首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 933 毫秒
1.
Sensitive high-resolution ion microprobe (SHRIMP) U–Pb dating, laser-ablation multi-collector ICPMS Hf isotope and electron microprobe element analyses of inherited/antecrystal and magmatic zircons from five granitoid intrusions of Linxi area, in the southern segment of the Great Xing’an Range of China were integrated to solve continental crustal growth mechanisms. These intrusions were divided into two suites. Suites 1 and 2 are mainly granodiorite and syenogranite and correspond to magnesian and ferroan granites, respectively. SHRIMP dating establishes an Early Cretaceous (135–125 Ma) age for most Linxi granitoids and a time of ∼146 Ma when their source rocks were generated or re-melted. However, some granitoids were generated in Early Triassic (241 Ma) and Late Jurassic (146 Ma), after their source rock experienced precursory melting episodes at 263 Ma and 165 Ma, respectively. All zircon 206Pb/238U ages (<300 Ma, n = 100), and high positive zircon εHf(t) values (n = 175) suggest juvenile source materials with an absence of Precambrian basement. Hf–Nd isotopic decoupling of Linxi granitoids suggests a source component of pelagic sediments, i.e. Paleozoic subduction accretion complexes. Zircon εHf(t) values (t = 263–165 Ma) form a trend sub-parallel to the depleted mantle Hf isotope evolution curve, whilst those with t = 146–125 Ma fall markedly below the latter. The first trend indicates a provenance from essentially subducted oceanic slabs. However, the abrupt εHf(t) decrease, together with extensive Early Cretaceous magmatism, is interpreted as reflecting mantle upwelling and resultant underplating, and exhumation of subducted oceanic slabs. Suite 1 granitoids derive mainly from subducted oceanic slabs or Paleozoic subduction accretion complex, whereas Suite 2 from underplated mafic rock and, subordinately, Paleozoic subduction accretion complex. Compositions of Suites 1 and 2 depend on the hydrous, oxidized or relatively anhydrous, reduced nature of source rocks. Among each of these five intrusions, magmatic zircons have systematically lower 176Hf/177Hf than inherited/antecrystal zircons. Hf isotopic and substituting element profiles through inherited/antecrystal zircons (t = 263 to ∼146 Ma) indicate repeated low melt-fraction melting in the source region. In contrast, profiles through inherited/antecrystal and magmatic zircons (t = 146–125 Ma) reveal melting region expansion with a widening range of source compositions and increasing melt fractions. These results lead to the conclusion that continental growth in this region involved a three-step process. This included subduction accretion and repeated underplating, intermediary differentiation of juvenile rocks, and granitoid production from these differentiated rocks.  相似文献   

2.
Summary The Haiyangsuo Complex in the NE Sulu ultrahigh-pressure (UHP) terrane has discontinuous, coastal exposures of Late Archean gneiss with amphibolitized granulite, amphibolite, Paleoproterozoic metagabbroic intrusives, and Cretaceous granitic dikes over an area of about 15 km2. The U–Pb SHRIMP dating of zircons indicates that theprotolith age of a garnet-biotite gneiss is >2500 Ma, whereas the granulite-facie metamorphism occurred at around 1800 Ma. A gabbroic intrusion was dated at ∼1730 Ma, and the formation of amphibolite-facies assemblages in both metagabbro and granulite occurred at ∼340–460 Ma. Petrologic and geochronological data indicate that these various rocks show no evidence of Triassic eclogite-facies metamorphism and Neoproterozoic protolith ages that are characteristics of Sulu-Dabie HP-UHP rocks, except Neoproterozoic inherited ages from post-collisional Jurassic granitic dikes. Haiyangsuo retrograde granulites with amphibolite-facies assemblages within the gneiss preserve relict garnet formed during granulite-facies metamorphism at ∼1.85 Ga. The Paleoproterozoic metamorphic events are almost coeval with gabbroic intrusions. The granulite-bearing gneiss unit and gabbro-dominated unit of the Haiyangsuo Complex were intruded by thin granitic dikes at about 160 Ma, which is coeval with post-collisional granitic intrusions in the Sulu terrane. We suggest that the Haiyangsuo Complex may represent a fragment of the Jiao-Liao-Ji Paleoproterozoic terrane developed at the eastern margin of the Sino-Korean basement, which was juxtaposed with the Sulu terrane prior to Jurassic granitic activity and regional deformation.  相似文献   

3.
U–Pb SHRIMP ages obtained in zircons from the Sotosalbos and Toledo anatectic complexes in Central Spain give new constraints to the evolution of the inner part of the Hercynian Iberian belt. Pre-Hercynian ages in zircons from the Sotosalbos complex (∼464 Ma) are well preserved and reveal that an age diversity of the Lower Paleozoic magmatism in the area exists, as previous data on westernmost orthogneisses yield significant older ages. Zircon ages in the pelite-derived granites from the Toledo complex also show an important Neoproterozoic age component which points to a metasedimentary protolith deposited maximally 560 Ma ago. Younger zircon populations in both complexes at ∼330 Ma in the Sotosalbos region and ∼317 Ma in the Toledo complex indicate an important diachronism between the anatectic processes in both areas but also that these processes are mainly unrelated to the generation of the later Hercynian granite batholith of Central Spain, which could be of deeper crustal derivation. In addition, as migmatization occurred late in the metamorphic cycle, after peak conditions were attained, the age of anatexis is younger than the age of the main Hercynian metamorphic event, which still is not well constrained. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
High-grade metamorphic Variscan basement is exposed in the Moldanubian zone of the Black Forest (BF), being the internal zone of the European Variscan belt. Zircon grains from K-rich felsic orthogneisses and an anatectic paragneiss in the Moldanubian Black Forest demonstrate a multi-stage crystallization at ~ 600 Ma, ~ 480 Ma, ~ 400 - 380 Ma, and ~350 Ma. The last three stages of crystallization probably represent metamorphic overprint during pre-Variscan and Variscan metamorphism.Using stepwise leaching procedures, garnet minerals from felsic orthogneisses as well as paragneisses in the Moldanubian Black Forest yielded Early Carboniferous Sm-Nd ages (~ 330- 340 Ma), which are consistent with the well-constrained Variscan HT metamorphic event,and Early Palaeozoic ( ~480 Ma) to Devonian ( ~400 - 370 Ma) Pb-Pb ages. The coincidence of growth time for zircon and garnet minerals at Early Palaeozoic is interpreted as dating a metamorphic event. These garnet data demonstrate that the Moldanubian BF basement underwent at least two metamorphic events during the Early Palaeozoic and Early Carboniferous.During the Variscan HT metamorphism, the Sm-Nd system of garnet was disturbed, but not the U-Pb system, implying the peak metamorphic temperature was lower than ~800℃.  相似文献   

5.
Permian granulites associated with noritic intrusions and websterites are a common feature of the post-Variscan European crust. Such granulites are common in the Southern Alps (e.g. Ivrea Zone), but occur only in the Gruf Complex in the Central Alps. To understand the geotectonic significance of these granulites, in particular in the context of Alpine migmatisation, zircons from 15 high-grade samples have been U–Pb dated by SHRIMP II analysis. Oscillatory zoned zircons from charnockite sheets, interpreted as melts generated through granulite facies fluid-absent biotite melting at 920–940°C, yield ages of 282–260 Ma. Some of these zircons contain inclusions of opx, unequivocally attributable to the granulite facies, thus confirming a Permian age for the charnockites and associated granulites. Two samples from an enclave-rich orthogneiss sheet yield Cambrian and Ordovician zircon cores. Two deformed leucogranites and six ortho- and augengneisses, which compose two-thirds of the Gruf Complex, give zircon ages of 290–260 Ma. Most zircons have milky rims with ages of 34–29 Ma. These rims date the Alpine amphibolite facies migmatisation, an interpretation confirmed by directly dating a leucosome pocket from upper amphibolite facies metapelites. The Gruf charnockites associated with metre-scale schlieren and boudins of opx–sapphirine–garnet–granulites, websterites and gabbronorites can thus be identified as part of the post-Variscan European lower crust. A geotectonic reconstruction reveals that this piece of lower crust stranded in the (European) North upon rifting of the Neotethys, such contrasting the widespread granulite units in the Southern Alps. Emplacement of the Gruf lower crust into its present-day position occurred during migmatisation and formation of the Bergell Pluton in the aftermath of the breakoff of the European slab.  相似文献   

6.
We present new Re–Os molybdenite age data on three porphyry Cu–Mo–Au deposits (Yulong, Machangqing, and Xifanping). These deposits are associated with the Himalayan adakitic magmatism that occurred in a continental collision environment, controlled by large-scale Cenozoic strike-slip faults in the eastern Indo–Asian collision zone. Three distinct episodes of Cu–Mo–Au mineralization are recognized. At Yulong, Re–Os isotopic data of four molybdenite samples from sulfide-quartz veins in the quartz–sericite alteration zone yield an isochron with an age of 40.1±1.8 Ma (2σ), coincident to a zircon sensitive high-mass resolution ion microprobe (SHRIMP) age of 40.9±0.1 Ma for the host monzogranite. The molybdenite Re–Os dates, together with K–Ar, Rb–Sr, U–Pb, and 40Ar/39Ar dates on the pre- and intra-ore porphyries, suggest that Cu–Mo–Au mineralization formed during the late stage (∼40 Ma) of regional porphyry magmatism, but hydrothermal activity probably lasted to at least ∼36 Ma. At Machangqing, molybdenite Re–Os data from the K–silicate and quartz–sericite alteration zones yield an isochron with an age of 35.8±1.6 Ma (2σ), which is identical to the zircon SHRIMP and bulk-rock Rb–Sr ages (35∼36 Ma) of the host granite, but older than bulk-rock K–Ar dates (31∼32 Ma) for associated Au-bearing quartz syenite with advanced argillic alteration. At Xifanping, five molybdenite samples from the K–silicate alteration zone yield the youngest Re–Os isochron age in the area, at 32.1±1.6 Ma (2σ). The Re–Os molybdenite dates here are younger than K–Ar ages (33.5∼34.6) for hydrothermal biotite and actinolite. There is a positive correlation between the absolute age of the deposits and their Cu and Au reserves in the eastern Indo–Asian collisional zone. Episodic stress relaxation probably caused multiple magmatic intrusions, which most likely resulted in three episodes of Cu–Mo–Au mineralization in the eastern Indo–Asian collision zone.  相似文献   

7.
宝山斑岩型铜多金属矿床位于九瑞矿集区西北部,隶属于九江-瑞昌铜金矿田,为长江中下游铜金成矿带、大冶-九江成矿亚带的组成部分。对宝山岩体的花岗闪长斑岩进行LA-MC-ICP-MS U-Pb同位素测年,获得其锆石U-Pb年龄为(147.81±0.48)Ma(MSWD=1.07);首次对宝山矿床的辉钼矿进行Re-Os同位素定年,获得矿床的成矿年龄:6件辉钼矿的Re-Os同位素模式年龄范围为(146.1±2.2)Ma~(148.7±2.0)Ma,加权平均年龄为(147.42±0.84)Ma,等时线年龄为(147.7±1.2)Ma。成岩年龄与成矿年龄在误差范围内一致。辉钼矿的Re含量指示宝山矿床的成矿物质来自于壳幔混源。宝山矿区的成岩、成矿时代与九瑞矿集区典型岩体和矿床的成岩、成矿时代相似,也与长江中下游地区铜陵、安庆和鄂东南(部分地区)的典型铜多金属矿床的成岩、成矿时代基本一致,都属于长江中下游成矿带早白垩世多金属成矿事件的一部分。  相似文献   

8.
The Erdenetuin-Obo porphyry Cu-Mo deposit was formed at the final stage of development of magmatic activity occasionally manifested in the Late Permian-Early Triassic in the period of at least 40 Ma. Early plutonic (host) and late ore-bearing porphyry intrusive complexes were formed in that period. The plutonic complex is multiphase, while the porphyry complex is polyrhythmical and multiphase within rhythms. The obtained data on the U-Pb isotopic composition (SHRIMP II) of zircons from unaltered rocks of the ore field are discussed: gabbro, diorite, and granodiorite of the plutonic complex and granodiorite-porphyry I and II of the first and second rhythms of the ore-bearing complex, respectively. Zircons of different age levels and genotypes were identified in the course of performed investigations. Gabbro are dominated by postmagmatic (superimposed) zircons with the datings of 239–225 Ma. The age of xenogenic zircon brought out from the basement rocks is estimated at 1146 ± 11 Ma. Zircons occur as magmatic and postmagmatic (superimposed) minerals dated 252–247, 244–233 Ma in diorite and 244–242, 239–224 Ma in granodiorite. The ages of postmagmatic zircons from diorite are partially overlapped by datings of magmatic zircons from granodiorite and granodiorite-porphyry. In the porphyry complex, the datings of magmatic zircons are 240–234 and 222–220 Ma in granodiorite-porphyries I and II, respectively. There are also inherited zircons with datings coinciding with those of magmatic zircons from precursor intrusive rocks. Datings of such zircons are 249–241 and 257–231 Ma for granodiorite-porphyries I and II, respectively. As a whole, zircon datings in all studied igneous rocks forming a virtually uninterrupted range in the period of 257–220 Ma allow us to suggest the relation of the ore magmatic system to the long-living constantly active deep source occasionally delivering melt to the upper levels.  相似文献   

9.
Large volumes of silicic magma were produced on a very short timescale in the nested caldera complex of the SW Nevada volcanic field (SWNVF). Voluminous ash flows erupted in two paired events: Topopah Spring (TS, >1,200 km3, 12.8 Ma)–Tiva Canyon (TC, 1,000 km3, 12.7 Ma) and Rainier Mesa (RM, 1,200 km3, 11.6 Ma)–Ammonia Tanks (AT, 900 km3, 11.45 Ma; all cited ages are previously published 40Ar/39Ar sanidine ages). Within each pair, eruptions are separated by only 0.1–0.15 My and produced tuffs with contrasting isotopic values. These events represent nearly complete evacuation of sheet-like magma chambers formed in the extensional Basin and Range environment. We present ion microprobe ages from zircons in the zoned ash-flow sheets of TS, TC, RM, and AT in conjunction with δ18O values of zircons and other phenocrysts, which differ dramatically among subsequently erupted units. Bulk zircons in the low-δ18O AT cycle were earlier determined to exhibit ∼1.5‰ core-to-rim oxygen isotope zoning; and high-spatial resolution zircon analyses by ion microprobe reveal the presence of older grains that are zoned by 0.5–2.5‰. The following U–Pb isochron ages were calculated after correcting for the initial U–Pb disequilibria: AT (zircon rims: 11.7 ± 0.2 Ma; cores: 12.0 ± 0.1 Ma); pre-AT rhyolite lava: (12.0 ± 0.3 Ma); RM: 12.4 ± 0.3); TC: (13.2 ± 0.15 Ma); TS: (13.5 ± 0.2). Average zircon crystallization ages calculated from weighted regression or cumulative averaging are older than the Ar–Ar stratigraphy, but preserve the comparably short time gaps within each of two major eruption cycles (TS/TC, RM/AT). Notably, every sample yields average zircon ages that are 0.70–0.35 Ma older than the respective Ar–Ar eruption ages. The Th/U ratio of SWNVF zircons are 0.4–4.7, higher than typically found in igneous zircons, which correlates with elevated Th/U of the whole rocks (5–16). High Th/U could be explained if uranium was preferentially removed by hydrothermal solutions or is retained in the protolith during partial melting. For low-δ18O AT-cycle magmas, rim ages from unpolished zircons overlap within analytical uncertainties with the 40Ar/39Ar eruption age compared to core ages that are on average ∼0.2–0.3 My older than even the age of the preceding caldera forming eruption of RM tuff. This age difference, the core-to-rim oxygen isotope zoning in AT zircons, and disequilibrium quartz–zircon and melt-zircon isotopic fractionations suggest that AT magma recycled older zircons derived from the RM and older eruptive cycles. These results suggest that the low-δ18O AT magmas were generated by melting a hydrothermally-altered protolith from the same nested complex that erupted high-δ18O magmas of the RM cycle only 0.15 My prior to the eruption of the AT, the largest volume low-δ18O magma presently known.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

10.
U–Pb sensitive high resolution ion microprobe mass spectrometer (SHRIMP) ages of zircon, monazite and xenotime crystals from felsic intrusive rocks from the Rio Itapicuru greenstone belt show two development stages between 2,152 and 2,130 Ma, and between 2,130 and 2,080 Ma. The older intrusions yielded ages of 2,152±6 Ma in monazite crystals and 2,155±9 Ma in zircon crystals derived from the Trilhado granodiorite, and ages of 2,130±7 Ma and 2,128±8 Ma in zircon crystals derived from the Teofilândia tonalite. The emplacement age of the syntectonic Ambrósio dome as indicated by a 2,080±2-Ma xenotime age for a granite dyke probably marks the end of the felsic magmatism. This age shows good agreement with the Ar–Ar plateau age of 2,080±5 Ma obtained in hornblendes from an amphibolite and with a U–Pb SHRIMP age of 2,076±10 Ma in detrital zircon crystals from a quartzite, interpreted as the age of the peak of the metamorphism. The predominance of inherited zircons in the syntectonic Ambrósio dome suggests that the basement of the supracrustal rocks was composed of Archaean continental crust with components of 2,937±16, 3,111±13 and 3,162±13 Ma. Ar–Ar plateau ages of 2,050±4 Ma and 2,054±2 Ma on hydrothermal muscovite samples from the Fazenda Brasileiro gold deposit are interpreted as minimum ages for gold mineralisation and close to the true age of gold deposition. The Ar–Ar data indicate that the mineralisation must have occurred less than 30 million years after the peak of the metamorphism, or episodically between 2,080 Ma and 2,050 Ma, during uplift and exhumation of the orogen.Electronic supplementary material Supplementary material is available for this article at  相似文献   

11.
Summary Zircons from a granodiorite porphyry at the Wushan copper deposit in the Lower Changjiang Metallogenic Belt, east central China, were dated using a Cameca IMS 1270 secondary ion mass spectrometer (SIMS); their chemical compositions and Hf isotopes were analyzed using a JEOL JX A8800 electron microprobe (EMPA) and a Neptune LA-MC-ICP-MS, respectively. The U–Pb dating of zircon reveals two age groups for the granodiorite porphyry; i.e. 144.6 ± 3.9 Ma and 121.0 ± 2.5 Ma. Zircons of the two age populations display distinct chemical compositional characteristics with respect to UO2/HfO2 ratios, and show a negative correlation of (UO2 + Y2O3 + ThO2) and HfO2. The older age group of ∼145 Ma, defined by the majority of the zircons, is interpreted as the magmatic emplacement age, whereas the younger age group of ∼121 Ma is interpreted as rejuvenation due to subsequent thermal or hydrothermal events. Other interpretations such as presence of two distinct magmatic crystallization stages or inheritance of the older zircons are also discussed in the paper. The ∼145 Ma magmatism at Wushan is consistent with the ages of most of the granitods in the Lower Changjiang Metallogenic Belt. The Hf isotope composition of zircons (ɛHf = −2.1 and −7.0; TDMHf ages = 0.87 and 1.05 Ga), together with other available geochemical and Sr–Nd isotope data suggest that the granodioritic magma was derived from mixing of juvenile mantle with older crustal material. Due to the close spatial and temporal relationship of the granodiorite porphyry and the skarn mineralization at Wushan, the magamatic hydrothermal mineralization likely took place between 145 Ma and 121 Ma, likely around 121 Ma.  相似文献   

12.
The ultramafic–mafic Kharaelakh intrusion in the northwestern part of the Siberian Craton (Russia) hosts major economic platinum-group-element (PGE)–Cu–Ni sulphide deposits. In situ U–Pb, REE and Hf-isotope analyses of zircon from these rocks, combined with detailed study of crystal morphology and internal structure, identify four zircon populations. U–Pb ages of these populations cover a significant time span (from 347 ± 16 to 235.7 ± 6.1 Ma) suggesting multiple magmatic events that cluster around 350 and 250 Ma, being consistent with two recognised stages of active tectonism in the development of the Siberian Craton. The oldest zircon population, however, represents previously unknown stage of magmatic activity in the Noril’sk area. Epsilon-Hf values of +2.3 to +16.3 in the analysed zircons reflect a dominant role of mantle-derived magmas and suggest that juvenile mantle material was the main source for the ultramafic–mafic Kharaelakh intrusion. A significant range in initial 176Hf/177Hf values, found in zircons that cluster around 250 Ma, indicate mixing between mantle and crustal magma sources. Our findings imply that economic intrusions hosting PGE–Cu–Ni deposits of the Noril’sk area have a far more complex geological history than is commonly assumed.  相似文献   

13.
Four of the major plutons in the vicinity of the Candelaria mine (470 Mt at 0.95% Cu, 0.22 g/t Au, 3.1 g/t Ag) and a dike–sill system exposed in the Candelaria open pit have been dated with the U–Pb zircon method. The new geochronological data indicate that dacite magmatism around 123 Ma preceded the crystallization of hornblende diorite (Khd) at 118 ± 1 Ma, quartz–monzonite porphyry (Kqm) at 116.3 ± 0.4 Ma, monzodiorite (Kmd) at 115.5 ± 0.4 Ma, and tonalite (Kt) at 110.7 ± 0.4 Ma. The new ages of the plutons are consistent with field relationships regarding the relative timing of emplacement. Plutonism temporally overlaps with the iron oxide Cu–Au mineralization (Re–Os molybdenite ages at ∼115 Ma) and silicate alteration (ages mainly from 114 to 116 and 110 to 112 Ma) in the Candelaria–Punta del Cobre district. The dated dacite porphyry and hornblende diorite intrusions preceded the ore formation. A genetic link of the metallic mineralization with the quartz–monzonite porphyry and/or the monzodiorite is likely. Both of these metaluminous, shoshonitic (high-K) intrusions could have provided energy and contributed fluids, metals, and sulfur to the hydrothermal system that caused the iron oxide Cu–Au mineralization. The age of the tonalite at 110.7 Ma falls in the same range as the late alteration at 110 to 112 Ma. Tonalite emplacement may have sustained existing or driven newly developed hydrothermal cells that caused this late alteration or modified 40Ar/39Ar and K/Ar systematic in some areas.  相似文献   

14.
The potential genetic link between granites and their host sediments can be assessed using zircon age inheritance patterns. In the Lachlan fold belt, southeastern Australia, granites and associated high-grade metasedimentary rocks intrude low-grade Ordovician country rock. This relationship is well-exposed in the Tallangatta region, northeast Victoria (part of the Wagga-Omeo Metamorphic Complex). In this region granites (two I-types and two S-types) have intruded during the mid-late Silurian between approximately 410–430 Ma based on the ages of magmatic zircons. The age spectra for inherited zircons from the granites have been compared with those of detrital zircons from the enclosing low- and high-grade metasediments. In broad terms, both for detrital zircons in all four sediments and for inherited zircons in three of the four granites, the dominant ages are early Paleozoic and Late Precambrian, with sporadic older Precambrian ages extending up to 3.5 Ga. The ages of the youngest detrital zircons from the low-grade Lockhart and Talgarno terranes limit the time of sedimentation to ca. 466 Ma or younger. The youngest detrital zircons from two samples of the high-grade Gundowring terrane are 473 Ma, making these sediments Ordovician or younger, not Cambrian as originally suggested. However, the individual age spectra for the four selected metasediments are not well matched when closely examined. The age spectra of the inherited zircons in the granites also do not adequately match those in any of the metasediments. Thus, the metasediments might not be representative of the actual source rocks of the granites. While the exact source of the granites cannot be identified from the analysed samples, the existence of a large population of ca. 495 Ma inherited zircon grains in the S-type granites requires that the granite source contains a significant proportion of Cambrian or younger material. This does not preclude the existence of a Precambrian basement to the Lachlan fold belt but indicates that at the level of S-type magma generation, a Cambrian and/or younger protolith is required. Received: 28 August 1998 / Accepted: 7 July 1999  相似文献   

15.
吉林辽源西保安群是大面积花岗岩侵入体中的残留的构造岩片,传统认为属于华力西晚期或中侏罗世花岗闪长岩-二长花岗岩系。本文通过对接触界线附近花岗质糜棱岩样品采集和锆石SHRIMP U-Pb定年,获得多组锆石年龄值为236~231Ma、267.6~358.6Ma、416.3±6.8Ma、956±16Ma。认为该区花岗岩的侵入期次相当复杂,发育有早中三叠世岩体和发生了中、晚华力西期岩浆活动,西拉木伦河碰撞带可以东延至此,残留锆石的年龄与加里东期和Rodinia期拼合的构造岩浆活动相对应。  相似文献   

16.
Mafic-layered intrusions and sills and spatially associated andesitic basalts are well preserved in the Funing area, SW China. The 258±3 Ma-layered intrusions are composed of fine-grained gabbro, gabbro and diorite. The 260±3 Ma sills consist of undifferentiated diabases. Both the layered intrusions and volcanic rocks belong to a low-Ti group, whereas the diabases belong to a high-Ti group. Rocks of the high-Ti group have FeO, TiO2 and P2O5 higher but MgO and Th/Nb ratios lower than those of the low-Ti group. They have initial 87Sr/86Sr ratios (0.706–0.707) lower and ɛNd (−1.5 to −0.6) higher than the low-Ti equivalents (0.710–0.715 and −9.6 to −4.0, respectively). The high-Ti group was formed from relatively primitive, high-Ti magmas generated by low degrees (7.3 –9.5%) of partial melting of an enriched, OIB-type asthenospheric mantle source. The low-Ti group may have formed from melts derived from an EM2-like, lithospheric mantle source. The mafic rocks at Funing are part of the Emeishan large igneous province formed by a mantle plume at ∼260 Ma.  相似文献   

17.
This study presents new results on zircons from the enderbite-charnockite rocks of Enderby Land, East Antarctica. U-Pb age of 3981 ± 8 Ma (SIMS SHRIMP II), which was first obtained for a protolith of massive enderbites from Aker Peaks, eastern Napier Mts, suggests that the existence of sialic crust in the study area at 4 Ga. Although there was only one magmatic zircon (of 150 grains analyzed) in the study area known with the oldest age, its significance cannot be overestimated, since it may indirectly evidence the existence of an Early Archean crustal block with a minimum age of 4 Ga, which extends for over 300 km across Enderby Land from its western to eastern part. Based on the U-Pb systematics, REE and trace element distributions in zircons from charnockite and enderbite gneisses, high-aluminous gneisses, and basic granulites, we first revealed that an early high-temperature metamorphic event accompanied by the emplacement of granodiorite intrusions occurred in the vicinity of Aker Peaks at 3620–3630 Ma. Although the 2850–3050 metamorphic overprints are clearly observed in some other areas of Enderby Land and are widely considered to be of critical importance on a regional scale, their metamorphic signatures are apparently absent from the U-Pb systematics of the studied zircon, thus suggesting the presence of similar old zircons in the study area. At the same time, all samples in this study record a 2480–2550 Ma granulite-amphibolite facies overprint represented as new zircon growths or recrystallization of earlier phases.  相似文献   

18.
The technique of single zircon dating from the thermal evaporation of 207Pb/206Pb (Kober 1986, 1987) provides a means of dating successive periods of growth and nucleation of zircons in polymetamorphic assemblages. In contrast Nd model ages may provide a measure of the period of crustal residency for the sample or its protolith. These two techniques have been combined to elucidate the tectonic history of the Proterozoic mobile belt of southern India, exposed south of the Palghat-Cauvery Shear Zone that marks the southern boundary of the Archaean craton of Karnataka. The two main tectonic units of this mobile belt comprise the Madurai and Trivandrum Blocks, both of which are characterised by massive charnockite uplands and low-lying polymetamorphic metasedimentary belts that have undergone a complex tectonic history throughout the Proterozoic. Evidence for early Palaeoproterozoic magmatism is restricted to the Madurai Block where single zircon evaporation ages from a metagranite (2436 ± 4 Ma) are similar to model Nd ages from a range of lithologies suggesting crustal growth at that time. The Trivandrum Block, to the south of the Achankovil shear zone, is comprised of the Kerala Khondalite Belt, the Nagercoil charnockites and the Achankovil metasediments. Single zircon evaporation ages, together with conventional zircon and garnet chronometry, suggest that all three units underwent upper-amphibolite facies metamorphism at ∼1800 Ma, an event unrecorded in the metagranite from the Madurai Block. This implies that the Madurai and Trivandrum blocks represent distinct terrains throughout the Palaeoproterozoic. Model Nd ages from the Achankovil metasediments are much younger (1500–1200 Ma) than those from the adjacent Kerala Khondalite Belt and Madurai Blocks (3000–2100 Ma), but there is no evidence for zircon growth in these metasediments during the Mesoproterozoic. Hence the comparatively young model Nd ages of the metasediments are indicative of a mixed provenance rather than a discrete period of crustal growth. Zircon overgrowths from the Madurai Block (547 ± 17 Ma) and Achankovil metasediments (530 ± 21 Ma) suggest that all tectonic units of the Proterozoic mobile belt of South India shared the same metamorphic history from the early Palaeozoic. This event has been recognised in the basement lithologies of Sri Lanka and East Antarctica, confirming that the constituent terrains of East Gondwana had assembled by this time. Received: 10 October 1995 / Accepted: 27 October 1997  相似文献   

19.
Granitoids from the central Mawson Escarpment (southern Prince Charles Mountains, East Antarctica) range in age from Archaean to Early Ordovician. U–Pb dating of zircon from these rocks indicates that they were emplaced in three distinct pulses: at 3,519 ± 20, 2,123 ± 12 Ma and between 530 and 490 Ma. The Archaean rocks form a layer-parallel sheet of limited extent observed in the vicinity of Harbour Bluff. This granitoid is of tonalitic-trondhjemitic composition and has a Sr-undepleted, Y-depleted character typical of Archaean TTG suites. εNd and TDM values for these rocks are −2.1 and 3.8 Ga, respectively. Subsequent Palaeoproterozoic intrusions are of granitic composition (senso stricto) with pronounced negative Sr anomalies. These rocks have εNd and TDM values of −4.8 and 2.87 Ga, indicating that these rocks were probably melted from an appreciably younger source than that tapped by the Early Archaean orthogneiss. The remaining intrusions are of Early Cambrian to Ordovician age and were emplaced coincident with the major orogenic event observed in this region. Cambro–Ordovician intrusive activity included the emplacement of layer-parallel pre-deformational granite sheets at approximately 530 Ma, and the intrusion of cross cutting post-tectonic granitic and pegmatitic dykes at ca. 490 Ma. These intrusive events bracket middle- to upper-amphibolite facies deformation and metamorphism, the age of which is constrained to ca. 510 Ma—the age obtained from a syn-tectonic leucogneiss. Nd–Sr isotope data from the more felsic Cambro–Ordovican intrusions (SiO2 > 70 wt%), represented by the post-tectonic granite and pegmatite dykes, suggest these rocks were derived from Late Archaean or Palaeoproterozoic continental crust (TDM ∼ 3.5–2.3 Ga, εNd ∼ −21.8 to −25.9) not dissimilar to that tapped by the Early Proterozoic intrusions. In contrast, the compositionally more intermediate rocks (SiO2 < 65 wt%), represented by the metaluminous pre-tectonic Turk orthogneiss, appear to have melted from a notably younger lithospheric or depleted mantle source (TDM = 1.91 Ga, εNd ∼ −14.5). The Turk orthogneiss additionally shows isotopic (low 143Nd/144Nd and low 87Sr/86Sr) and geochemical (high Sr/Y) similarities to magmas generated at modern plate boundaries—the first time such a signature has been identified for Cambrian intrusive rocks in this sector of East Antarctica. These data demonstrate that: (1) the intrusive history of the Lambert Complex differs from that observed in the adjacent tectonic provinces exposed to the north and the south and (2) the geochemical characteristics of the most mafic of the known Cambrian intrusions are supportive of the notion that Cambrian orogenesis occurred at a plate boundary. This leads to the conclusion that the discrete tectonic provinces observed in the southern Prince Charles Mountains were likely juxtaposed as a result of Early Cambrian tectonism.  相似文献   

20.
The petrogenetic potential of in situ laser ablation Hf isotope data from melt precipitated zircons was explored through the analyses of about 700 individual crystals derived from about 20 different granitic intrusions covering the Variscan basement segment of eastern Bavaria, SE Germany. In combination with geochemical features, four major suites of granitic rocks can be distinguished: (1) NE Bavarian redwitzites (52–57 wt% SiO2, intrusion ages around 323 Ma) have chondritic εHf(t) values (+0.8 to –0.4). The redwitzites are hybrid rocks and the Hf data are permissive of mixing of a mantle progenitor and crustal melts. (2) Various intermediate rock types (dioritic dyke, granodiorite, palite, 59–63 wt% SiO2, 334–320 Ma) from the Bavarian Forest yield negative εHf(t) values between –3.4 and –5.1. These values which apparently contradict a mantle contribution fingerprint an enriched (metasomatized) mantle component that was mixed with crustal material. (3) Voluminous, major crust forming granites sensu stricto (67–75 wt% SiO2, 328–298 Ma) are characterized by a range in εHf(t) values from –0.5 to –5.6. Different crustal sources and/or modification of crustal melts by various input of juvenile material can explain this variation. (4) Post-plutonic (c. 299 Ma) porphyritic dykes of dacitic composition (64–67 wt% SiO2) from the southern Bavarian Forest have chondritic εHf(t) values (+0.6 to –1.1) and display large intergrain Hf isotope variation. The dykes form a separate petrogenetic group and the Hf data suggest that the zircons crystallized when a pristine mantle-derived parental melt was modified by infiltration of crustal material. The zircon Hf data form a largely coherent positive array with the whole-rock Nd data and both systems yield similar two-stage depleted mantle model ages (1.1–1.7 Ga).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号