly increase in the coming decades, and then must be sharply reduced. On the other hand, stabilizing CO2 in the atmosphere above 450 ppm can have significant impacts, which indicates that stabilization of greenhouse gases in the atmosphere will not necessarily provide a high level of climate protection. Results from these and other scenarios are synthesized and related to climate protection goals through a new concept — ‘safe emission corridors’. These corridors indicate the allowable range of near-term global emissions (equivalent CO2) which complies with specified short- and long-term climate goals. For an illustrative set of climate goals, the allowable anthropogenic global emissions in 2010 are computed to range from 7.3 to 14.5 GtC/yr equivalent CO2 (1990 level = approximately 9.6 GtC/ yr); when these limits are set twice as strict (ie divided by two), the allowable range becomes 7.6 to 9.3 GtC/yr. To fall within this lower corridor, global emissions must be lower in 2010 than in 1990.  相似文献   

6.
Multi-gas Emissions Pathways to Meet Climate Targets   总被引:1,自引:1,他引:1  
So far, climate change mitigation pathways focus mostly on CO2 and a limited number of climate targets. Comprehensive studies of emission implications have been hindered by the absence of a flexible method to generate multi-gas emissions pathways, user-definable in shape and the climate target. The presented method ‘Equal Quantile Walk’ (EQW) is intended to fill this gap, building upon and complementing existing multi-gas emission scenarios. The EQW method generates new mitigation pathways by ‘walking along equal quantile paths’ of the emission distributions derived from existing multi-gas IPCC baseline and stabilization scenarios. Considered emissions include those of CO2 and all other major radiative forcing agents (greenhouse gases, ozone precursors and sulphur aerosols). Sample EQW pathways are derived for stabilization at 350 ppm to 750 ppm CO2 concentrations and compared to WRE profiles. Furthermore, the ability of the method to analyze emission implications in a probabilistic multi-gas framework is demonstrated. The probability of overshooting a 2 C climate target is derived by using different sets of EQW radiative forcing peaking pathways. If the probability shall not be increased above 30%, it seems necessary to peak CO2 equivalence concentrations around 475 ppm and return to lower levels after peaking (below 400 ppm). EQW emissions pathways can be applied in studies relating to Article 2 of the UNFCCC, for the analysis of climate impacts, adaptation and emission control implications associated with certain climate targets. See for EQW-software and data.  相似文献   

7.
This paper synthesizes results of the multi-model Energy Modeling Forum 27 (EMF27) with a focus on climate policy scenarios. The study included two harmonized long-term climate targets of 450 ppm CO2-e (enforced in 2100) and 550 pm CO2-e (not-to-exceed) as well as two more fragmented policies based on national and regional emissions targets. Stabilizing atmospheric GHG concentrations at 450 and 550 ppm CO2-e requires a dramatic reduction of carbon emissions compared to baseline levels. Mitigation pathways for the 450 CO2-e target are largely overlapping with the 550 CO2-e pathways in the first half of the century, and the lower level is achieved through rapid reductions in atmospheric concentrations in the second half of the century aided by negative anthropogenic carbon flows. A fragmented scenario designed to extrapolate current levels of ambition into the future falls short of the emissions reductions required under the harmonized targets. In a more aggressive scenario intended to capture a break from observed levels of stringency, emissions are still somewhat higher in the second half due to unabated emissions from non-participating countries, emphasizing that a phase-out of global emissions in the long term can only be reached with full global participation. A key finding is that a large range of energy-related CO2 emissions can be compatible with a given long-term target, depending on assumptions about carbon cycle response, non-CO2 and land use CO2 emissions abatement, partly explaining the spread in mitigation costs.  相似文献   

8.
International negotiations under the UN Framework Convention on Climate Change could take several different approaches to advance future mitigation commitments. Options range from trying to reach consensus on specific long-term atmospheric concentration targets (e.g. 550 ppmv) to simply ignoring this contentious issue and focusing instead on what can be done in the nearer term. This paper argues for a strategy that lies between these two extremes. Internationally agreed threshold levels for certain categories of impacts or of risks posed by climate change could be translated into acceptable levels of atmospheric concentrations. This could help to establish a range of upper limits for global emissions in the medium term that could set the ambition level for negotiations on expanded GHG mitigation commitments. The paper thus considers how physical and socio-economic indicators of climate change impacts might be used to guide the setting of such targets. In an effort to explore the feasibility and implications of low levels of stabilisation, it also quantifies an intermediate global emission target for 2020 that keeps open the option to stabilise at 450 ppmv CO2 If new efforts to reduce emissions are not forthcoming (e.g. the Kyoto Protocol or similar mitigation efforts fail), there is a significant chance that the option of 450 ppmv CO2 is out of reach as of 2020. Regardless of the preferred approach to shaping new international commitments on climate change, progress will require improved information on the avoided impacts climate change at different levels of mitigation and careful assessment of mitigation costs.  相似文献   

9.
The IPCC Fourth Assessment Report, Working Group III, summarises in Box 13.7 the required emission reduction ranges in Annex I and non-Annex I countries as a group, to achieve greenhouse gas concentration stabilisation levels between 450 and 650 ppm CO2-eq. The box summarises the results of the IPCC authors’ analysis of the literature on the regional allocation of the emission reductions. The box states that Annex I countries as a group would need to reduce their emissions to below 1990 levels in 2020 by 25% to 40% for 450 ppm, 10% to 30% for 550 ppm and 0% to 25% for 650 ppm CO2-eq, even if emissions in developing countries deviate substantially from baseline for the low concentration target. In this paper, the IPCC authors of Box 13.7 provide background information and analyse whether new information, obtained after completion of the IPCC report, influences these ranges. The authors concluded that there is no argument for updating the ranges in Box 13.7. The allocation studies, which were published after the writing of the IPCC report, show reductions in line with the reduction ranges in the box. From the studies analysed, this paper specifies the “substantial deviation” or “deviation from baseline” in the box: emissions of non-Annex I countries as a group have to be below the baseline roughly between 15% to 30% for 450 ppm CO2-eq, 0% to 20% for 550 ppm CO2-eq and from 10% above to 10% below the baseline for 650 ppm CO2-eq, in 2020. These ranges apply to the whole group of non-Annex I countries and may differ substantially per country. The most important factor influencing these ranges above, for non-Annex I countries, and in the box, for Annex I countries, is new information on higher baseline emissions (e.g. that of Sheehan, Climatic Change, 2008, this issue). Other factors are the assumed global emission level in 2020 and assumptions on land-use change and forestry emissions. The current, slow pace in climate policy and the steady increase in global emissions, make it almost unfeasible to reach relatively low global emission levels in 2020 needed to meet 450 ppm CO2-eq, as was first assumed feasible by some studies, 5 years ago.  相似文献   

10.
Climate projections over the next two to four decades indicate that most of Australia’s wheat-belt is likely to become warmer and drier. Here we used a shire scale, dynamic stress-index model that accounts for the impacts of rainfall and temperature on wheat yield, and a range of climate change projections from global circulation models to spatially estimate yield changes assuming no adaptation and no CO2 fertilisation effects. We modelled five scenarios, a baseline climate (climatology, 1901–2007), and two emission scenarios (“low” and “high” CO2) for two time horizons, namely 2020 and 2050. The potential benefits from CO2 fertilisation were analysed separately using a point level functional simulation model. Irrespective of the emissions scenario, the 2020 projection showed negligible changes in the modelled yield relative to baseline climate, both using the shire or functional point scale models. For the 2050-high emissions scenario, changes in modelled yield relative to the baseline ranged from ?5 % to +6 % across most of Western Australia, parts of Victoria and southern New South Wales, and from ?5 to ?30 % in northern NSW, Queensland and the drier environments of Victoria, South Australia and in-land Western Australia. Taking into account CO2 fertilisation effects across a North–south transect through eastern Australia cancelled most of the yield reductions associated with increased temperatures and reduced rainfall by 2020, and attenuated the expected yield reductions by 2050.  相似文献   

11.
A wide variety of scenarios for future development have played significant roles in climate policy discussions. This paper presents projections of greenhouse gas (GHG) concentrations, sea level rise due to thermal expansion and glacial melt, oceanic acidity, and global mean temperature increases computed with the MIT Integrated Global Systems Model (IGSM) using scenarios for twenty-first century emissions developed by three different groups: intergovernmental (represented by the Intergovernmental Panel on Climate Change), government (represented by the U.S. government Climate Change Science Program) and industry (represented by Royal Dutch Shell plc). In all these scenarios the climate system undergoes substantial changes. By 2100, the CO2 concentration ranges from 470 to 1020 ppm compared to a 2000 level of 365 ppm, the CO2-equivalent concentration of all greenhouse gases ranges from 550 to 1780 ppm in comparison to a 2000 level of 415 ppm, oceanic acidity changes from a current pH of around 8 to a range from 7.63 to 7.91, in comparison to a pH change from a preindustrial level by 0.1 unit. The global mean temperature increases by 1.8 to 7.0°C relative to 2000. Such increases will require considerable adaptation of many human systems and will leave some aspects of the earth??s environment irreversibly changed. Thus, the remarkable aspect of these different approaches to scenario development is not the differences in detail and philosophy but rather the similar picture they paint of a world at risk from climate change even if there is substantial effort to reduce emissions.  相似文献   

12.
This paper presents a set of technically feasible multi-gas emission pathways (envelopes) for stabilising greenhouse gas concentration at 450, 550 and 650 ppm CO2-equivalent and their trade-offs between direct abatement costs and probabilities to meet temperature targets. There are different pathways within the envelope. Delayed response pathways initially follow the upper boundary of the emission envelope and reduce more by the end of the century. In contrast, early action pathways first follow the lower boundary and then the upper boundary. The latter require an early peak in the global emissions but keeps the option open for shifting to lower concentration targets in the future. Costs evaluations depend on the discount rate. Early action profiles have high costs early on, but learning-by-doing and smoother reduction rates over time lead to in most cases to lower costs across the century (net present value (NPV)). To achieve the 450 ppm CO2-equivalent, the global emissions need to peak before 2020. The NPV of costs increase from 0.2% of cumulative gross domestic product to 1.0% as the shift is made from 650 to 450 ppm (discount rate 5%). However, the chances of limiting global mean warming to 2 °C above pre-industrial levels are very small for peaking and stabilisation at 650 ppm (1–23%) and 550 ppm (1–48%), but increase for a peaking at 510 ppm with subsequent stabilisation 450 ppm to 14–67%.  相似文献   

13.
Various aspects of the role of uncertainty in greenhouse gas emission reduction policy are analyzed with the integrated assessment model FUND. FUND couples simple models of economy, climate, climate impacts, and emission abatement. Probability distribution functions are assumed for all major parameters in the model. Monte Carlo analyses are used to study the effects of parametric uncertainties. Uncertainties are found to be large and grow over time. Uncertainties about climate change impacts are more serious than uncertainties about emission reduction costs, so that welfare-maximizing policies are stricter under uncertainty than under certainty. This is more pronounced without than with international cooperation. Whether or not countries cooperate with one another is more important than whether or not uncertainty is considered. Meeting exogenously defined emission targets may be more or less difficult under uncertainty than under certainty, depending on the asymmetry in the uncertainty and the central estimate of interest. The major uncertainty in meeting emissions targets in each of a range of possible future is the timing of starting (serious) reduction policies. In a scenario aiming at a stable CO2 concentration of 550 ppm, the start date varies 20 years for Annex I countries, and much longer for non-Annex countries. Atmospheric stabilization at 550 ppm does not avoid serious risks with regard to climate change impacts. At the long term, it is possible to avoid such risks but only through very strict emission control at high economic costs.  相似文献   

14.
With the use of goals from the Convention on Biological Diversity we evaluated two climate stabilisation profiles on their merits for conservation of biodiversity, comparing them with a baseline profile. Focusing on plant ecosystems at the pan-European level, we concluded that although a maximum global-mean temperature increase of 2 °C is likely to be met in a 550 ppmv CO2-equivalent stabilisation profile, large areas of ecosystems in Europe will be affected. Most of the impacts manifest themselves in northern countries, with a high net increase of plant species, and in Mediterranean countries, with a decrease in the number of plant species and stable area. Other impacts are less robust, given the regional variation in climate results for different climate models.  相似文献   

15.
Climate change mitigation via a reduction in the anthropogenic emissions of carbon dioxide (CO2) is the principle requirement for reducing global warming, its impacts, and the degree of adaptation required. We present a simple conceptual model of anthropogenic CO2 emissions to highlight the trade off between delay in commencing mitigation, and the strength of mitigation then required to meet specific atmospheric CO2 stabilization targets. We calculate the effects of alternative emission profiles on atmospheric CO2 and global temperature change over a millennial timescale using a simple coupled carbon cycle-climate model. For example, if it takes 50 years to transform the energy sector and the maximum rate at which emissions can be reduced is ?2.5% $\text{year}^{-1}$ , delaying action until 2020 would lead to stabilization at 540 ppm. A further 20 year delay would result in a stabilization level of 730 ppm, and a delay until 2060 would mean stabilising at over 1,000 ppm. If stabilization targets are met through delayed action, combined with strong rates of mitigation, the emissions profiles result in transient peaks of atmospheric CO2 (and potentially temperature) that exceed the stabilization targets. Stabilization at 450 ppm requires maximum mitigation rates of ?3% to ?5% $\text{year}^{-1}$ , and when delay exceeds 2020, transient peaks in excess of 550 ppm occur. Consequently tipping points for certain Earth system components may be transgressed. Avoiding dangerous climate change is more easily achievable if global mitigation action commences as soon as possible. Starting mitigation earlier is also more effective than acting more aggressively once mitigation has begun.  相似文献   

16.
In order to estimate the benefit attributable to alleviating global warming for a kind of cost–benefit analysis of global warming mitigation, global warming impacts were quantitatively evaluated for a pathway of unmitigated CO2 emissions and three pathways to stabilize the atmospheric CO2 concentration at different levels, keeping unchanged the assumed conditions on population and GDP growths, although the GDP losses which will be caused due to the warming mitigation for the three stabilization pathways are taken into account. The evaluation results show that global warming will reduce the world total number of deaths caused by thermal stress owing to the large decrease in the cold-related deaths; it will increase the water stress in some regions, while it will decrease the stress in other regions; reductions in CO2 emissions will decrease the probability of THC collapse and terrestrial biodiversity loss; and it will enhance an increase in the wheat production potential.  相似文献   

17.
The capture and storage of CO2 from combustion of fossil fuels is gaining attraction as a means to deal with climate change. CO2 emissions from biomass conversion processes can also be captured. If that is done, biomass energy with CO2 capture and storage (BECS) would become a technology that removes CO2 from the atmosphere and at the same time deliver CO2-neutral energy carriers (heat, electricity or hydrogen) to society. Here we present estimates of the costs and conversion efficiency of electricity, hydrogen and heat generation from fossil fuels and biomass with CO2 capture and storage. We then insert these technology characteristics into a global energy and transportation model (GET 5.0), and calculate costs of stabilizing atmospheric CO2 concentration at 350 and 450 ppm. We find that carbon capture and storage technologies applied to fossil fuels have the potential to reduce the cost of meeting the 350 ppm stabilisation targets by 50% compared to a case where these technologies are not available and by 80% when BECS is allowed. For the 450 ppm scenario, the reduction in costs is 40 and 42%, respectively. Thus, the difference in costs between cases where BECS technologies are allowed and where they are not is marginal for the 450 ppm stabilization target. It is for very low stabilization targets that negative emissions become warranted, and this makes BECS more valuable than in cases with higher stabilization targets. Systematic and stochastic sensitivity analysis is performed. Finally, BECS opens up the possibility to remove CO2 from the atmosphere. But this option should not be seen as an argument in favour of doing nothing about the climate problem now and then switching on this technology if climate change turns out to be a significant problem. It is not likely that BECS can be initiated sufficiently rapidly at a sufficient scale to follow this path to avoiding abrupt and serious climate changes if that would happen.  相似文献   

18.
Carbon dioxide emissions need to be reduced well below current emissions if atmospheric concentrations are to be stabilised at a level likely to avoid dangerous climate change. We investigate how delays in reducing CO2 emissions affect stabilisation scenarios leading to overshooting of a target concentration pathway. We show that if geo-engineering alone is used to compensate for the delay in reducing CO2 emissions, such an option needs to be sustained for centuries even though the period of overshooting emissions may only last for a few decades. If geo-engineering is used for a shorter period, it has to be associated with emission reductions significantly larger than those required to stabilise CO2 without overshooting the target. In the presence of a strong climate–carbon cycle feedback the required emission reductions are even more drastic.  相似文献   

19.
A simulation study was carried out to assess the potential sensitivity of wheat growth and water balance components to likely climate change scenarios at Wagga Wagga, NSW, Australia. Specific processes considered include crop development, growth rate, grain yield, water use efficiency, evapotranspiration, runoff and deep drainage. Individual impacts of changes in temperature, rainfall and CO2 concentration ([CO2]) and the combined impacts of these three variables were analysed for 2050 ([CO2] = 570 ppm, T +2.3°C, P ?7%) and 2070 ([CO2] = 720 ppm, T +3.8°C, P ?10%) conditions. Two different rainfall change scenarios (changes in rainfall intensity or rainfall frequency) were used to modify historical rainfall data. The Agricultural Production Systems Simulator (APSIM) was used to simulate the growth and water balance processes for a 117 year period of baseline, 2050 and 2070 climatic conditions. The results showed that wheat yield reduction caused by 1°C increase in temperature and 10% decrease in rainfall could be compensated by a 266 ppm increase in [CO2] assuming no interactions between the individual effects. Temperature increase had little impact on long-term average water balance, while [CO2] increase reduced evapotranspiration and increased deep drainage. Length of the growing season of wheat decreased 22 days in 2050 and 35 days in 2070 conditions as a consequence of 2.3°C and 3.8°C increase in temperature respectively. Yield in 2050 was approximately 1% higher than the simulated baseline yield of 4,462 kg ha???1, but it was 6% lower in 2070. An early maturing cultivar (Hartog) was more sensitive in terms of yield response to temperature increase, while a mid-maturing cultivar (Janz) was more sensitive to rainfall reduction. Janz could benefit more from increase in CO2 concentration. Rainfall reduction across all rainfall events would have a greater negative impact on wheat yield and WUE than if only smaller rainfall events reduced in magnitude, even given the same total decrease in annual rainfall. The greater the reduction in rainfall, the larger was the difference. The increase in temperature increased the difference of impact between the two rainfall change scenarios while increase in [CO2] reduced the difference.  相似文献   

20.
Seagrass meadows are natural carbon storage hotspots at risk from global change threats, and their loss can result in the remineralization of soil carbon stocks and CO2 emissions fueling climate change. Here we used expert elicitation and empirical evidence to assess the risk of CO2 emissions from seagrass soils caused by multiple human-induced, biological and climate change threats. Judgments from 41 experts were synthesized into a seagrass CO2 emission risk score based on vulnerability factors (i.e., spatial scale, frequency, magnitude, resistance and recovery) to seagrass soil organic carbon stocks. Experts perceived that climate change threats (e.g., gradual ocean warming and increased storminess) have the highest risk for CO2 emissions at global spatial scales, while direct threats (i.e., dredging and building of a marina or jetty) have the largest CO2 emission risks at local spatial scales. A review of existing peer-reviewed literature showed a scarcity of studies assessing CO2 emissions following seagrass disturbance, but the limited empirical evidence partly confirmed the opinion of experts. The literature review indicated that direct and long-term disturbances have the greatest negative impact on soil carbon stocks per unit area, highlighting that immediate management actions after disturbances to recover the seagrass canopy can significantly reduce soil CO2 emissions. We conclude that further empirical evidence assessing global change threats on the seagrass carbon sink capacity is required to aid broader uptake of seagrass into blue carbon policy frameworks. The preliminary findings from this study can be used to estimate the potential risk of CO2 emissions from seagrass habitats under threat and guide nature-based solutions for climate change mitigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号