首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This note summarizes recent studies of atmospheric excitation of short-term changes in the length of the day and polar motion which set useful limits on the timescales associated with angular momentum transfer between the Earth's core and mantle. It also speculates about the nature of the recently-discovered phenomenon of “impulses” or “jerks” in the geomagnetic secular variation, proposing that they might be manifestations of “loop” instability of the magnetic field within the core. Finally, it outlines novel properties of high magnetic Reynolds number flows that bear on the inverse problem of deducing core motions from geomagnetic secular variation data.  相似文献   

2.
The Umbrian Apennines were the site of pelagic sedimentation throughout most of the Jurassic. Magnetic stratigraphy from four sections spanning many of the Jurassic stages indicates that the geomagnetic field at this time was characterized by two intervals of mixed polarity, separated by an interval of predominantly normal polarity corresponding to the Jurassic “quiet-zone” in the oceanic magnetic anomaly record. Unfortunately, ammonites are poorly preserved or absent throughout most of these sections; the duration of this “quiet-interval” cannot be well defined, although it is probably restricted to the Callovian and Oxfordian stages.  相似文献   

3.
We have examined available magnetic and gravity data bearing on the initiation of sea-floor spreading in the North Atlantic between Ireland and Newfoundland. The change in character of the magnetic field on the continental margin on either side of the Atlantic from a landward magnetic quiet zone to a seaward “noisy”, magnetic signature is postulated to be related to a change from continental to oceanic crust. Sea-floor spreading between Ireland and Newfoundland was initiated during the long normal geomagnetic polarity interval in the Late Cretaceous. Rockall Trough may have opened at this time. At the end of the normal polarity interval (Late Santonian) the ridge axis jumped westward to bypass Rockall Trough and the related offset initiated the Charlie Gibbs fracture zone.A reconstruction is presented for the relative position between North America and Europe prior to the initiation of sea-floor spreading in the Late Cretaceous.  相似文献   

4.
We present new 40Ar/39Ar ages and paleomagnetic data for São Miguel island, Azores. Paleomagnetic samples were obtained for 34 flows and one dike; successful mean paleomagnetic directions were obtained for 28 of these 35 sites. 40Ar/39Ar age determinations on 12 flows from the Nordeste complex were attempted successfully: ages obtained are between 0.78 Ma and 0.88 Ma, in contrast to published K–Ar ages of 1 Ma to 4 Ma. Our radiometric ages are consistent with the reverse polarity paleomagnetic field directions, and indicate that the entire exposed part of the Nordeste complex is of a late Matuyama age. The duration of volcanism across São Miguel is significantly less than previously believed, which has important implications for regional melt generation processes, and temporal sampling of the geomagnetic field. Observed stable isotope and trace element trends across the island can be explained, at least in part, by communication between different magma source regions at depth. The 40Ar/39Ar ages indicate that our normal polarity paleomagnetic data sample at least 0.1 Myr (0–0.1 Ma) and up to 0.78 Myr (0–0.78 Ma) of paleosecular variation and our reverse polarity data sample approximately 0.1 Myr (0.78–0.88 Ma) of paleosecular variation. Our results demonstrate that precise radiometric dating of numerous flows sampled is essential to accurate inferences of long-term geomagnetic field behavior. Negative inclination anomalies are observed for both the normal and reverse polarity time-averaged field. Within the data uncertainties, normal and reverse polarity field directions are antipodal, but the reverse polarity field shows a significant deviation from a geocentric axial dipole direction.  相似文献   

5.
The data on the amplitude of variations in the direction and paleointensity of the geomagnetic field and the frequency of reversals throughout the last 50 Myr near the Paleozoic/Mesozoic and Mesozoic/Cenozoic boundaries, characterized by peaks of magmatic activity of Siberian and Deccan traps, and data on the amplitude of variations in the geomagnetic field direction relative to contemporary world magnetic anomalies are generalized. The boundaries of geological eras are not fixed in recorded paleointensity, polarity, reversal frequency, and variations in the geomagnetic field direction. Against the background of the “normal” field, nearly the same tendency of an increase in the amplitude of field direction variations is observed toward epicenters of contemporary lower mantle plumes; Greenland, Deccan, and Siberian superplumes; and world magnetic anomalies. This suggests a common origin of lower mantle plumes of various formation times, world magnetic anomalies, and the rise in the amplitude of geomagnetic field variations; i.e., all these phenomena are due to a local excitation in the upper part of the liquid core. Large plumes arise in intervals of the most significant changes in the paleointensity (drops or rises), while no correlation exists between the plume generation and the reversal frequency: times of plume formation correlate with the very diverse patterns of the frequency of reversals, from their total absence to maximum frequencies, implying that world magnetic anomalies, variations in the magnetic field direction and paleointensity, and plumes, on the one hand, and field reversals, on the other, have different sources. The time interval between magmatic activity of a plume at the Earth’s surface and its origination at the core-mantle boundary (the time of the plume rise toward the surface) amounts to 20–50 Myr in all cases considered. Different rise times are apparently associated with different paths of the plume rise, “delays” in the plume upward movement, and so on. The spread in “delay” times of each plume can be attributed to uncertainties in age determinations of paleomagnetic study objects and/or the natural remanent magnetization, but it is more probable that this is a result of the formation of a series of plumes (superplumes) in approximately the same region at the core-mantle boundary in the aforementioned time interval. Such an interpretation is supported by the existence of compact clusters of higher field direction amplitudes between 300 and 200 Ma that are possible regions of formation of world magnetic anomalies and plumes.  相似文献   

6.
Recent analyses of the geomagnetic reversal sequence have led to different conclusions regarding the important question of whether there is a discernible difference between the properties of the two polarity states. The main differences between the two most recent studies are the statistical analyses and the possibility of an additional 57 reversal events in the Cenozoic. These additional events occur predominantly during reverse polarity time, but it is unlikely that all of them represent true reversal events. Nevertheless the question of the relative stabilities of the polarity states is examined in detail, both for the case when all 57 “events” are included in the reversal chronology and when they are all excluded. It is found that there is not a discernible difference between the stabilities of the two polarity states in either case. Inclusion of these short events does, however, change the structure of the non-stationarity in reversal rate, but still allows a smooth non-stationarity. Only 7 of the 57 short events are pre-38 Ma, but the evidence suggests that this is a real geomagnetic phenomenon rather than degradation of the magnetic recording or a bias in observation. This could be tested by detailed magnetostratigraphic and oceanic magnetic surveys of the Paleogene and Late Cretaceous. Overall it would appear that the present geomagnetic polarity timescale for 0–160 Ma is probably a very good representation of the actual history, and that different timescales and additional events now represent only changes in detail.  相似文献   

7.
地磁场长期变化的自洽正态统计模型   总被引:3,自引:0,他引:3       下载免费PDF全文
从地磁场时间变化尺度可分的理论考虑和观测事实出发,建立地磁场Reynolds分解,强调地磁场时均部分和长期变化部分均包含所有的多极子分量;重新解释Constabe和Paker关于规一化Gduss系数的统计结果,从而将地磁场长期变化自洽正态模型自洽化.在这一结构最简单的统计模型中,地磁角度要素和总强度的统计分布均为非正态.地磁场方向及其等价表示虚偶极磁矩方向服从广义Fisher分布,可以解释地磁场方向和虚磁偶极矩方向的椭圆分布长轴大致正交的观测事实.模型的VGP角散布不能解释古地磁观测,意味着时均场中显著存在非轴向偶极子分量.解析结果加强了Egbert关于VGP路径优势经度为不均匀采样所致的推论.  相似文献   

8.

This paper examines the evolution and morphology of a magnetic anomaly: the appearance and disappearance of a longitudinal magnetic flux with opposite polarity at an area of about 10 arc seconds in the umbra of the following sunspot of an NOAA 12192 active region, which was observed from 21 to 26 October 2014 in the SDO/HMI and SOLIS/VSM magnetograms. Information collected by spacecraft and under on-ground observations including data from the Sun Service of the Crimean Astrophysical Observatory of the Russian Academy of Sciences are analyzed. Based on the methods of observation and determination of longitudinal magnetic fields in SDO/HMI in line FeI 6173.34 Å it was revealed, that combinations of contours appearing due to magnetic force lines inclinations relative to the line-of-sight and line-of-sight velocities can cause a significant undervalue of the magnetic field intensity in magnetograms, but polarity does not reverse. The fine spatial structure, evolution features, close correlation with ultraviolet loops system in SDO/AIA images, “moustaches”, and no temporal and spatial correlation with flares point to a connection between the detected anomaly and the new magnetic flux emergence of opposite polarity in a spot’s umbra at an earlier decay stage. We analyze magnetic force lines reconnection and show that annigilation of the magnetic fields of opposite polarities can take place for many hours at small (~30 km) scales and this fact is verified by observation results. There are additional facts in favor of the cluster model of a solar spot by Severny-Parker.

  相似文献   

9.
Asymmetrical curvilinear patterns of secular variation with approximately superposed “outward” and “return” trajectories can be attributed to stationary magnetic sources in the core. Some appropriate palaeomagnetic examples are presented here.  相似文献   

10.
Marine magnetic anomalies 33 and 34, corresponding to the first two reversals following the long normal polarity interval in the Cretaceous, are anomalously skewed by 30° to 40° throughout the North and South Atlantic. This phenomenon is most likely related to some aspect of the dipole paleomagnetic field. Specifically the magnetic field at the time of anomalies 33 and 34 appears to be characterized by the following: the dipole field gradually decreases in average intensity between reversals and/or there is an increase in the frequency or duration of undetected short polarity events toward the end of long periods (>106 years) of predominantly one polarity. Such long-period trends in the field are in conflict with the popular model for the generation of the earth's magnetic field that treats reversals as a Poisson process and assumes that the core has no memory greater than about 104 years.  相似文献   

11.
This article commences by surveying the basic dynamics of Earth's core and their impact on various mechanisms of core-mantle coupling. The physics governing core convection and magnetic field production in the Earth is briefly reviewed. Convection is taken to be a small perturbation from a hydrostatic, “adiabatic reference state” of uniform composition and specific entropy, in which thermodynamic variables depend only on the gravitational potential. The four principal processes coupling the rotation of the mantle to the rotations of the inner and outer cores are analyzed: viscosity, topography, gravity and magnetic field. The gravitational potential of density anomalies in the mantle and inner core creates density differences in the fluid core that greatly exceed those associated with convection. The implications of the resulting “adiabatic torques” on topographic and gravitational coupling are considered. A new approach to the gravitational interaction between the inner core and the mantle, and the associated gravitational oscillations, is presented. Magnetic coupling through torsional waves is studied. A fresh analysis of torsional waves identifies new terms previously overlooked. The magnetic boundary layer on the core-mantle boundary is studied and shown to attenuate the waves significantly. It also hosts relatively high speed flows that influence the angular momentum budget. The magnetic coupling of the solid core to fluid in the tangent cylinder is investigated. Four technical appendices derive, and present solutions of, the torsional wave equation, analyze the associated magnetic boundary layers at the top and bottom of the fluid core, and consider gravitational and magnetic coupling from a more general standpoint. A fifth presents a simple model of the adiabatic reference state.  相似文献   

12.
The behavior of the main magnetic field components during a polarity transition is investigated using the α2-dynamo model for magnetic field generation in a turbulent core. It is shown that rapid reversals of the dipole field occur when the helicity, a measure of correlation between turbulent velocity and vorticity, changes sign. Two classes of polarity transitions are possible. Within the first class, termed component reversals, the dipole field reverses but the toroidal field does not. Within the second class, termed full reversals, both dipole and toroidal fields reverse. Component reversals result from long term fluctuations in core helicity; full reversals result from short term fluctuations. A set of time-evolution equations are derived which govern the dipole field behavior during an idealized transition. Solutions to these equations exhibit transitions in which the dipole remains axial while its intensity decays rapidly toward zero, and is regenerated with reversed polarity. Assuming an electrical conductivity of 3 × 105 mho m?1 for the fluid core, the time interval required to complete the reversal process can be as short as 7500 years. This time scale is consistent with paleomagnetic observations of the duration of reversals. A possible explanation of the cause of reversals is proposed, in which the core's net helicity fluctuates in response to fluctuations in the level of turbulence produced by two competing energy sources—thermal convection and segregation of the inner core. Symmetry considerations indicate that, in each hemisphere, helicity generated by heat loss at the core-mantle boundary may have the opposite sign of helicity generated by energy release at the inner core boundary. Random variations in rates of energy release can cause the net helicity and the α-effect to change sign occasionally, provoking a field reversal. In this model, energy release by inner core formation tends to destabilize stationary dynamo action, causing polarity reversals.  相似文献   

13.
We propose that magnetic anomalies south of Australia and along the conjugate margin of Antarctica that were originally identified as anomalies 19 to 22 may be anomalies 20 to 34. The original anomaly identification has two troublesome aspects: (1) it does not account for an “extra” anomaly between anomalies 20 and 21, and (2) it provides no explanation for the rough topography comprising the Diamantina Zone. With our revised identification there is no “extra” anomaly and the Diamantina Zone is attributed to a period of very slow spreading (~4.5mm/yr half rate) between 90 and 43 m.y. The ages bounding the interval of slow spreading (90 and 43 m.y.) correspond to times of global plate reorganizations. Our revised identification opens up the possibility that part of the magnetic quiet zone south of Australia formed during the Cretaceous long normal polarity interval. Breakup of Australia and Antarctica probably occurred sometime between 110 and 90 m.y. B.P. The “breakup unconformity” identified by Falvey in the Otway Basin may correspond to a eustastic sea level change.  相似文献   

14.
Reliable data on the paleointensity of the geomagnetic field can become an important source of information both about the mechanisms of generation of the field at present and in the past, and about the internal structure of the Earth, especially the structure and evolution of its core. Unfortunately, the reliability of these data remains a serious problem of paleomagnetic research because of the limitations of experimental methods, and the complexity and diversity of rocks and their magnetic carriers. This is true even for relatively “young” Phanerozoic rocks, but investigation of Precambrian rocks is associated with many additional difficulties. As a consequence, our current knowledge of paleointensity, especially in the Precambrian period, is still very limited. The data limitations do not preclude attempts to use the currently available paleointensity results to analyze the evolution and characteristics of the Earth’s internal structure, such as the age of the Earth’s solid inner core or thermal conductivity in the liquid core. However, such attempts require considerable caution in handling data. In particular, it has now been reliably established that some results on the Precambrian paleointensity overestimate the true paleofield strength. When the paleointensity overestimates are excluded from consideration, the range of the field strength changes in the Precambrian does not exceed the range of its variation in the Phanerozoic. This result calls into question recent assertions that the Earth’s inner core formed in the Mesoproterozoic, about 1.3 billion years ago, triggering a statistically significant increase in the long-term average field strength. Instead, our analysis has shown that the quantity and quality of the currently available data on the Precambrian paleointensity are insufficient to estimate the age of the solid inner core and, therefore, cannot be useful for solving the problem of the thermal conductivity of the Earth’s core. The data are consistent with very young or very “old” inner core ages and, correspondingly, with high or low values of core thermal conductivity.  相似文献   

15.
地球失磁与地磁极性倒转的探讨   总被引:1,自引:0,他引:1  
在地磁成因的磁核观点基础上,探讨了地球失磁与地磁极性倒转的可能原因,地球失磁可能是内核温度升高造成的。地磁极性倒转发生在地球失磁之后,当内核温度降低至居里点以下时,磁核将重新形成,其方向取决于最核心的磁粒,磁粒的磁场方向,取决于磁粒由顺磁质向铁磁质转变的一瞬间,外部磁化力的合方向,这个方向可能是正的也可能是反的,则地磁极性可能不变或倒转。  相似文献   

16.
This article addresses the interesting and important problem of large-scale magnetic field generation in turbulent flows, using a self-consistent dynamo model recently developed. The main idea of this model is to consider the induction equation for the large-scale magnetic field, integrated consistently with the turbulent dynamics at smaller scales described by a magnetohydrodynamic shell model. The questions of dynamo action threshold, magnetic field saturation, magnetic field reversals, nature of the dynamo transition and the changes of small-scale turbulence as a consequence of the dynamo onset are discussed. In particular, the stability curve obtained by the model integration is shown in a very wide range of values of the magnetic Prandtl number not yet accessible by direct numerical simulation but more realistic for natural dynamos. Moreover, from our analysis it is shown that the large-scale dynamo transition displays a hysteretic behaviour and therefore a subcritical nature. The model successfully reproduces magnetic polarity reversals, showing the capability to generate persistence times which are increasing for decreasing magnetic diffusivity. Moreover, when the system reaches a statistically stationary dynamo state, where the large-scale magnetic field can abruptly reverse its polarity (magnetic reversal state) or not, keeping the same polarity (steady state), it shows an unmistakable tendency towards the energy equipartition for the turbulence at small scale.  相似文献   

17.
地球磁场多次发生南北(正负)磁极位置的变换和白垩纪超静磁带(CNS)的异常现象,这已为大家所公认.但造成这种异常现象的原因,则是迄今未能很好解答的一个难题. 应用非线性理论对地球磁极倒转和白垩纪超静磁带进行了分析, 认为超静磁带事件意味着地球核幔相互作用和外核流体运动可能处于能量最低的状态,地球磁场系统通过不断地与外界交换物质和能量,维持一种空间或时间的有序结构.在121~83Ma期间,无外星撞击地球引起地磁极性倒转,可能是白垩纪超静磁带出现的原因之一.地球磁场极性的随机倒转具有混沌运动的自逆转特性,混沌理论给地磁极性倒转提出了一个简明的动力机制解释.  相似文献   

18.
The ability to derive Gauss coefficients, up to and including degree 3, and their variation through a geomagnetic polarity transition is studied using simulated palaeomagnetic data. It is concluded that for a specified distribution of palaeomagnetic sites reasonable estimates of the behaviour of the coefficients can be derived even when uncertainties in the data, and in the compilation of contemporaneous records, are considered. Published palaeomagnetic records of the Matuyama–Brunhes transition are then used as basis for deriving the variation of the Gauss coefficients over a 32 kyear period encompassing the reversal. Individual records are interpolated to uniform time intervals of 0.5 kyear and put on to a common time scale by correlating between sites the variation in the latitude of VGP's through the reversal. Relative palaeointensity data are scaled by the geocentric axial dipole field intensity for 2000 at each site, and the Gauss coefficients derived by a matrix inversion employing singular value decomposition. The derived variation with time of the Gauss coefficients suggests that, over the time span of the data, the dipole and non-dipole fields have approximately equal intensities. Plots of the variation of the surface vertical magnetic field through the reversal suggest that immediately prior to the reversal a large patch of reverse flux appears in the southern hemisphere. This may subsequently have been responsible for the weakening of the vertical field leading into the reversal. A similar patch of reverse flux is observed some 20–15 kyear prior to the actual reversal and may be associated with an observed excursion in VGPs at several sites.  相似文献   

19.
针对"山西地区应力场变化与地震的关系"一文,本文指出:(1)P波初动存在误读的可能,出现矛盾符号是正常的;(2)地震仪器极性也可能反向,不校核可能会导致错误的震源机制解.还讨论如何正确地表示震源机制随时间的变化.分析认为GPS观测结果若不认真考虑观测误差、模型误差以及应变信息的层次,所得结果可能会与震源机制解反演的区域...  相似文献   

20.
Superchrons – long periods in the geomagnetic record when the Earth's magnetic field did not reverse its polarity – are a challenge to observers and theorists. Jack Jacobs outlines the problems and some possible solutions.
Reversals of polarity are a feature of the geomagnetic record for all the time it has been documented. Although not regular, reversals are sufficiently frequent for their absence to be noticeable. When the Earth's magnetic field retains the same polarity for over 20 million years, a superchron is established. Superchrons demand the attention of geophysicists concerned with the generation of the Earth's field: either they must result from an intrinsic feature of the geodynamo, or they reflect the influence of some external force. Here I discuss internal and external mechanisms for the formation of superchrons, including the role of the inner core, true polar wander, Earth's orbital variations and tides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号