首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In situ atomic force microscopy (AFM) has been used to compare the growth of pure calcite and the growth of calcite in the presence of sulfate ions from aqueous solutions at a constant value of supersaturation (S.I. = 0.89) with respect to calcite. The effect of sulfate ions on calcite growth rates is determined and a potential incorporation of sulfate ions is identified in the calcite during growth. Solutions supersaturated with respect to calcite with solution concentration ratio of one and a constant pH of 10.2, were prepared and sulfate was added as Na2SO4 aqueous solution. The solution composition was readjusted in order to keep the supersaturation and pH constant. PHREEQC was used to determine relevant solution concentrations. In situ AFM experiments of calcite growth were performed using a fluid cell and flowing solutions passed over a freshly cleaved calcite surface. Growth rates were determined from the closure of the rhombohedral etch pits induced by initial dissolution with pure water. The spreading rate of 2-dimensional nuclei was also measured. At low concentrations of sulfate (≤ 0.5 mM), no effect on the growth rate of the calcite was observed. At higher concentrations (2 to 3 mM) of sulfate, the growth rate increased, possibly because a higher concentration of calcium and carbonate was necessary to maintain the supersaturation constant. At much higher concentrations of additional sulfate (up to 60 mM) the growth rate of the calcite was substantially decreased, despite the fact that a further increase of calcium and carbonate was required. The morphology of 2-dimensional growth nuclei became increasingly elongated with increasing sulfate content. Measurements of step height showed that newly grown steps were approximately 1 Å higher when grown in high sulfate concentrations, compared to steps grown in sulfate-free solutions. At sulfate concentrations above 5 mM the growth mechanism changes from layer growth to surface roughening. These observations suggest that the new growth has incorporated sulfate into the calcite surface.  相似文献   

2.
Hydrogeochemical investigations are carried out in and around Perumal Lake, Cuddalore district, South India in order to assess its suitability in relation to domestic and agricultural uses. The water samples (surface water = 16; groundwater = 12) were analyzed for various physicochemical attributes like pH, electrical conductivity (EC), sodium (Na+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), chloride (Cl), bicarbonate (HCO3 ), sulfate (SO4 2−), phosphate (PO4), silica (H4SiO4) and total dissolved solids (TDS). Major hydrochemical facies were identified using Piper trilinear diagram. Hydrogeochemical processes controlling the water chemistry are water–rock interaction rather than evaporation and precipitation. Interpretation of isotopic signatures reveals that groundwater samples recharged by meteoric water with few water–rock interactions. A comparison of water quality in relation to drinking water quality standard proves that the surface water samples are suitable for drinking purpose, whereas groundwater in some areas exceeds the permissible limit. Various determinants such as sodium absorption ratio (SAR), percent sodium (Na%), residual sodium carbonate (RSC) and permeability index (PI) revealed that most of the samples are suitable for irrigation.  相似文献   

3.
Oxidation of the Kaapvaal lithospheric mantle driven by metasomatism   总被引:2,自引:1,他引:1  
The oxidation state, reflected in the oxygen fugacity (fO2), of the subcratonic lithospheric mantle is laterally and vertically heterogeneous. In the garnet stability field, the Kaapvaal lithospheric mantle becomes progressively more reducing with increasing depth from Δlog fO2 FMQ-2 at 110 km to FMQ-4 at 210 km. Oxidation accompanying metasomatism has obscured this crystal-chemical controlled depth-fO2 trend in the mantle beneath Kimberley, South Africa. Chondrite normalized REE patterns for garnets, preserve evidence of a range in metasomatic enrichment from mild metasomatism in harzburgites to extensive metasomatism by LREE-enriched fluids and melts with fairly unfractionated LREE/HREE ratios in phlogopite-bearing lherzolites. The metasomatized xenoliths record redox conditions extending up to Δlog fO2 = FMQ, sufficiently oxidized that magnesite would be the stable host of carbon in the most metasomatized samples. The most oxidized lherzolites, those in or near the carbonate stability field, have the greatest modal abundance of phlogopite and clinopyroxene. Clinopyroxene is modally less abundant or absent in the most reduced peridotite samples. The infiltration of metasomatic fluids/melts into diamondiferous lithospheric mantle beneath the Kaapvaal craton converted reduced, anhydrous harzburgite into variably oxidized phlogopite-bearing lherzolite. Locally, portions of the lithospheric mantle were metasomatized and oxidized to an extent that conversion of diamond into carbonate should have occurred. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
The chemical quality of groundwater of western Haryana, India was assessed for its suitability for drinking purposes. A total of 275 water samples were collected from deep aquifer based hand-pumps situated in 37 different villages/towns of Bhiwani region. The water samples were analyzed for different physico-chemical properties, e.g., pH, total dissolved solids (TDS), total harness (TH), total alkalinity (TA), calcium, magnesium, carbonate, bicarbonate, sulphate, chloride and fluoride concentrations. In this study, the average TDS content was greater ranging 1,692 (Bhiwani block) to 2,560 mg l−1 (Siwani block), and other important parameters of water, e.g., TA (442–1,232 mg l−1), TH (437–864 mg l−1) and bicarbonate (554–672 mg l−1), were also higher than maximum permissible limit by WHO or BIS. The fluoride appeared as a major problem of safe drinking water in this region. We recorded greater fluoride concentration, i.e., 86.0 mg l−1 from Motipura village that is highest fluoride level ever recorded for Haryana state. The average fluoride concentration ranged between 7.1 and 0.8 mg l−1 in different blocks of western Haryana. On the basis of fluoride concentration, Siwani block showed the maximum number of water samples (84% of total collected samples) unsuitable for drinking purposes (containing fluoride >1.5 mg l−1) followed by Charki Dadri block (58%), Bhiwani block (52%), Bawani Khera block (33%) and Loharu block (14%). This study clearly suggest that some health deteriorating chemicals in drinking water were at dangerous level and; therefore, water quality could be a major health threat for local residents of western Haryana. The high fluoride level in drinking water has posed some serious dental health risks in local residents.  相似文献   

5.
This paper investigates kerogen carbon isotopes, the difference between carbonate and kerogen carbon isotopes (Δ13Ccarb-kero = δ 13Ccarb − δ 13Ckero) and the difference between carbonate and n-C19 alkane compound-specific carbon isotopes (Δ13Ccarb-n-C19 = δ 13Ccarb − δ 13C n-C19) during the Permian–Triassic transition at Meishan, South China. The results show that kerogen carbon isotopes underwent both gradual and sharp shifts in beds 23–25 and 26–29, respectively. The differences between carbonate and organic carbon isotopes, both the Δ13Ccarb-kero and Δ13Ccarb-n-C19, which are mainly affected by CO2-fixing enzyme and pCO2, oscillated frequently during the Permian–Triassic transition. Both the variations of Δ13Ccarb-n-C19 and Δ13Ccarb-kero coupled with the alternation between cyanobacteria and green sulfur bacteria indicated by biomarkers. The episodic low values of Δ13Ccarb-n-C19 corresponded to episodic blooms of green sulfur bacteria, while the episodic high values of Δ13Ccarb-n-C19 corresponded to episodic blooms of cyanobacteria. The relationships between the variation of carbon isotopes and biota show that the microbes which flourished after the extinction of macroorganism affected the carbon isotope fractionation greatly. Combining the carbon isotope compositions and the pattern of size variation of the conodont Neogondolella, this paper supposes that anoxia of the photic zone at bed 24 was episodic and it would be caused by the degradation of terrigenous organic matters by sulfate reducing bacteria in the upper water column. Considered together with results from previous research, the high resolution variation of the biogeochemistry presents the sequence of the important geo-events during the Permian–Triassic crisis.  相似文献   

6.
The mechanisms by which background electrolytes modify the kinetics of non-equivalent step propagation during calcite growth were investigated using Atomic Force Microscopy (AFM), at constant driving force and solution stoichiometry. Our results suggest that the acute step spreading rate is controlled by kink-site nucleation and, ultimately, by the dehydration of surface sites, while the velocity of obtuse step advancement is mainly determined by hydration of calcium ions in solution. According to our results, kink nucleation at acute steps could be promoted by carbonate-assisted calcium attachment. The different sensitivity of obtuse and acute step propagation kinetics to cation and surface hydration could be the origin of the reversed geometries of calcite growth hillocks (i.e., rate of obtuse step spreading < rate of acute step spreading) observed in concentrated (ionic strength, IS = 0.1) KCl and CsCl solutions. At low IS (0.02), ion-specific effects seem to be mainly associated with changes in the solvation environment of calcium ions in solution. With increasing electrolyte concentration, the stabilization of surface water by weakly paired salts appears to become increasingly important in determining step spreading rate. At high ionic strength (IS = 0.1), overall calcite growth rates increased with increasing hydration of calcium in solution (i.e., decreasing ion pairing of background electrolytes for sodium-bearing salts) and with decreasing hydration of the carbonate surface site (i.e., increasing ion pairing for chloride-bearing salts). Changes in growth hillock morphology were observed in the presence of Li+, F and , and can be interpreted as the result of the stabilization of polar surfaces due to increased ion hydration. These results increase our ability to predict crystal reactivity in natural fluids which contain significant amounts of solutes.  相似文献   

7.
Light-induced reduction of dissolved and particulate Fe(III) has been observed to occur in the surface waters of the acidic mine pit lake of San Telmo (143,600 m2, pH 2.8, Fetotal = 2.72 mM). This photochemical production of Fe(II) is directly related to the intensity of solar radiation and competes with biologically catalyzed reactions (i.e., bacterial re-oxidation of Fe(II)) and physical processes (including ionic diffusion, advection, and convection, which tend to homogenize the epilimnetic concentration of Fe(II) at every moment). Therefore, diel cycles of Fe(II) concentration are observed at the lake surface, with minimum values of 10–20 μM Fe(II) (0.35–0.70% Fetotal) at the sunrise and sunset, and maximum values of 90 μM Fe(II) (3.2% Fetotal) at midday in August 2005. Field and experimental work conducted in San Telmo and other pit lakes of the Iberian Pyrite Belt (IPB) (pH 2.3–3.1, Fetotal = 0.34–17 mM) indicate that the kinetics of the photoreductive reaction is zero-order and is independent of the Fe(III) concentration, but highly dependent on the intensity of solar radiation and temperature. Experimental work conducted with natural Fe(III) minerals (schwertmannite, goethite, and lepidocrocite) suggests that dissolved organic matter is an important factor contributing to the photochemical production of Fe(II). The wavelengths involved in the photoreduction of Fe(III) include not only the spectrum of UV-A radiation (315–400 nm), but also part of the photosynthetically active radiation (PAR, 400–700 nm). This finding is of prime importance for the understanding of the photoreduction processes in the pit lakes of the IPB, because the photo-reactive depth is not limited to the penetration depth of UV-A radiation (upper 1–10 cm of the water column depending on the TDS content), but it is approximately equal to the penetration depth of PAR (e.g., first 4–6 m of the water column in San Telmo on July 2007); thus, increasing the importance of photochemical processes in the hydro(bio)geochemistry of pit lakes.  相似文献   

8.
Great Salt Lake (GSL) is one of the largest and most saline lakes in the world. In order to accurately model limnological processes in GSL, hydrodynamic calculations require the precise estimation of water density (ρ) under a variety of environmental conditions. An equation of state was developed with water samples collected from GSL to estimate density as a function of salinity and water temperature. The ρ of water samples from the south arm of GSL was measured as a function of temperature ranging from 278 to 323 degrees Kelvin (oK) and conductivity salinities ranging from 23 to 182 g L−1 using an Anton Paar density meter. These results have been used to develop the following equation of state for GSL (σ = ± 0.32 kg m−3):
r- r0 = 184.0 10 6 2 + 1.0 4 70 8*\textS - 1. 2 10 6 1*\textT + 3. 1 4 7 2 1 \textE - 4*\textS 2 +  0.00 1 9 9 \textT 2 - 0.00 1 1 2*\textS*\textT, \rho - \rho^{0} = { 184}.0 10 6 2 { } + { 1}.0 4 70 8*{\text{S}} - 1. 2 10 6 1*{\text{T }} + { 3}. 1 4 7 2 1 {\text{E}} - 4*{\text{S}}^{ 2} + \, 0.00 1 9 9 {\text{T}}^{ 2} - 0.00 1 1 2*{\text{S}}*{\text{T}},  相似文献   

9.
This paper presents the results of two cruises in the Northern Gulf of Mexico in 2008 that investigated local and short-term factors influencing the carbonate chemistry dynamics and saturation state with respect to aragonite (Ωaragonite) of surface seawater in this region. One cruise covered much of the northern half of the Gulf, and the other focused on the coastal zone west of the Atchafalaya Bay outlet of the Mississippi River—the region where the hypoxic “dead zone” occurs on the Louisiana shelf. Offshore waters (>100 m depth) exhibited only small variations in CO2 fugacity (fCO2), total alkalinity (TA) and Ωaragonite. Values were close to those typically observed in subtropical Atlantic Ocean and Caribbean Sea waters of similar salinity. However, inner shelf waters (<50 m depth) exhibited large variations in fCO2, TA, and Ωaragonite that were not directly related to salinity or distance from the Mississippi River plume. Changes in TA values were not the result of simple mixing of end-member freshwater and seawater TA concentrations but exhibited a minimum in values near salinity of 25. This minimum could be the result of microbial recycling across salinity gradients, biological removal of alkalinity by formation of calcium carbonate or mixing of a third end-member with a low alkalinity such as Terrebonne Bay. All waters were supersaturated with respect to aragonite. Offshore waters had an average Ωaragonite of 3.86 with a standard deviation of only ±0.06 and inner shelf waters had a range in Ωaragonite values from 3.9 to 9.7 with a median of 4.3. Shelf water Ωaragonite values were elevated relative to the offshore as a consequence of both high TA input from Mississippi River and biological drawdown of CO2. A dominant factor controlling Ωaragonite distribution in offshore waters with relatively constant temperatures was fCO2, with higher supersaturation occurring in areas with low fCO2.  相似文献   

10.
Vein-type tin mineralization in the Dadoushan deposit, Laochang ore field, Gejiu district, SW China, is predominantly hosted in Triassic carbonate rocks (Gejiu Formation) over cupolas of the unexposed Laochang equigranular granite intrusion. The most common vein mineral is tourmaline, accompanied by skarn minerals (garnet, diopside, epidote, phlogopite) and beryl. The main ore mineral is cassiterite, accompanied by minor chalcopyrite, pyrrhotite, and pyrite, as well as scheelite. The tin ore grade varies with depth, with the highest grades (~1.2 % Sn) prevalent in the lower part of the vein zone. Muscovite 40Ar–39Ar dating yielded a plateau age of 82.7 ± 0.7 Ma which defines the age of the vein-type mineralization. Measured sulfur isotope compositions (δ 34S = −4.1 to 3.9 ‰) of the sulfides (arsenopyrite, chalcopyrite, pyrite, and pyrrhotite) indicate that the sulfur in veins is mainly derived from a magmatic source. The sulfur isotope values of the ores are consistent with those from the underlying granite (Laochang equigranular granite, −3.7 to 0.1 ‰) but are different from the carbonate wall rocks of the Gejiu Formation (7.1 to 11.1 ‰). The calculated and measured oxygen and hydrogen isotope compositions of the ore-forming fluids (δ 18OH2O = −2.4 to 5.5 ‰, δD = −86 to −77 ‰) suggest an initially magmatic fluid which gradually evolved towards meteoric water during tin mineralization.  相似文献   

11.
Part I of this contribution (Gardés et al. in Contrib Mineral Petrol, 2010) reported time- and temperature-dependent experimental growth of polycrystalline forsterite-enstatite double layers between single crystals of periclase and quartz, and enstatite single layers between forsterite and quartz. Both double and single layers displayed growth rates decreasing with time and pronounced grain coarsening. Here, a model is presented for the growth of the layers that couples grain boundary diffusion and grain coarsening to interpret the drop of the growth rates. It results that the growth of the layers is such that (Δx)2 ∝ t 1−1/n , where Δx is the layer thickness and n the grain coarsening exponent, as experimentally observed. It is shown that component transport occurs mainly by grain boundary diffusion and that the contribution of volume diffusion is negligible. Assuming a value of 1 nm for the effective grain boundary width, the following Arrhenius laws for MgO grain boundary diffusion are derived: log D gb,0Fo (m2/s) = −2.71 ± 1.03 and E gbFo = 329 ± 30 kJ/mol in forsterite and log D gb,0En (m2/s) = 0.13 ± 1.31 and E gbEn = 417 ± 38 kJ/mol in enstatite. The different activation energies are responsible for the changes in the enstatite/forsterite thickness ratio with varying temperature. We show that significant biases are introduced if grain boundary diffusion-controlled rim growth is modelled assuming constant bulk diffusivities so that differences in activation energies of more than 100 kJ/mol may arise. It is thus important to consider grain coarsening when modelling layered reaction zones because they are usually polycrystalline and controlled by grain boundary transport.  相似文献   

12.
The EPR spectra of Maxixe-type beryl contain a large number of overlapping signals. The angular dependence of the 1:3:3:1 signal typical for the CH3 radical shows that this radical is located at the center of the channel cavity with its symmetry axis parallel to the crystal c-axis and is rotating around this axis. Its EPR spectrum is axially symmetric with g // = 2.00263, g  = 2.00249 and A// = 2.288 mT, A = 2.256 mT. These anisotropies have the opposite signs of those found for surface-adsorbed methyl radicals. Hydrogen atoms are located at position 2a at the center of the beryl cavity and the EPR parameters of the narrow doublet signal are A 0 = 1,407 MHz and g = 2.00230. Another doublet signal, which is broader and has axial symmetry with g // = 2.00265, g  = 2.00625 and A// = 0.895 mT, A = 0.885 mT, could come from a HCO3 radical. One narrow and easily saturated signal with g // = 2.00227 and g  = 2.00386 is interpreted to arise from a carbon monoxide radical in the beryl channel, oriented with its axis parallel to the crystal c-axis. Additional weak doublet lines, which have similar g values as the carbon monoxide radical, are created by nearby hydrogens. A powder spectrum with g // = 2.0017 and g  = 2.0004 appears upon UV irradiation of the single crystal and is easily saturated. This spectrum is interpreted to arise from a carbon dioxide radical, which rotates around its symmetry axis.  相似文献   

13.
The oxygen isotopic composition of carbonate in lakes has been used as a useful indicator in Palaeolimnological research, and has made some important contributions to our understanding of lacustrine systems. For modern lakes in arid or cold areas, however, there are few data available to test the effect of lake salinity and temperature on the oxygen isotopic composition of various carbonate sources such as ostracod, bulk carbonate, and fine-grained carbonate (< 60 μm). Here we examined the oxygen isotopic composition of ostracods, bulk carbonate, and fine-grained carbonates, as well as that of coexisting water from Lake Qinghai and the smaller surrounding lakes and ponds on the Qinghai–Tibet Plateau. Our investigation highlights three key effects. First, the oxygen isotopic composition of ostracods, bulk carbonate, and fine-grained carbonate in the lakes and ponds shows a clear response to lake water δ18O values, and these vary with water salinity. The relationship between lake water δ18O and salinity is not only dominated by the evaporation/freshwater input ratios, but is also controlled by the distance to the mouth of the major rivers supplying to the lake. Second, the ostracod, bulk carbonate, and fine-grained carbonate show similar isotopic change trends in the study area, and oxygen isotopic differences between ostracods and authigenic carbonate may be explained by the different water temperatures and very small ‘vital offsets’ of ostracods. Finally, the effect of water depth on temperature leads to increasing δ18O values in carbonates as water depth increases, both in benthic ostracods living on the lake bottom, as well as in bulk carbonate precipitated at the water surface.For arid, high-altitude Lake Qinghai, our results suggest that variations in the δ18O values of carbonate in Lake Qinghai are mainly controlled by the oxygen-isotope ratio of the lake water changing with water salinity. As a secondary effect, increasing water depth leads to cooler bottom and surface water, which may result in more positive δ18O values of ostracod and bulk carbonate.  相似文献   

14.
The photoluminescence (PL) spectra, excitation spectra, and PL decay curves of natural, heat-treated, and γ-ray-irradiated thenardites from Ai-Ding Salt Lake, Xinjiang, China, were studied. The natural thenardite under 300 nm excitation showed milk-white luminescence, and the PL spectrum consisted of an extremely broad band with a peak located at approximately 509 nm, spreading over a wide range of UV and visible wavelengths. The excitation spectra, obtained by monitoring the luminescence at 530 nm, consisted of a broad band with a peak located at approximately 235 nm and a flat band spreading over a wide range of UV and visible wavelengths. The PL decay curve of natural thenardite consisted of a fast-decay component with a lifetime of less than 0.1 μs and a slow-decay component with a half-decay time of approximately 0.4 s. The heat treatment of thenardite at 900°C for 20 min reduced the luminescence efficiency to 1/100. The γ-ray irradiation of thenardite reduced the luminescence efficiency to approximately half.  相似文献   

15.
Nitrate pollution of groundwater in Toyserkan,western Iran   总被引:5,自引:2,他引:3  
A total of 95 groundwater samples were collected from Toyserkan, western Iran to assess the chemical composition and nitrate (NO3 ) status of groundwater. The most prevalent water type is Ca–HCO3 followed by water types Ca–Mg–HCO3. In comparison with the World Health Organization (WHO) drinking water guideline of 50 mg l−1 for NO3 , a total of nine wells (9.5%) showed higher concentrations. In 36% of samples (34) NO3 concentration was low (<20 mg l−1), and in 53.7% of samples (51), in the range of 20–50 mg l−1. The samples were classified into four groups based on NO3 and chloride (Cl) concentrations. Of the samples, 40% were classified as group 4 and were relatively high in Cl and NO3 (Cl > 47 mg l−1, NO3  > 27 mg l−1). The high correlation between NO3 and Cl (r = 0.86, p < 0.01) is consistent with a manure source, resulting from the practice of adding salt to animal feed. Pollution of groundwaters appeared to be affected by the application of inorganic fertilizer at greater than agronomic rates, Cl-salt inputs, and irrigation practice.  相似文献   

16.
The source of fluoride toxicity in Muteh area,Isfahan, Iran   总被引:1,自引:0,他引:1  
Endemic dental fluorosis has been observed in most inhabitants of three villages of Muteh area, located in northwest of Isfahan province, with mottled enamel related to high levels of fluoride in drinking water (1.8–2.2 ppm). Forty-seven groundwater samples from six villages were collected and fluoride concentrations along with physico-chemical parameters were analyzed. Fluoride concentration in this area varies from 0.2 to 9.2 mg/l with highest fluoride level at Muteh gold mine (Chahkhatun mine). Fluoride concentration positively correlates with pH and HCO3 indicating that alkaline pH provides a suitable condition for leaching of fluoride from surrounding rocks. The district is mainly covered by three lithological units, namely, metamorphic and granite rocks, alluvial sediments, and carbonate rocks. Factor analysis shows that parameters can be classified into four components: electrical conductivity (EC), total dissolved solids (TDS), Cl, Na+ and K+, pH and F, SO4 2−and Mg2+, HCO3 and Ca2 +. The groundwaters from the three geological units were compared using Mann–Whitney U test. The order of median fluoride concentration is: metamorphic and granite rocks > alluvial sediments > carbonate rocks. Hence, the fluoride content is most probably related to fluoride-bearing minerals such as amphibole and mica group minerals in metamorphic and granitic rocks. The concentration of fluoride in drinking water wells located near the metamorphic complex in Muteh area is above 2 ppm.  相似文献   

17.
The excess vibrational entropy (ΔS vibex) of several silicate solid solutions are found to be linearly correlated with the differences in end-member volumes (ΔV i ) and end-member bulk moduli (Δκ i ). If a substitution produces both, larger and elastically stiffer polyhedra, then the substituted ion will find itself in a strong enlarged structure. The frequency of its vibration is decreased because of the increase in bond lengths. Lowering of frequencies produces larger heat capacities, which give rise to positive excess vibrational entropies. If a substitution produces larger but elastically softer polyhedra, then increase and decrease of mean bond lengths may be similar in magnitude and their effect on the vibrational entropy tends to be compensated. The empirical relationship between ΔS vibex, ΔV i and Δκ i , as described by ΔS vibex = (ΔV i  + mΔκ i )f, was calibrated on six silicate solid solutions (analbite–sanidine, pyrope–grossular, forsterite–fayalite, analbite–anorthite, anorthite–sanidine, CaTs–diopside) yielding m = 0.0246 and f = 2.926. It allows the prediction of ΔS vibex behaviour of a solid solution based on its volume and bulk moduli end-member data.  相似文献   

18.
 The Sanggok mine used to be one of the largest lead-zinc mines in the Hwanggangri mining district, Republic of Korea. The present study characterizes the heavy metal contamination in the abandoned Sanggok mine creek on the basis of physico-chemical properties of various kinds of water samples (mine, surface and groundwater). Hydrochemistry of the water samples is characterized by the relatively significant enrichment of Ca2+, HCO3 , NO3 and Cl in the surface and groundwaters, whereas the mine water is relatively enriched in Ca2+, Mg2+, heavy metals, and HCO3 and SO4 2–. The more polluted mine water has a lower pH and higher Eh, conductivity and TDS values. The concentrations of some toxic elements (Al, As, Cd, Cu, Fe, Mn, Pb, Se, Sr, Pb and Zn) are tens to hundreds of times higher in the mine water than in the unpolluted surface and groundwaters. However, most immobile toxic pollutants from the mine drainage were quickly removed from the surface water by the precipitation of Al and Fe oxyhydroxides. Geochemical modeling showed that potentially toxic heavy metals might exist largely in the forms of MSO4 2– and M2+ in the mine water. These metals in the surface and groundwaters could form M2+, CO3 2– and OH complex ions. Computer simulation indicates that the saturation indices of albite, alunite, anhydrite, chlorite, fluorite, gypsum, halloysite and strontianite in the water samples are undersaturated and have progressively evolved toward the saturation condition. However, barite, calcite, chalcedony, dolomite, gibbsite, illite and quartz were in equilibrium, and only clay minerals were supersaturated. Ground and mine waters seemed to be in equilibrium with kaolinite field, but some surface water were in equilibrium with gibbsite and seceded from the stability field of quartz. This indicates that surface water samples in reaction with carbonate rocks would first equilibrate with carbonate minerals, then gibbsite to kaolinite. Investigations on water quality and environmental improvement of the severely polluted Sanggok creek, as well as remediation methods on the possible future pollution of the groundwater by the acid mine drainage from the abandoned metal mines, are urgently required. Received: 4 February 2000 · Accepted: 9 May 2000  相似文献   

19.
Geochemical and environmental magnetic studies were carried out to identify the effect of iron oxyhydroxides on arsenic mobilization in high arsenic aquifer system. Using high arsenic sediment samples from two boreholes, specifically drilled for this study, chemical composition and magnetic properties including magnetic susceptibility, saturation remnant magnetization, and isothermal remnant magnetization were measured. Results of correlation analysis of element contents show that arsenic and iron are closely associated with each other (r 2 = 0.40, α = 0.05, n = 21). In contrast, the correlation of phosphorus with iron (r = 0.11, α = 0.05, n = 21) and arsenic (r 2 = 0.18, α = 0.05, n = 21) was poor, which might result from competitive adsorption of phosphorus and arsenic on the surface of Fe-oxyhydroxides. The high correlation coefficients between arsenic contents and magnetic parameters suggest that the ferrimagnetic minerals including maghemite and hematite are the dominant carrier of arsenic in aquifer sediments. The results of sequential extraction experiments also revealed the association of arsenic with reducible iron oxides, such as maghemite and hematite in aquifer sediments. Therefore, under reducing conditions, reductive dissolution and desorption of arsenic from Fe-oxyhydroxides into the aqueous phase should be the dominant geochemical processes for its enrichment in groundwater at Datong. An erratum to this article can be found at  相似文献   

20.
Recently, the deterioration of water quality in the coastal zones of Lekki Peninsula area of Lagos due to saltwater infiltration into the freshwater aquifer has become a major concern. With the aim of providing valuable information on the hydrogeologic system of the aquifers, the subsurface lithology and delineating the groundwater salinity, vertical electrical resistivity (VES) sounding survey was carried out utilizing surface Schlumberger electrode arrays, and electrode spacing varying between 1 and 150 m. The DC resistivity surveys revealed significant variations in subsurface resistivity. Also, the VES resistivity curves showed a dominant trend of decreasing resistivity with depth (thus increasing salinity). In general, the presence of four distinct resistivity zones were delineated viz.: the unconsolidated dry sand (A) having resistivity values ranging between 125 and 1,028 Ωm represent the first layer; the fresh water-saturated soil (zone B) having resistivity values which correspond to 32–256 Ωm is the second layer; the third layer (zone C) is interpreted as the mixing (transition) zone of fresh with brackish groundwater. The resistivity of this layer ranges from 4 to 32 Ωm; while layer four (zone D) is characterized with resistivities values generally below 4 Ωm reflecting an aquifer possibly containing brine. The rock matrix, salinity and water saturation are the major factors controlling the resistivity of the formation. Moreover, this investigation shows that saline water intrusion into the aquifers can be accurately mapped using surface DC resistivity method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号