首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
We analyse new integral-field spectroscopy of the inner region (central 2.5 kpc) of the spiral galaxy NGC 4321 to study the peculiar kinematics of this region. Fourier analysis of the velocity residuals obtained by subtracting an axisymmetric rotation model from the Hα velocity field indicates that the distortions are global features generated by an   m = 2  perturbation of the gravitational potential which can be explained by the nuclear bar. This bar has been previously observed in the near-infrared but not in the optical continuum dominated by star formation. We detect the optical counterpart of this bar in the 2D distribution of the old stellar population (inferred from the equivalent width map of the stellar absorption lines). We apply the Tremaine–Weinberg method to the stellar velocity field to calculate the pattern speed of the inner bar, obtaining a value of  Ωb= 160 ± 70 km s−1 kpc−1  . This value is considerably larger than the one obtained when a simple bar model is considered. However, the uncertainties in the pattern speed determination prevent us from giving support to alternative scenarios.  相似文献   

2.
The pattern speed is a defining parameter of any barred galaxy. A large number of model-dependent techniques have therefore been developed to derive the pattern speed. However, the only model-independent technique for measuring this quantity – the Tremaine–Weinberg method – has hitherto been applied to just one case, the SB0 galaxy NGC 936. In this paper, we apply the technique to a second system, the SBa galaxy NGC 4596. The resulting estimate for the pattern speed is Ωp=52±13 km s−1 kpc−1. This result is corroborated by a spectrum obtained along the major axis of the bar in this system. The corotation radius associated with this pattern speed lies just beyond the end of the bar indicating a fast bar. Combining the bar major-axis spectra with data obtained from a Hubble Space Telescope WFPC2 image, we also find strong evidence for a nuclear disc.  相似文献   

3.
A detailed dynamical analysis of the nearby rich Norma cluster (ACO 3627) is presented. From radial velocities of 296 cluster members, we find a mean velocity of 4871 ± 54 km s−1 and a velocity dispersion of 925 km s−1. The mean velocity of the E/S0 population (4979 ± 85 km s−1) is offset with respect to that of the S/Irr population (4812 ± 70 km s−1) by  Δ v = 164 km s−1  in the cluster rest frame. This offset increases towards the core of the cluster. The E/S0 population is free of any detectable substructure and appears relaxed. Its shape is clearly elongated with a position angle that is aligned along the dominant large-scale structures in this region, the so-called Norma wall. The central cD galaxy has a very large peculiar velocity of 561 km s−1 which is most probably related to an ongoing merger at the core of the cluster. The spiral/irregular galaxies reveal a large amount of substructure; two dynamically distinct subgroups within the overall spiral population have been identified, located along the Norma wall elongation. The dynamical mass of the Norma cluster within its Abell radius is  1–1.1 × 1015  h −173 M  . One of the cluster members, the spiral galaxy WKK 6176 which recently was observed to have a 70 kpc X-ray tail, reveals numerous striking low-brightness filaments pointing away from the cluster centre suggesting strong interaction with the intracluster medium.  相似文献   

4.
We show how the continuity equation can be used to determine pattern speeds in the Milky Way Galaxy (MWG). This method, first discussed by Tremaine & Weinberg in the context of external galaxies, requires projected positions, ( l , b ), and line-of-sight velocities for a spatially complete sample of relaxed tracers. If the local standard of rest (LSR) has a zero velocity in the radial direction ( u LSR), then the quantity that is measured is  Δ V ≡Ωp R 0- V LSR  , where Ωp is the pattern speed of the non-axisymmetric feature, R 0 is the distance of the Sun from the Galactic centre and V LSR is the tangential motion of the LSR, including the circular velocity. We use simple models to assess the reliability of the method for measuring a single, constant pattern speed of either a bar or spiral in the inner MWG. We then apply the method to the OH/IR stars in the ATCA/VLA OH 1612-MHz survey of Sevenster et al., finding  Δ V =252±41 km s-1,  if   u LSR=0  . Assuming further that   R 0=8 kpc  and   V LSR=220 km s-1,  this gives  Ωp=59±5 km s-1 kpc-1  with a possible systematic error of perhaps 10 km s−1 kpc−1. The non-axisymmetric feature for which we measure this pattern speed must be in the disc of the MWG.  相似文献   

5.
Since many or most galaxies have central massive black holes (BHs), mergers of galaxies can form massive binary black holes (BBHs). In this paper we study the evolution of massive BBHs in realistic galaxy models, using a generalization of techniques used to study tidal disruption rates around massive BHs. The evolution of BBHs depends on BH mass ratio and host galaxy type. BBHs with very low mass ratios (say, ≲0.001) are hardly ever formed by mergers of galaxies, because the dynamical friction time-scale is too long for the smaller BH to sink into the galactic centre within a Hubble time. BBHs with moderate mass ratios are most likely to form and survive in spherical or nearly spherical galaxies and in high-luminosity or high-dispersion galaxies; they are most likely to have merged in low-dispersion galaxies (line-of-sight velocity dispersion ≲90 km s−1) or in highly flattened or triaxial galaxies.
The semimajor axes and orbital periods of surviving BBHs are generally in the range  10-3–10 pc  and  10–105 yr;  they are also larger in high-dispersion galaxies than in low-dispersion galaxies, larger in nearly spherical galaxies than in highly flattened or triaxial galaxies, and larger for BBHs with equal masses than for BBHs with unequal masses. The orbital velocities of surviving BBHs are generally in the range  102–104 km s-1  . The methods of detecting surviving BBHs are also discussed.
If no evidence of BBHs is found in AGNs, this may be either because gas plays a major role in BBH orbital decay or because nuclear activity switches on soon after a galaxy merger, and ends before the smaller BH has had time to spiral to the centre of the galaxy.  相似文献   

6.
We present VLA A-array 21-cm atomic hydrogen (H  i ) absorption observed against the central region of the starburst galaxy M82 with an angular resolution of ∼1.3 arcsec (≃20 pc). These observations, together with MERLIN H  i absorption measurements, are compared with the molecular (CO) and ionized ([Ne  ii ]) gas distributions and are used to constrain the dynamics and structure of the ionized, neutral and molecular gas in this starburst.
A position–velocity diagram of the H  i distribution reveals an unusual 'hole' feature which, when previously observed in CO, has been interpreted as an expanding superbubble contained within a ring of gas in solid body rotation. However, we interpret this feature as a signature of a nearly edge-on barred galaxy. In addition, we note that the CO, H  i and [Ne  ii ] position–velocity diagrams reveal two main velocity gradients, and we interpret these as gas moving on x1- and x2-orbits within a bar potential. We find the best fit to the data to be produced using a bar potential with a flat rotation curve velocity v b=140 km s−1 and a total length of 1 kpc, a non-axisymmetry parameter q =0.9, an angular velocity of the bar Ωb=217 km s−1 arcsec−1, a core radius R c=25 pc, an inclination angle i =80° and a projected angle between the bar and the major axis of the galaxy φ '=4°. We also discuss the orientation of the disc and bar in M82.  相似文献   

7.
We present for the first time a two-dimensional velocity field of the central region of the grand-design spiral galaxy NGC 5248, at 0.9-arcsec spatial resolution. The H α velocity field is dominated by circular rotation. While no systematic streaming motions are seen in the area of the nuclear grand-design spiral or the circumnuclear ring, the amplitude of residual velocities, after subtracting a model circular velocity field, reaches 20 km s−1 in projection. The rotation curve levels out at around 140 km s−1, after a well-resolved and rather shallow rise. We have generated an analytical model for the nuclear spiral and fitted it to our observations to obtain estimates of the pattern speed of the spiral and the speed of sound in the central region of NGC 5248. Our results are consistent with a low pattern speed, suggesting that the nuclear spiral rotates with the same rate as the main spiral structure in NGC 5248, and thus that the spiral structure is coupled from scales of a few hundred parsecs to several kiloparsecs. We have also compared the observed structure and kinematics between the nuclear regions of NGC 5248 and M100. Several similarities and differences are discussed, including the location of the peak emission regions on major and minor axes, and the spiral arm streaming motions. We find no kinematic evidence for the presence of a nuclear bar in NGC 5248.  相似文献   

8.
When integrals in the standard Tremaine–Weinberg method are evaluated for the case of a realistic model of a doubly barred galaxy, their modifications introduced by the second rotating pattern are in accord with what can be derived from a simple extension of that method, based on separation of tracer's density. This extension yields a qualitative argument that discriminates between prograde and retrograde inner bars. However, the estimate of the value of inner bar's pattern speed requires further assumptions. When this extension of the Tremaine–Weinberg method is applied to the recent observation of the doubly barred galaxy NGC 2950, it indicates that the inner bar there is counter-rotating, possibly with the pattern speed of  −140 ± 50 km s−1 arcsec−1  . The occurrence of counter-rotating inner bars can constrain theories of galaxy formation.  相似文献   

9.
We have studied the velocity field of the blue compact dwarf galaxy Mrk 86 (NGC 2537) using data provided by 14 long-slit optical spectra obtained in 10 different orientations and positions. This kinematical information is complemented with narrow-band ([O  iii ]5007 Å and H α ) and broad-band ( B , V , Gunn r and K ) imaging. The analysis of the galaxy global velocity field suggests that the ionized gas could be distributed in a rotating inclined disc, with projected central angular velocity of Ω=34 km s−1 kpc−1. The comparison between the stellar, H  i and modelled dark matter density profile indicates that the total mass within its optical radius is dominated by the stellar component. Peculiarities observed in its velocity field can be explained by irregularities in the ionized gas distribution or local motions induced by star formation.
Kinematical evidences for two expanding bubbles, Mrk 86–B and Mrk 86–C, are given. They show expanding velocities of 34 and 17 km s−1, H α luminosities of 3×1038 and 1.7×1039 erg s−1, and physical radii of 374 and 120 pc, respectively. The change in the [S  ii ]/H α , [N  ii ]/H α , [O  ii ]/[O  iii ] and [O  iii ]/H β line ratios with the distance to the bubble precursor suggests a diminution in the ionization parameter and, in the case of Mrk 86–B, an enhancement of the shock-excited gas emission. The optical–near-infrared colours of the bubble precursors are characteristic of low‐metallicity star‐forming regions (∼0.2 Z) with burst strengths of about 1 per cent in mass.  相似文献   

10.
NGC 3783 is a nearby SBa, type 1 Seyfert galaxy. We present H  i and radio continuum images of the galaxy made with the Australia Telescope Compact Array (ATCA). We find that NGC 3783 has an H  i mass of 8.4×109 M, an H  i diameter of 1.9 D 0 ( D 0=37 kpc for h =0.5), and a nuclear depression in the H  i surface density. The H  i rotation curve is dominated by differential rotation, with little evidence of warping. The rotation curve suggests a mass-to-light ratio M L B =7.2 and a bar-pattern speed of 19±7 km s−1 kpc−1. The total mass of gas in the inner 50 arcsec is ≳10 per cent of the dynamical mass, and consistent with models that require significant gas content to fuel the Seyfert nucleus. There is no evidence that the nuclear activity in NGC 3783 is being stimulated by an interaction or merger: it may be a self-generated, perhaps bar-driven, process.  相似文献   

11.
We present a catalogue of galaxies in Abell 3653 from observations made with the 2-degree field (2dF) spectrograph at the Anglo-Australian Telescope. Of the 391 objects observed, we find 111 are bona fide members of Abell 3653. We show that the cluster has a velocity of   cz = 32 214 ± 83  km s−1 ( z = 0.10 738 ± 0.00 027)  , with a velocity dispersion typical of rich, massive clusters of  σ cz = 880+66−54  . We find that the cD galaxy has a peculiar velocity of  683 ± 96  km s−1  in the cluster rest frame – some 7σ away from the mean cluster velocity, making it one of the largest and most significant peculiar velocities found for a cD galaxy to date. We investigate the cluster for signs of substructure, but do not find any significant groupings on any length scale. We consider the implications of our findings on cD formation theories.  相似文献   

12.
We present 0.15-arcsec (25-pc) resolution MERLIN observations of neutral hydrogen absorption detected towards the nuclear region of the type 2 Seyfert galaxy NGC 5929. Absorption is detected only towards the north-eastern radio component with a column density of (6.5 ± 0.6) × 1021 cm−2. Based on comparison with an HST WFPC2 continuum image, we propose that the absorption is caused by a 1.5-arcsec structure of neutral gas and dust offset 0.3 arcsec south-east of the nucleus and running NE–SW. A separate cloud of dust is apparent 1.5 arcsec to the south-west of the nucleus in the HST image. A comparison of the centroid velocity (2358 ± 5 km s−1) and full width at half-maximum (43 ± 6 km s−1) of the absorbing gas with previous [O  III ] observations suggests that both the neutral and ionized gas are undergoing galactic rotation towards the observer in the north-east and away from the observer in the south-west. The main structure is consistent with an inclined ring of gas and dust encircling the active galactic nucleus (AGN); alternatively it may be a bar or inner spiral arm. We do not detect neutral hydrogen absorption or dust obscuration against the radio nucleus (column density < 3.1 × 1021 cm−2) expected by a torus of neutral gas and dust in unified models of AGNs for a type 2 Seyfert galaxy.  相似文献   

13.
We have used MERLIN to observe neutral hydrogen absorption against the central region of the ultraluminous infrared galaxy (ULIRG) galaxy Mrk 273 with an angular resolution of 0.2 arcsec. This represents a factor of 5 increase in resolution compared with previous work. Absorption has been resolved against two of three radio continuum components. A Hubble Space Telescope ( HST ) image reveals a complex central region composed of clumpy emission obscured by dust lanes. We find that the northern and south-eastern radio components are associated with two optical components. The alignment supports the idea that Mrk 273 has a double nucleus due to a recent galactic merger event.
Broad, strong and spatially varying absorption is seen against the northern radio component with a velocity gradient of 1990±50 km s−1 kpc−1. The absorption resolves into six discrete components with an average column density of 1.7×1022 atom cm−2. We propose that the absorption is due to a clumpy ring or disc of neutral gas of radius ∼250 pc rotating around a central starburst. In addition to the broad component, narrow absorption (<100 km s−1) is detected against the northern and south-eastern components. Absorption is not detected against the weak (2 mJy) south-western component. We propose that the narrow absorption is due to quiescent gas in a large-scale dust lane that coincides with these regions of narrow absorption.  相似文献   

14.
We determine the most likely values of the free parameters of an N -body model for the Galaxy developed by Fux via a discrete–discrete comparison with the positions on the sky and line-of-sight velocities of an unbiased, homogeneous sample of OH/IR stars. Via Monte Carlo simulation, we find the plausibility of the best-fitting models, as well as the errors on the determined values. The parameters that are constrained best by these projected data are the total mass of the model and the viewing angle of the central bar, although the distribution of the latter has multiple maxima. The other two free parameters, the size of the bar and the (azimuthal) velocity of the Sun, are less well-constrained. The best model has a viewing angle of ∼ 44°, a semimajor axis of 2.5 kpc (corotation radius 4.5 kpc, pattern speed 46 km s−1 kpc−1), a bar mass of 1.7×1010 M and a tangential velocity of the local standard of rest of 171 km s−1. We argue that the lower values that are commonly found from stellar data for the viewing angle (∼25°) arise when too few coordinates are available, when the longitude range is too narrow or when low latitudes are excluded from the fit. The new constraints on the viewing angle of the Galactic bar from stellar line-of-sight velocities decrease further the ability of the distribution of the bar to account for the observed microlensing optical depth toward Baade's window: our model reproduces only half the observed value. The signal of triaxiality diminishes quickly with increasing latitude, fading within approximately 1 scaleheight (≲3°). This suggests that Baade's window is not a very appropriate region in which to sample bar properties.  相似文献   

15.
We present and analyse the kinematics and orbits for a sample of 488 open clusters (OCs) in the Galaxy. The velocity ellipsoid for our present sample is derived as  (σ U , σ V , σ W ) = (28.7, 15.8, 11.0) km s−1  which represents a young thin-disc population. We also confirm that the velocity dispersions increase with the age of a cluster subsample. The orbits of OCs are calculated with three Galactic gravitational potential models. The errors of orbital parameters are also calculated considering the intrinsic variation of the orbital parameters and the effects of observational uncertainties. The observational uncertainties dominate the errors of derived orbital parameters. The vertical motions of clusters calculated using different Galactic disc models are rather different. The observed radial metallicity gradient of clusters is derived with a slope of   b =−0.070 ± 0.011   dex kpc−1. The radial metallicity gradient of clusters based on their apogalactic distances is also derived with a slope of   b =−0.082 ± 0.014   dex kpc−1. The distribution of derived orbital eccentricities for OCs is very similar to that derived for the field population of dwarfs and giants in the thin disc.  相似文献   

16.
A new method to measure the epicycle frequency κ in the Galactic disc is presented. We make use of the large data base on open clusters completed by our group to derive the observed velocity vector (amplitude and direction) of the clusters in the Galactic plane. In the epicycle approximation, this velocity is equal to the circular velocity given by the rotation curve, plus a residual or perturbation velocity, of which the direction rotates as a function of time with the frequency κ. Due to the non-random direction of the perturbation velocity at the birth time of the clusters, a plot of the present-day direction angle of this velocity as a function of the age of the clusters reveals systematic trends from which the epicycle frequency can be obtained. Our analysis considers that the Galactic potential is mainly axis-symmetric, or in other words, that the effect of the spiral arms on the Galactic orbits is small; in this sense, our results do not depend on any specific model of the spiral structure. The values of κ that we obtain provide constraints on the rotation velocity of the disc; in particular, V 0 is found to be  230 ± 15 km s−1  even if the short scale  ( R 0= 7.5 kpc)  of the Galaxy is adopted. The measured κ at the solar radius is  43 ± 5 km s−1 kpc −1  . The distribution of initial velocities of open clusters is discussed.  相似文献   

17.
The Sc galaxy M 99 in the Virgo Cluster has been strongly affected by tidal interactions and recent close encounters, responsible for an asymmetric spiral pattern and a high star formation rate. Our XMM–Newton study shows that the inner disc is dominated by hot plasma at kT ≈ 0.30 keV, with a total X-ray luminosity of ≈1041 erg s−1 in the 0.3–12 keV band. At the outskirts of the galaxy, away from the main star-forming regions, there is an ultraluminous X-ray source (ULX) with an X-ray luminosity of ≈2 × 1040 erg s−1 and a hard spectrum well fitted by a power law of photon index Γ≈ 1.7. This source is close to the location where a massive H  i cloud appears to be falling on to the M 99 disc at a relative speed of >100 km s−1. We suggest that there may be a direct physical link between fast cloud collisions and the formation of bright ULXs, which may be powered by accreting black holes with masses ∼100 M. External collisions may trigger large-scale dynamical collapses of protoclusters, leading to the formation of very massive (≳200 M) stellar progenitors; we argue that such stars may later collapse into massive black holes if their metal abundance is sufficiently low.  相似文献   

18.
Possible orbital histories of the Sgr dwarf galaxy are explored. A special-purpose N -body code is used to construct the first models of the Milky Way–Sgr dwarf system in which both the Milky Way and the Sgr dwarf are represented by full N -body systems and followed for a Hubble time. These models are used to calibrate a semi-analytic model of the Sgr dwarf's orbit that enables us to explore a wider parameter space than is accessible to the N -body models. We conclude that the extant data on the Sgr dwarf are compatible with a wide range of orbital histories. At one extreme the Sgr dwarf initially possesses ∼1011 M and starts from a Galactocentric distance R D(0)≳200 kpc. At the other extreme the Sgr dwarf starts with ∼109 M and R D(0)∼60 kpc, similar to its present apocentric distance. In all cases the Sgr dwarf is initially dark matter dominated and the current velocity dispersion of the Sgr dwarf's dark matter is tightly constrained to be 21±2 km s−1. This number is probably compatible with the smaller measured dispersion of the Sgr dwarf's stars because of (i) the dynamical difference between dark and luminous matter, and (ii) velocity anisotropy.  相似文献   

19.
We find a new Tully–Fisher-like relation for spiral galaxies holding at different galactocentric radii. This radial Tully–Fisher relation allows us to investigate the distribution of matter in the optical regions of spiral galaxies. This relation, applied to three different samples of rotation curves of spiral galaxies, directly proves that: (i) the rotation velocity of spirals is a good measure of their gravitational potential and both the rotation curve's amplitudes and profiles are well predicted by galaxy luminosity, (ii) the existence of a dark component, less concentrated than the luminous one, and (iii) a scaling law, according to which, inside the disc optical size:   M dark/ M lum= 0.5( L B /1011 L B )−0.7  .  相似文献   

20.
We study the pattern speed of the bar in NGC 7479 by comparing observations with numerical simulations of gas flow in a two-dimensional gravitational potential, derived from observations. The best agreement between the observations and the modelling is achieved for the fast bar pattern speed of 27 km s−1 kpc−1, when the corotation radius is at 50 arcsec, i.e. 1.1 times the radial length of the bar. This result is supported by the gas and dust lane morphologies, star formation distribution, projected velocity field and overall morphology. We find that star formation is most likely to be triggered close to the large-scale shocks and dust lanes in the bar. The net gas inflow rate in the simulations at 1-kpc radius is 4–6 M⊙ yr−1 at intermediate times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号