首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
西准噶尔成矿带是中亚成矿域巴尔喀什成矿带的东延部分,目前已发现有包古图斑岩型铜矿床、哈图金矿床、萨尔托海铬铁矿床和杨庄铍矿床等大型超大型矿床,是中亚成矿域内重要的成矿远景区.北东向达拉布特断裂、玛依勒断裂、巴尔鲁克断裂等以及所夹的构造地块,构成了西准噶尔“多”字型构造体系(简称“西准系”),是控制西准噶尔成矿带铜-金-...  相似文献   

2.
西准噶尔成矿带夹持在天山断裂与额尔齐斯断裂之间,是中亚成矿域西部的核心区域之一,广泛发育晚古生代深成岩浆活动、走滑断裂构造和斑岩铜矿、造山型金矿成矿作用。本文在西准噶尔成矿带包古图岩体、康德岩体、加曼岩体、库鲁木苏岩体、别鲁阿嘎希岩体、哈图岩体、阿克巴斯套岩体、庙尔沟岩体、克拉玛依岩体及红山岩体采集12个样品,通过黑云母和钾长石(40)~Ar/(39)~Ar阶段升温测年,给出了该地区(40)~Ar/(39)~Ar冷却年龄。其中,黑云母(40)~Ar/(39)~Ar年龄处在326~302 Ma范围内,钾长石(40)~Ar/(39)~Ar年龄为297~264 Ma,反映了西准噶尔地区晚石炭世-中二叠世的区域中温冷却历史。结合前人报道的锆石U-Pb、角闪石(40)~Ar/(39)~Ar、辉钼矿Re-Os、磷灰石裂变径迹等年龄数据,构建了西准噶尔成矿带晚古生代岩浆侵入,成矿作用与构造抬升,以及晚中生代剥露过程的整个热历史;并与区域左行走滑断裂活动的时间进行了对比,讨论了(40)~Ar/(39)~Ar冷却年龄的构造意义。  相似文献   

3.
西准噶尔达拉布特断裂带中段晚古生代构造分析   总被引:2,自引:0,他引:2  
林伟  孙萍  薛振华  张仲培 《岩石学报》2017,33(10):2987-3001
走滑断裂构造在中亚造山带增生及演化过程的研究中扮演了重要角色,其主要构造单元均被走滑断裂带所分割。西准噶尔造山带是中亚增生型造山带的重要组成部分,达拉布特断裂是西准噶尔造山带中一条重要的走滑断裂,其复杂的构造表现吸引了大量研究者的关注。前人不仅在其构造解释上存在着走滑断层、逆冲断层或压扭性断层等诸多争议,且在其活动时代问题上也有不同的看法。本文依据在达拉布特断裂带中段开展的详细野外构造学工作,结合前人针对该地区石炭纪火山岩、浊积岩和造山后花岗岩侵入体所做的同位素年代学工作成果,对达拉布特断裂的活动性质和活动时代进行了讨论。结果确认在中二叠统沉积之前,达拉布特断裂带存在两期变形事件,分别对应于320Ma左右沿NE-SW的较深层次的左行走滑事件D1和表现为脆-韧性转换域的轴面倾向SE的褶皱作用构造事件D2。前者为主期变形事件,而后者发生在中二叠统沉积之前。本文同时报道了沿达拉布特断裂带出露右行走滑构造形迹,并讨论了其可能的成因。沿达拉布特断裂带的多期构造事件记录了西准噶尔地区造山后大规模走滑构造调整过程,是晚古生代晚期中亚各个陆块拼合后大规模陆内调整在西准噶尔造山带的具体体现。  相似文献   

4.
准噶尔西北缘斜向挤压构造与走滑断裂   总被引:4,自引:1,他引:3       下载免费PDF全文
杨庚  王晓波  李本亮  石昕 《地质科学》2011,46(3):696-708
古板块构造研究表明古生代以来,准噶尔地块以斜向方式拼合到阿尔泰(Altaids)造山带构造域内,导致准噶尔西北缘一直处在斜向挤压构造背景之下,并发育高角度逆冲推覆构造带以及横向走滑断裂。地面地质调查、遥感卫星影像解译、大地电磁测深剖面和地震剖面构造解释资料综合研究表明,准噶尔西北缘边界断裂为达拉布特左行走滑断裂,西北缘逆冲推覆构造带为基底卷入的高角度逆冲断裂褶皱带; 在与逆冲带走向相垂直方向,发育有北西向横向走滑断裂,这些断裂为同一斜向挤压构造背景下形成的同期构造,形成时间约在晚二叠到侏罗纪之间。大地电磁测深和地震剖面解释表明,达拉布特走滑断裂控制了西北缘高角度逆冲断裂的分布与性质。西北缘二维和三维地震剖面解释表明,横向走滑断裂样式为正花状构造或者负花状构造,同时具有向南东或北西方向逆冲和拉伸的特征。横向走滑断裂为西北缘逆冲构造南北方向分段的主要断裂,并控制了西北缘中生代地层的沉积。西北缘构造是形成于主边界断裂的斜向挤压作用,而基底卷入逆冲断裂则属非纯挤压形成的逆冲构造。  相似文献   

5.
陈石  郭召杰 《岩石学报》2010,26(8):2336-2344
萨尔托海附近的也格孜卡拉花岗岩侵入到达拉布特蛇绿岩带中,为典型的"钉合岩体",其锆石SHRIMPU-Pb年龄结果为308±3Ma(MSWD=0.83),限定了达拉布特蛇绿岩带侵位时限不晚于308Ma,同时达拉布特蛇绿岩中辉长岩的年龄(Sm-Nd等时线年龄395Ma;LA-ICP-MS锆石U-Pb年龄391Ma),给出了达拉布特蛇绿岩带的形成年龄。达拉布特蛇绿岩带两侧地层均为下石炭统,为稳定火山-沉积序列,岩石组合特征相同,具有很好的可对比性,表明达拉布特蛇绿岩带不是分隔两侧不同板块的板块缝合带。在综合分析前人板片窗、增生楔等不同构造模型的基础上,提出残余洋盆的被动垮塌充填是西准噶尔地区晚古生代构造演化的主要形式,残余洋盆闭合过程中可能伴随着洋壳俯冲过程,侵入于西准增生杂岩的多个花岗岩体和闪长岩墙,限定了西准晚古生代增生作用不晚于晚石炭世。  相似文献   

6.
夹持在近东西向额尔齐斯断裂和天山走滑断裂系统之间的西准噶尔地区,经历了自晚古生代晚期以来长期复杂的陆内构造变形历史。线性构造的长度、方向以及空间分布能够反映构造变形的强度和样式,指示应力作用的方式。本文选取新疆西准噶尔地区为研究区,利用ASTER、Landsat等多源遥感数据通过彩色合成、主成分分析、波段比值和Sobel滤波等增强显示断裂构造在遥感影像上的空间分布和光谱信息,并利用Canny边缘检测与人工解译相结合的方法提取研究区内线性构造;运用地质统计学的原理和方法对提取出的线性构造进行定量分析。结果表明,研究区内依长度优选方位确定的主断裂走向为N50°~60°E,代表了区域一级构造即达拉布特断裂展布的方位;依线性构造数量优选方位确定的次级断裂走向为80°~90°(近东西向),代表了区域三级构造的方位;介于以上两者之间的线性构造,即数量与长度均适中的线性构造,代表了区域二级构造的方位。线性构造的区域分布,揭示了在南北向主压应力作用下,西准噶尔地区构造体系的组成与构造变形特征。由此说明,多源遥感信息提取的线性构造定量分析,对于区域断裂构造体系的厘定具有重要意义。  相似文献   

7.
西准噶尔克拉玛依花岗岩体地球化学特征及其意义   总被引:15,自引:0,他引:15  
西准噶尔克拉玛依岩体为二长花岗岩和斜长花岗岩等,为海西中期侵入岩体,具有高钠、铝等特点,A/CNK=0.71~0.78,NK/A为0.8~0.89,为偏铝质钙碱性花岗岩.轻稀土元素中等富集,Eu弱亏损,富集大离子亲石元素,Nb、Ta亏损,富Sr,La/Yb值相对低.多种主微量元素和同位素的综合图解分析表明,该岩体为I型花岗岩,与达拉布特断裂西侧同时期的庙尔沟A型花岗岩具有明显的区别,盆地具有较为年轻的地壳基底.克拉玛依岩体为岛弧花岗岩,晚石炭世准噶尔地区仍存在着洋盆体制.  相似文献   

8.
丁嘉鑫  韩申  黄柏诚  吴艳爽  张博  肖飞  王永 《地质论评》2019,65(6):1440-1461
造山型金矿形成于汇聚板块边缘,俯冲增生或碰撞造山体制,是现代矿床学研究的热点之一。西准噶尔地区有几十个造山型金矿,但其究竟形成在洋壳俯冲增生造山过程还是洋盆闭合后的碰撞造山过程,尚不清楚。本文系统总结了西准噶尔地区造山型金矿的时空分布及地质、地球化学特征,发现它们主要赋存于达拉布特断裂西北侧,可分为安齐(包括哈图金矿)和萨尔托海(包括萨Ⅰ金矿)两个成矿带;成矿作用受控于达拉布特走滑断裂引发的区域变质变形事件,矿体主要赋存于中晚石炭世变质火山沉积岩或蛇绿岩中,发育NaCl—H_2O—CO_(2 )±CH_(4 )±N_2流体包裹体体系,成矿温度为170~380℃,成矿流体主要为变质热液,晚期为大气降水热液;成矿同位素年龄为271~300 Ma,已有资料显示西准噶尔地区存在多期次俯冲增生作用,并于晚石炭世—早二叠世消减完毕。而造山型金矿广泛发育的达拉布特西北侧古洋盆闭合于308~328 Ma,此后为大陆碰撞造山体制,因此西准噶尔造山型金矿形成于大陆碰撞造山体制,适合于碰撞造山成岩成矿和流体作用模式。晚石炭世—早二叠世,达拉布特地区陆—陆或弧陆碰撞过程中,大规模的韧脆性剪切变形及区域变质事件导致地层及围岩中不稳定组分发生变质活化,形成含矿变质流体,流体向上运移至韧—脆性转换带内形成了西准噶尔造山型金矿成矿系统。  相似文献   

9.
“构造杂岩”及其地质意义——以西准噶尔为例   总被引:6,自引:0,他引:6       下载免费PDF全文
构造杂岩是构造地层学的重要研究内容之一。以西准噶尔为例,三个不同时期形成的构造杂岩:科克沙依杂岩、玛依勒杂岩和达拉布特杂岩,代表了古生代不同时期洋盆与火山弧的残迹。现今西准噶尔的构造格局,可能是多个地体的拼合。  相似文献   

10.
中亚造山带西部的西准噶尔地区是古生代洋陆构造转换最显著的地区之一,但是关于该地区洋陆转换的具体时间和地壳演化至今仍存在诸多争议。本文以西准噶尔地区的庙尔沟岩体及其西北侧新发现的柱状节理流纹岩为研究对象,通过锆石U-Pb定年的方法,判断庙尔沟岩体的年龄为302.8~308.8 Ma,柱状节理流纹岩的年龄为303.6~294.5 Ma。锆石Lu-Hf同位素测试结果显示,庙尔沟岩体和柱状节理流纹岩都具有相似的高~(176)Hf/~(177)Hf值和高正ε_(Hf)(t)值,具有亏损地幔的源区属性,可能来源于下地壳底部残余洋壳或火山岛弧等新生地壳发生部分熔融。结合区域地质资料和前人研究成果,将西准噶尔地区由大洋俯冲向陆内环境转变的时间限定为晚石炭—早二叠世,其基底可能是以新元古代晚期—晚古生代形成的年轻洋壳和岛弧为主,不存在古老的结晶基底。  相似文献   

11.
The West Junggar Orogenic Belt(WJOB)in northwestern Xinjiang,China,is located in the core of the western part of the Central Asian Orogenic Belt(CAOB).It has suffered two stage tectonic evolutions in Phanerozoic,before and after the ocean–continental conversion in Late Paleozoic.The later on intracontinental deformation,characterized by the development of the NE-trending West Junggar sinistral strike-slip fault system(WJFS)since Late Carboniferous and Early Permian,and the NW-trending Chingiz-Junggar dextral strike-slip fault(CJF)in Mesozoic and Cenozoic,has an important significance for the tectonic evolution of the WJOB and the CAOB.In this paper,we conduct geometric and kinematic analyses of the WJOB,based on field geological survey and structural interpretation of remote sensing image data.Using some piercing points such as truncated plutons and anticlines,an average magnitude of^73 km for the left-lateral strike-slip is calculated for the Darabut Fault,a major fault of the WJFS.Some partial of the displacement should be accommodated by strike-slip fault-related folds developed during the strike-slip faulting.Circular and curved faults,asymmetrical folds,and irregular contribution of ultramafic bodies,implies potential opposite vertical rotation of the Miao’ergou and the Akebasitao batholiths,resulted from the sinistral strike-slipping along the Darabut Fault.Due to conjugate shearing set of the sinistral WJFS and the dextral CJF since Early Mesozoic,superimposed folds formed with N–S convergence in southwestern part of the WJOB.  相似文献   

12.
ABSTRACT

The West Junggar Metallogenic Belt (WJMB) is located between the Tianshan fault system and the Ertix fault system in the western part of the Central Asian Metallogenic Domain (CAMD). The belt features widespread late Palaeozoic granitic plutons, strike-slip faults, and porphyry copper and orogenic gold deposits. We collected nine molybdenite samples from the Baogutu III–IV Cu–Mo deposit and the Suyunhe Mo–W deposit, and 12 granitoid samples from the Jiaman, Kangde, Kulumusu, Bieluagaxi, Hatu, Akbastau, Miaoergou, Baogutu, Karamay, and Hongshan plutons in the WJMB. Molybdenite Re–Os dating gives metallogenesis ages of 312.7 and 299.7 Ma for the Baogutu III–IV and Suyunhe deposits, respectively. 40Ar/39Ar thermochronology yields biotite ages ranging from 326 to 302 Ma and K-feldspar ages from 297 to 264 Ma, indicating a regional medium-temperature cooling history in the WJMB during the late Carboniferous to middle Permian. By integrating these data with previous zircon U–Pb, amphibole 40Ar/39Ar, and zircon and apatite fission-track ages, we reconstruct the whole thermal history of the WJMB, which includes late Palaeozoic intrusive magmatism, porphyry Cu and W–Mo mineralization, and late Mesozoic tectonic uplift and exhumation of the WJMB. The regional 40Ar/39Ar cooling ages are consistent with the timing of regional sinistral strike-slip faulting, thereby indicating the tectonic significance of the cooling ages. We suggest that the biotite 40Ar/39Ar ages represent the static cooling of the granitic plutons after emplacement, since the ages are consistent with the U–Pb ages of the plutons. Thereafter, the oldest K-feldspar 40Ar/39Ar age may record the initiation of sinistral strike-slip movement on the Darabut, Mayile, and Baerluke faults. The regional faulting resulted in significant uplift of the WJMB during the early and middle Permian.  相似文献   

13.
新疆北部卡拉麦里晚古生代走滑构造及其叠加变形序次   总被引:1,自引:1,他引:0  
大型走滑断裂构造是大陆地壳内部基本的构造变形样式,通常是大陆地壳形成的标志.卡拉麦里构造带是新疆东准地区构造演化研究的重要构造单元.前人的研究认为卡拉麦里构造带是板块碰撞形成的缝合带.本文结合野外考察、构造分析和年代学工作认为,该构造带主要反映了走滑构造带的特点.在遥感影像上,卡拉麦里构造带呈断续的线状延伸特征.地震剖面上,卡拉麦里断裂带主断面产状近于直立向下延伸至基底,与一般张性断层、压性逆冲断层所显示的上陡下缓的铲状特征截然不同.野外考察显示,该构造带发育密集而陡立劈理,主断面附近劈理面倾角近于直立,在相对较浅层次的地层上,劈理面成花状散开,体现花状构造的特点.卡拉麦里构造带内的石炭系、泥盆系地层以及蛇绿岩系受到强烈改造,超糜棱岩化、糜棱岩化、千枚岩化现象普遍.糜棱岩中,硅质岩透镜体拖尾指示右旋走滑特征,与同构造岩脉次级张裂面指示的结果相一致.结合前人研究资料以及地层变形证据,可以推断构造带活动时限为270~260Ma.因此,卡拉麦里构造带是一条在晚古生代-早中生代活动的右旋剪切走滑构造带,准东地区与卡拉麦里构造带相关的缝合带确认,必须以卡拉麦里走滑构造带性质的准确厘定为基础.卡拉麦里构造二叠纪时期的走滑活动性质的确定,指示新疆北部二叠纪大陆地壳已经形成,而且,新疆北部后期叠加构造变形序次研究也显示具有大区域上的共性,指示新疆北部二叠纪以来进入基本统一大陆内部构造演化阶段.  相似文献   

14.
http://www.sciencedirect.com/science/article/pii/S1674987114000711   总被引:1,自引:0,他引:1  
The West Junggar region,located in the loci of the Central Asian Orogenic Belt,is a highly endowed metallogenic province with >100 tonnes Au,>0.7 Mt Cu,>0.3 Mt Mo,and >2.3 Mt chromite as well as significant amounts of Be and U.The West Junggar region has three metallogenic belts distributed systematically from north to south:(1) late Paleozoic Saur Au-Cu belt;(2) early Paleozoic XiemisitaiSharburt Be-U-Cu-Zn belt;(3) late Paleozoic Barluk-Kelamay Au-Cu-Mo-Cr belt.These belts host a number of deposits belonging to at least eight economically important styles,including epithermal Au,granite-related Be-U,volcanogenic massive sulfide(VMS) Cu-Zn,podiform chromite,porphyry Cu,hydrothermal quartz vein Au,porphyry-greisen Mo(-W),and orogenic Au.These deposit styles are associated with the tectonics prevalent during their formation.Five tectonic-mineralized epochs can be recognized:(1) Ordovician subduction-related VMS Cu-Zn deposit;(2) Devonian ophiolite-related podiform chromite deposit;(3) early Carboniferous subduction-related epithermal Au and porphyry Cu deposits;(4) late Carboniferous subduction-related granite-related Be-U,porphyry Cu,and hydrothermal quartz vein Au deposits;and(5) late Carboniferous to early Permian subduction-related porphyry-greisen Mo(-W) and orogenic Au deposits.  相似文献   

15.
阿尔金成矿带成矿规律与找矿预测   总被引:5,自引:0,他引:5  
阿尔金成矿带介于塔里木盆地与柴达木盆地之间,呈北东向带状展布,长约600km。该带以北东向带状分布的太古宇-古生代变质地层为特征,同时在中-新生代断陷盆地中分布有弱至未变质的沉积岩。该区经历了多期造山运动和岩浆热事件,遭受了多期的抬升、走滑和变形作用。研究表明具有漫长地质演化历史的阿尔金成矿带发育类型较为齐全的金属、非金属和能源矿床,其中金、铜、铅、锌等矿种具有较好的成矿远景。区内金属矿床可划分为9个矿床类型,典型矿床如采石沟、大平沟、祥云金矿,拉配泉、索拉克、喀拉大湾铜矿床等。在对地、物、化、遥、区域成矿特征、控矿因素等资料进行综合研究基础上,采用GIS技术进行了矿产预测,将阿尔金成矿带划分为5个成矿亚带、10个找矿远景区和25个找矿预测区。  相似文献   

16.
North Xinjiang, Northwest China, is made up of several Paleozoic orogens. From north to south these are the Chinese Altai, Junggar, and Tian Shan. It is characterized by widespread development of Late Carboniferous–Permian granitoids, which are commonly accepted as the products of post-collisional magmatism. Except for the Chinese Altai, East Junggar, and Tian Shan, little is known about the Devonian and older granitoids in the West Junggar, leading to an incomplete understanding of its Paleozoic tectonic history. New SHRIMP and LA-ICP-MS zircon U–Pb ages were determined for seventeen plutons in northern West Junggar and these ages confirm the presence of Late Silurian–Early Devonian plutons in the West Junggar. New age data, combined with those available from the literature, help us distinguish three groups of plutons in northern West Junggar. The first is represented by Late Silurian–Early Devonian (ca. 422 to 405 Ma) plutons in the EW-striking Xiemisitai and Saier Mountains, including A-type granite with aegirine–augite and arfvedsonite, and associated diorite, K-feldspar granite, and subvolcanic rocks. The second is composed of the Early Carboniferous (ca. 346 to 321 Ma) granodiorite, diorite, and monzonitic and K-feldspar granites, which mainly occur in the EW-extending Tarbgatay and Saur (also spelled as Sawuer in Chinese) Mountains. The third is mainly characterized by the latest Late Carboniferous–Middle Permian (ca. 304 to 263 Ma) granitoids in the Wuerkashier, Tarbgatay, and Saur Mountains.As a whole, the three epochs of plutons in northern West Junggar have different implications for tectonic evolution. The volcano-sedimentary strata in the Xiemisitai and Saier Mountains may not be Middle and Late Devonian as suggested previously because they are crosscut by the Late Silurian–Early Devonian plutons. Therefore, they are probably the eastern extension of the Early Paleozoic Boshchekul–Chingiz volcanic arc of East Kazakhstan in China. It is uncertain at present if these plutons might have been generated in either a subduction or post-collisional setting. The early Carboniferous plutons in the Tarbgatay and Saur Mountains may be part of the Late Paleozoic Zharma–Saur volcanic arc of the Kazakhstan block. They occur along the active margin of the Kazakhstan block, and their generation may be related to southward subduction of the Irtysh–Zaysan Ocean between Kazakhstan in the south and Altai in the north. The latest Late Carboniferous–Middle Permian plutons occur in the Zharma–Saur volcanic arc, Hebukesaier Depression, and the West Junggar accretionary complexes and significantly postdate the closure of the Irtysh–Zaysan Ocean in the Late Carboniferous because they are concurrent with the stitching plutons crosscutting the Irtysh–Zaysan suture zone. Hence the latest Late Carboniferous–Middle Permian plutons were generated in a post-collisional setting. The oldest stitching plutons in the Irtysh–Zaysan suture zone are coeval with those in northern West Junggar, together they place an upper age bound for the final amalgamation of the Altai and Kazakhstan blocks to be earlier than 307 Ma (before the Kaslmovian stage, Late Carboniferous). This is nearly coincident with widespread post-collisional granitoid plutons in North Xinjiang.  相似文献   

17.
Tectonically, the Sanjiang Tethyan Metallogenic Domain (STMD) is located within the eastern Himalayan–Tibetan Orogen in the Sanjiang Tethys, southwestern China. Although this metallogenic domain was initiated in the Early Palaeozoic, extensive metallogenesis occurred in the Late Palaeozoic, Late Triassic and Himalayan (Tertiary) epochs. Corresponding tectonic settings and environments in the domain are: an arc-basin system related to the subduction of the Palaeo-Tethyan oceanic slabs; a post-collision crustal extension setting caused by the lithospheric delamination or slab breakoff underneath the Sanjiang Tethys during the Late Triassic; large-scale strike-slip faulting and thrusting systems due to the Indo-Asian continent collision since the Palaeocene. In this metallogenic domain important gold, copper, base metals, rare metals and tin ore belts, incorporating a large number of giant deposits, were developed. The main types of deposits include: (1) porphyry copper deposits, controlled by a large-scale strike-slip fault system, (2) VHMS deposits, mainly occurring in intra-arc rift basins and post-collision crustal extensional basins, (3) shear-zone type gold deposits in the ophiolitic mélange zone along the thrusting–shearing system, (4) hydrothermal silver-polymetallic deposits in the Triassic intra-continental rift basins and Tertiary strike-slip pull-apart basins, and (5) Himalayan granite-related greisen-type tin and rare-metallic deposits. Within the metallogenic epochs of the Late Palaeozoic to Cenozoic, the styles and types of the ore deposits changed from VHMS types in the Late Palaeozoic through exhalative-sedimentary type deposits in the Late Triassic, to porphyry-type copper deposits, shear-zone type gold deposits, hydrothermal vein-type silver-polymetallic deposits, greisen-type tin and rare-metal deposits in the Cenozoic. Correspondingly, ore-forming metals also changed from a Pb–Zn–Cu–Ag association through Ag–Cu–Pb–Zn, Fe–Ag–Pb and Ag–Au–Hg associations, to Ag–Cu–Pb–Zn, Cu–Mo, Au, Sn, and Li–Rb–Cs–Nb–Zr–Hf–Y–Ce–Sc associations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号