首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kimberlite and potassic lamprophyre dykes were intensively intruded into the early Proterozoic Nagssugtoqidian mobile belt of West Greenland during an important phase of brittle reactivation in Late Precambrian-Early Cambrian times (ca. 580-570 Ma) and during at least one other minor phase. Thermal and alternating field demagnetisation studies of 52 of these dykes identify primary components residing in the critical blocking temperature range distributed between shallow westerly and steep positive directions. Near the axis of the Proterozoic shear belt the dykes (predominantly lamprophyres) have closely grouped shallow directions with a reversal; near the margins of the shear belt dykes (predominantly kimberlites) have steeper and distributed directions. The cleaned components of magnetisation appear to be single, and the distribution of directions is interpreted to record a migration of the palaeofield axis which intersecting relationships show to have been from shallow to steep. The dyke directions are grouped to define representative mean palaeopoles of 215°E 3°N (LK1, A95 = 3.9°), 213°E 18°N (LK2, A95 = 6.1°), 203°E 46°N (LK3, A95 = 10.4°) and 259°E 54°N (LK4, A95 = 11.0°); a subsidiary direction recorded in five dykes near the southern margin of the shear belt (LK5, palaeopole at 297°E 16°S (A95 = 12.5°)) is derived entirely from lamprophyres and is possibly Silurian in age. An RbSr isochron on three lamprophyres of 1227 Ma and agreement of the remanence direction with ca. 1220 Ma rocks from elsewhere in Greenland suggests that the LK1 component is wholly or partly of that age.The remaining sequence of palaeopoles falls along the Hadrynian Polar Track and the age data relating to this track are re-evaluated. Evidence for a pre-800 Ma age is no longer valid and the new data from West Greenland confirm that the track is latest Precambrian to Early Cambrian in age. It is shown to connect poles of Late Precambrian and Lower Cambrian age and to embrace other data from the Laurentian shield. The rapid passage of the shield across the South Pole is consistent with the sedimentation sequences, and suggests a high-latitude origin for the tillite horizon of this age. The Hadrynian Track is also compared with the contemporaneous record from Gondwanaland and it is shown that the two shields were in juxtaposition in the identical reconstruction to the Proterozoic Supercontinent until earliest Cambrian times. This discovery links the Lower Cambrian marine transgression and the widespread ca. 580-560 Ma alkaline province in the Gondwanaland, Laurentian and Fennoscandian shields to major continental break up, and it conforms with evidence that the Iapetus Ocean did not open until Cambrian times.  相似文献   

2.
The mean palaeomagnetic pole position obtained from Upper Cretaceous rocks in west Sicily is at 21°N, 100°E (A95 = 15°), and at 38°N, 67°E (A95 = 31°) obtained from Middle Jurassic rocks. These pole positions are completely different from comparable pole positions for southeast Sicily and Africa and imply a clockwise rotation of west Sicily since the Upper Cretaceous of about 90° relative to southeast Sicily and Africa and also a clockwise rotation of about 60° relative to “stable” Europe. The sense of rotation of west Sicily is opposite to any known rotation of other crustal blocks in the central Mediterranean.  相似文献   

3.
The eastern segment of the Appalachian orogen is largely underlain by late Precambrian (Hadrynian) rocks affected by the Avalonian, Acadian and possibly Alleghenian orogenies. The provenance of the Avalon Zone of Newfoundland is uncertain. The region investigated in this segment consists of porphyrite stocks and sills (laccoliths) intrusive into the sedimentary, tuffaceous and volcanic rocks of the Harbour Main Group and rhyolite sills intrusive into the porphyrites. Some 55 oriented samples (148 specimens) collected at 11 sites were thermally (20–650°C) and AF (0.05–100 mT) demagnetized. Three components of magnetization were isolated: C (311°, +48°, α95 = 11°, k = 21, 10 sites), A (13°, +37°, α95 = 14°, k = 22, 6 sites), and B (67°, +45°, α95 = 15°, k = 27,5 sites). Based on coercivity spectra, unblocking temperatures, frequency distribution and precision parameters of the respective components, it is suggested that component C is older than component A which is turn is older than component B. The palaeopoles of components C, A and B are: 211°E, 48°N (dp = 9.8°, dm = 14.7°); 101°E, 61°N (dp = 9.6°, dm = 16.4°); 33°E, 34°N (dp = 12°, dm = 19°), respectively. Component C is most probably primary. Component A is secondary and its pole is near that of Carboniferous and Early Permian North America poles, indicating that the porphyrites and the rhyolites were remagnetized in the late Palaeozoic. Component B remains unexplained; it is possible that it is an unresolved pseudo-component but it is more likely an overprint. There are few palaeomagnetic results for the late Precambrian period in Avalon terrane(s). The preliminary results of this study suggest the presence of a separate plate from North American at that time. These results will prove useful for the palaeoreconstruction of the continents (North Africa, northeast Europe) in the late Precambrian period.  相似文献   

4.
Paleomagnetic studies have been made of certain constituents of the Bay St. George sub-basin. Specifically, results are reported from the Spout Falls Formation (Tournaisian), the Jeffreys Village Member of the Robinsons River Formation (Visean), and the Searston Formation (Namurian-Westphalian). The following magnetizations have been isolated: Spout Falls A (Tournaisian) with D = 343.5°, I = ?22.7°, k = 61.2, α95 = 7.1° and the corresponding pole at 28.6°N, 139.5°E (4.5°, 8.5°); Spout Falls B (Kiaman) with D = 166.7°, I = 12.2°, k = 51.7, α95 = 10.7° and the corresponding pole at 34.5°S, 42.7°W (5.5°, 10.9°); Jeffreys Village A (Visean) with D = 351.2°, I = ?27.3°, k = 54.0, α95 = 7.6° and the corresponding pole at 26.5°N, 130.7°E (4.5°, 8.3°); Searston A (Namurian) with D = 161.7°, I = 11.7°, k = 107, α95 = 7.4° and the corresponding pole at 33.9°S, 37.2°W (3.8°, 7.5°); and Searston C with D = 111.6°, I = ?13.8°, k = 28.8, α95 = 14.5° and the corresponding pole at 19.6°S, 19.0°E (7.6°, 14.8°). After comparison with paleopoles of similar ages derived from eastern and western Newfoundland rocks, from constituents of the east coast basin and for interior North America, it is concluded that: (1) it is unlikely that any large scale relative motion took place since the Early Carboniferous between eastern and western Newfoundland; (2) it is unlikely that any north-south relative motion took place between the east coast basin and the Bay St. George sub-basin; and (3) the Bay St. George sub-basin results do not support the earlier proposed displaced terrane hypothesis of the northern Appalachians in as much as the motions during the Carboniferous are not supported. There is evidence of the northward motion of the Appalachians and North America as a whole during the Carboniferous. The magnetostratigraphic horizon marker in the Carboniferous separating a dominant normal and reversed magnetization on the older side and an entirely reversed (Kiaman) magnetization on the younger side may be placed in the Bay St. George sub-basin at the base of the Searston Formation.  相似文献   

5.
One hundred samples from nine sites in Upper Cretaceous volcanics (K/Ar age 85–99 m.y.) of the magmatic province of Cabo de Santo Agostinho, Pernambuco (8.4°S, 35.0°W) yield a mean direction of magnetizationD = 0.4°, I = ?20.6°withα95 = 4.8°, k = 114 after AF cleaning. All sites have normal polarity with a mean pole, named SAK10, at 87.6°N, 135°E withA95 = 4.5° which is close to other Upper Cretaceous poles for South America. These poles are compared with Upper Cretaceous poles of Africa for various reconstructions of the two continents.  相似文献   

6.
From Upper Cretaceous volcanic rocks of Southeast Sicily 107 cores from 19 sites were collected giving a mean palaeomagnetic pole position at 62°N, 223°E, A95 = 5.4° after AF-cleaning. This pole agrees with the Upper Cretaceous pole of Northern Africa indicating that no large post-Cretaceous relative motion has occurred between Africa and Sicily.  相似文献   

7.
Proterozoic supracrustal rocks of southwest Greenland and amphibolite dykes intruding the basement possess a thermal remanent magnetisation acquired during slow regional uplift and cooling between 1800 and 1600 m.y. following the Ketilidian mobile episode. Most samples from amphibolite dykes (mean palaeomagnetic pole 214°E, 31°N) possess a stable remanence associated with development of hematite during regional thermal metamorphism. Metavolcanics from the eastern part (eight sites, palaeomagnetic pole 230°E, 60°N, A95 = 15°) and western part (twelve sites, 279°E, 59°N, A95 = 17°) of Ars?k Island have magnetisations postdating folding and are related to KAr ages dating regional cooling (1700-1600 m.y.); magnetic properties are highly variable and partially stable remanence resides predominantly in pyrrhotite.These results agree in part with other palaeomagnetic results from the northern margin of the same craton, and currently available palaeomagnetic results assigned to the interval 1850-1600 m.y. are evaluated to define apparent polar wander movements. Two large polar movements are recognised during this interval with the possibility of a third at ca. 1800 m.y. It is concluded that apparent polar wander movements in Proterozoic times are most accurately described in terms of closed loops.  相似文献   

8.
We present new Middle Miocene paleomagnetic data for the central Japan Arc, and discuss their implications for Miocene rotation. To obtain a refined paleodirection, we made magnetic measurements on basaltic to andesitic lavas and intrusive rocks from 12 sites in the Tsugu volcanic rocks (ca 15 Ma) in the northern part of the Shitara area, Japan. Significant secondary magnetizations in samples with strong magnetic intensities are interpreted as lightning‐induced components. Mean directions carried by magnetite and/or titanomagnetite were determined for all sites. An overall mean direction with a northerly declination was obtained from dual‐polarity site means for nine sites. This direction is indistinguishable from the mean direction for coeval parallel dikes in the northern part of the Shitara area, and also indistinguishable from the Miocene reference direction derived from the paleopole for the North China Block in the Asian continent. These comparisons suggest little or no rotation or latitudinal motion in the study area with respect to the North China Block since 15 Ma. We obtained a refined early Middle Miocene paleodirection (D = 9.7°, I = 52.5°, α95 = 4.8°; 30 sites) and paleopole (82.0°N, 230.8°E, A95 = 5.6°) for Shitara by combining data from the Tsugu volcanic rocks and a coeval dike swarm. An anomalous direction found at three sites could be a record of an extraordinary field during a geomagnetic polarity transition or excursion. Paleomagnetic data from Shitara suggest that: (i) the western wing of the Kanto Syntaxis, a prominent cuspate geologic structure in central Honshu, underwent a counterclockwise rotation with respect to the main part of the southwestern Japan Arc between ca 17.5 Ma and 15 Ma; (ii) collision between the Japan and Izu–Bonin (Ogasawara) Arcs began prior to 15 Ma; and (iii) clockwise rotation of the entire southwestern part of the Japan Arc had ceased by 15 Ma.  相似文献   

9.
Two components of magnetization have been observed in fourty-four samples (five sites) of the anorthosites in the Arden Pluton. One component, withD = 325°,I = ?75°,k = 32, α95 = 13.6°, was isolated in many samples by progressive alternating field demagnetization and in the remainder of the collection by the use of intersecting great circles of remagnetization. The corresponding pole is located at 16°N, 303°E,dp = 22.7°,dm = 24.9°. Assuming the age of the last metamorphism (Taconic, ca. 440 Ma) of the Cambrian Arden Pluton to be the age of the magnetization, this pole deviates significantly from coeval poles thus far obtained from the North American craton. The preferred explanation for this deviation is that the Arden Pluton and the surrounding Piedmont rocks belonged to a different Early Paleozoic plate on the south or east side of the Iapetus Ocean, most likely the African (Gondwana) plate, and that it was transferred to the North American plate during a subsequent continental collision.  相似文献   

10.
The palaeomagnetism of Middle Triassic (224 ± 5 m.y.) igneous rocks from the Ischigualasto-Ischichuca Basin (67°40′W, 30°20′S) was investigated through 86 oriented hand samples from 11 sites. At least one reversal of the geomagnetic field has been found in these rocks. Nine sites yield a palaeomagnetic pole at 239°E, 79°S (α95 = 15°, k = 13).The K-Ar age determinations of five igneous units of the Puesto Viejo Formation give a mean age of 232 ± 4 m.y. (Early Triassic). The palaeomagnetism of six igneous units of the Puesto Viejo Formation (68°W, 35°S) was investigated through 60 oriented samples. These units, two reversed relative to the present magnetic field of the Earth and four normal, yield a pole at 236°E, 76°S (α95 = 18°, k = 14).Data from the Puesto Viejo Formation indicate, for the first time on the basis of palaeomagnetic and radiometric data, that the Illawarra Zone, which defines the end of the Kiaman Magnetic Interval, extends at least down to 232 ± 4 m.y. within the Early Triassic. The palaeomagnetic poles for the igneous rocks of the Ischigualasto-Ischichuca Basin and Puesto Viejo Formation form an “age group” with the South American Triassic palaeomagnetic poles (mean pole position: 239°E, 77°S; α95 = 6.6°, k = 190). The Middle and Upper Permian, Triassic and Middle Jurassic palaeomagnetic poles for South America would define a “time group” reflecting a quasi-static interval (mean pole position: 232°E, 81°S; α95 = 4°, k = 131).  相似文献   

11.
The results of the paleomagnetic investigation of the sediments pertaining to the Silasinskaya Formation of the Kiselevka–Manoma terrane within the Sikhote Alin orogenic belt are presented. The ancient prefolding magnetization component is revealed: Decs = 271.7°, Incs = 52.2°, Ks = 13.5, and a 95s = 5.1° (positive fold and reversal tests); and the coordinates of the corresponding paleomagnetic pole for ~103 ± 10 Ma are calculated: Plat = 26.3°, Plong = 70.5°, dp = 4.8°, and dm = 7.0°. As a result of this study, the geodynamical settings and paleolatitudes of the formation of three objects in the northern part of Sikhote Alin orogen are established: (a) the Kiselevskaya Formation of the Kiselevka–Manoma terrane was formed 133 Ma ago at 19° N under the seamount condition on the Izanagi Plate; (b) the Silasinskaya Formation of the Kiselevka–Manoma terrane was formed 103 Ma ago at 35° N under the oceanic island arc conditions; and (c) the Utitskaya Formation of the Zhuravlevsk–Amur terrane was formed 95 Ma ago at 54° N in the active continental margin conditions. It is found that the transform continental margin of Eurasia developed in the time interval from 105 to 65 Ma ago in the regime of a left-lateral submeridional shear from 30° to 60° N. The complete attachment of the studied rocks of the Kiselevka–Manoma terrane to the Eurasia’s margin (to the Zhuravlevsk–Amur terrane) occurred at the boundary of 60–70 Ma. Simultaneously, the sense of the displacement in the submeridional shears changed from left-lateral to right-lateral with the formation of pullapart type basins (Lake Udyl’).  相似文献   

12.
From Middle-Upper Jurassic volcanics at the western margin of the Maranha?o Basin (6.4°S, 47.4°W) 15 sites (121 samples) have a mean magnetization directionD = 3.9°,I = ?17.9° withα95 = 9.3°,k = 17.9 after AF cleaning (all sites have normal polarity). This yields a pole (named SAJ2) at 85.3°N, 82.5°E (A95 = 6.9°) which is near to the other known Middle Jurassic South American pole. For 21 sites (190 samples) from Lower Cretaceous basalt intrusions from the eastern part of the Maranha?o Basin (6.5°S, 42°W) the mean direction isD = 174.7°,I = +6.0° withα95 = 2.8°,k = 122 (all sites have reversed polarity) yielding a pole (SAK9) at 83.6°N, 261°E (A95 = 1.9°) in agreement with other Lower Cretaceous pole positions for South America. Comparing Mesozoic pole positions for South America and Africa in the pre-drift configuration after Bullard et al. [13] one finds a significant difference (with more than 95% probability) for the Lower Cretaceous and Middle Jurassic poles and also a probable difference for the mean Triassic poles indicating a small but probably stationary separation of the two continents from the predrift position in the Mesozoic until Lower Cretaceous time which may be due to an early rifting event.  相似文献   

13.
The paleomagnetic study of the Lower Ordovician and Cambrian sedimentary rocks exposed on the Narva River’s right bank revealed a multicomponent composition of natural remanent magnetization. Among four distinguished medium- and high-temperature magnetization components, the bipolar component, which carries the reversal test, is probably the primary component and reflects the geomagnetic field direction and variations during the Late Cambrian and Early Ordovician. The pole positions corresponding to this component have coordinates 22°N, 87°E (dp/dm = 5°/6°) for the Late Cambrian, and 18°N, 55°E (dp/dm = 5°/7°) for the Early Ordovician (Tremadocian and Arenigian). Together with the recently published paleomagnetic poles for the sections of the Early Ordovician in the Leningrad Region and the series of poles obtained when the Ordovician limestones were studied in Sweden, these poles form new key frameworks for the Upper Cambrian-Middle Ordovician segment of the apparent polar-wander path (APWP) for the Baltica. Based on these data, we propose a renewed version of the APWP segment: the model of the Baltica motion as its clockwise turn by 68° around the remote Euler pole. This motion around the great circle describes (with an error of A95 = 10°) both variations in the Baltic position from 500 to 456 Ma ago in paleolatitude and its turn relative to paleomeridians. According to the monopolar components of natural remanent magnetization detected in the Narva rocks, the South Pole positions are 2°S, 351°E (dp/dm = 5°/9°), 39°S, 327°E, (dp/dm = 4°/7°), and 42°S and 311°E (dp/dm = 9°/13°). It is assumed that these components reflect regional remagnetization events in the Silurian, Late Permian, and Triassic.  相似文献   

14.
Palaeomagnetic study of Middle Liassic siltstones shows a stable magnetization with a mean direction of D = 12.3°, I = 64.6° (N = 60, k = 26, α95 = 3.9°) corresponding to a palaeomagnetic pole at 79.8°N, 125.6°E, similar to that for southern Germany and confirming predictions based on palaeogeographic reconstructions using North American data. Sideritic concretions of Lower Liassic age show a higher magnetic stability with a mean direction of D = 12.6°, I = 61.4° (N = 125, k = 50, α95 = 1.8°) which is not significantly different from the siltstones. This confirms the sedimentological evidence that suggests that such concretions grew very shortly after deposition, i.e. within the Liassic, and suggests that similar concretions of other ages could thus be used for palaeomagnetic studies. Although the Liassic palaeomagnetic pole (76.9°N, 134.7°E), based on this work, appears valid it is still not possible to evaluate a sensible Mesozoic polar wandering curve for the North Atlantic bordering continents.  相似文献   

15.
Paleomagnetic characteristics of Carboniferous-Permian and Early Mesozoic geological complexes in Mongolia are studied. The studied rocks are shown to possess a multicomponent magnetization. Lowtemperature overprinting components of normal polarity discovered in nearly all of the studied strata were acquired after main deformation stages of the rocks, apparently in the Cenozoic. High-temperature overprinting components of reversed polarity identified in rocks of an active continental margin (ACM) were acquired when bimodal magma melts moved through ACM volcanic sequences. Late Carboniferous and Early Permian paleomagnetic poles of Mongolia calculated from directions of primary magnetization components are, respectively (Λ = 154.6, Φ = 32.2, A = 7.8) and (Λ = 95, Φ = 71, A = 8.7). Apparently, the territory of Mongolia in the Early Permian was a margin of the Siberian craton and was separated from the Northern China block by a basin extending for no less than 2000 km in the E-W direction. The strike of a marginal-continental volcanic belt was submeridional and a plate subducted under the continent from the east. Late Carboniferous-Permian intraplate magmatic complexes of Mongolia formed at various latitudes from various mantle sources during the northward movement of the Mongolian part of the Siberian continent. The oldest bimodal sequences of the Gobi-Tien Shan zone (318–314 Ma) formed at more southern latitudes (40°–47°–54°N) as compared with the 275-Ma complexes of the Gobi-Altai zone (51°–58°–67°N). Thus, sources of the Carboniferous-Permian intraplate magmatism in Central Asia either occupied a vast mantle region (up to 1000 km in the latitude direction) or moved together with the Asian continent.  相似文献   

16.
Palaeomagnetic investigation of basic intrusives in the Proterozoic Mount Isa Province yields three groups of directions of stable components of NRM after magnetic cleaning in fields up to 50 mT (1 mT= 10 Oe). The youngest group (IA) includes results from the Lakeview Dolerite, and yields a palaeomagnetic pole at 12°S, 124°E (A95 = 11°). The second group (IB) has a palaeomagnetic pole 53°S, 102°E (A95 = 11°). The third group (IC) is derived from the Lunch Creek Gabbro and contains normal and reversed polarities of magnetization with a palaeomagnetic pole at 63°S, 201°E (A95 = 9°). Some samples from the gabbro have anomalously low intensities of remanent magnetization in obscure directions attributed to the relative enhancement of the non-dipole component of the palaeomagnetic field during polarity reversal. The present attitude of the igneous lamination is probably of primary, not tectonic origin.  相似文献   

17.
The major Proterozoic igneous intrusions in the Swedish sector of the Baltic Shield are the Ragunda complex (1293 m.y., palaeomagnetic pole 165°E, 54°N) and the Nordingrågabbro-granite-anorthosite complex (1385 ± 30 m.y.). The latter body has been partially remagnetised by later post-Jotnian dolerites (1254 m.y.), and sites influenced by the dolerites have a stable magnetisation with a mean direction D = 45°, I = ?39°, (α95 = 4.3°). Elsewhere, the gabbro-anorthosite facies have a magnetisation of dual polarity predating the dolerite and recoverable at various stages of thermal and/or a.f. cleaning with a mean of D = 48°, I = 37° (α95 = 5.3°); medium and high coercivity remanence resides in large magnetite grains and fine, predominantly hematite, rods in feldspar megacrysts. The Nordingrårapakivi granite yields a mean, also including dual polarities, of D = 221°, I = ?25° (α95 = 13°), and the Gävle granite yields a mean of D = 26°, I = 17° (α95 = 13°).New data define the a.p.w. path for the Baltic Shield after final uplift and cooling of the ca. 1800 m.y. Svecofennian mobile belt and prior to intrusion of the post-Jotnian dolerites at 1250 m.y.; this (ca. 1500–1200 m.y.) path defines a double loop similar in size and shape to the contemporaneous path for the Laurentian Shield and the paths can be superimposed to define relative positions of the shields. They were in juxtaposition prior to 1200 m.y. with the optimum reconstruction obtained by rotation of approximately 64° about a Euler pole at 1°E, 36°N. Pre-1500 m.y. palaeomagnetic data are also shown to fit this same unique reconstruction. The main geological correlations are an alignment of the Lower/Middle Proterozoic major strike-slip zones, the structural trends within the pre-1700 m.y. mobile belts, and the Grenville and Sveconorwegian (ca. 1100 m.y.) mobile belts. The anorogenic magmatism characteristic of Proterozoic times became gradually more restricted to one active margin of the continental reconstruction as temperature gradients decreased and the crust consolidated. All of these Proterozoic tectonic/magmatic trends are parallel to the long axis of the continental reconstruction.  相似文献   

18.
The Precambrian basement of the British region south of the Caledonian orogenic belt is only observed in a few small inliers; this paper reports a detailed paleomagnetic study of four of these inliers. The Stanner-Hanter amphibolitised gabbro-dolerite complex of uncertain age yields a mean direction of magnetisation D = 282°, I = 51° (15 sites,α95 = 11.4°) after AF and thermal cleaning. Uriconian lavas and tuffs (~700-600 m.y.) of the Pontesford and Wrekin inliers require both thermal and AF cleaning for complete analysis of NRM. The former region (Western Uriconian) yields a mean of D = 136°, I = ?25° (6 sites,α95 = 15.3°) and the latter region (Eastern Uriconian) a mean of D = 78°, I = 17° (9 sites, α95 = 12.8°); the Eastern Uriconian shows a marked improvement in precision after a two-stage fold test, and the palaeomagnetic data suggest that some apparent polar movement took place between eruption of the two sequences. The Uriconian rocks in both areas were intruded by dolerites which yield a mean direction of magnetisation D = 72°, I = 54° (11 sites,α95 = 13.2°).The collective data give palaeomagnetic poles related to Upper Proterozoic metamorphic episodes (Stanner-Hanter Complex and Rushton Schist) which are in close agreement with earlier studies of the Malvernian metamorphic rocks, and to the late Precambrian Uriconian volcanic/hypabyssal igneous episode. All of these magnetisations are probably confined to the interval 700-600 m.y., and are indicative of appreciable polar movement during this interval. The palaeomagnetic poles define an apparent polar wander path for this crustal block between Late Precambrian and Lower Cambrian times and show that cratonic Britain south of the Caledonian suture is unrelated to the Baltic Shield.  相似文献   

19.
Palaeomagnetic measurements on the pre-Miocene carbonatite volcanics of Tororo, S.E. Uganda, have yielded a pole at 75.8°N, 195.5°E with A95 = 9.4°. Along with the Tertiary poles from East African rift systems, the Eocene-Oligocene pole from Ethiopia and the mean Mesozoic pole from the rest of Africa, a polar wander path for Africa fromMesozoic to present is suggested.  相似文献   

20.
New Late Cretaceous paleomagnetic results from the Okhotsk-Chukotka Volcanic Belt in the Kolyma-Omolon Composite Terrane yield stable and consistent remanent directions. The Late Cretaceous (86–81 Ma) ignimbrites from the Kholchan and Ola suites were sampled at 19 sites in the Magadan area (60.4° N, 151.0° E). We isolated the characteristic paleomagnetic directions from 16 sampled sites using an alternating field demagnetization procedure. The primary nature of these directions is ascertained by dual polarities and positive fold tests. A tilt-corrected mean direction (D = 42.8°, I = 84.7°, k = 46.0, α95 = 10.0°) yields a paleomagnetic pole of 66.7° N, 168.5° E (A95 = 18.8°) which appears almost identical to the 90–67 Ma pole reported from the Lake El’gygytgyn area of the Okhotsk-Chukotka Volcanic Belt (Chukotka Terrane). This consistency suggests that the Kolyma-Omolon Composite Terrane and Chukotka Terrane has acted as a single tectonic unit since 80 Ma without any significant internal deformation. Accordingly, we calculate a combined 80 Ma characteristic paleomagnetic pole (Long. = 164.7° E, Lat. = 68.0°, A95 = 10.9°, N = 12) for the Kolyma-Omolon-Chukotka Block which falls 16.5–17.5° south of the same age poles from Europe and East Asia. We ascribe this discrepancy in pole positions to tectonic activity in the area and infer a southward displacement of 1640 ± 1380 km for the Kolyma-Omolon-Chukotka Block with respect to the North American and Eurasian blocks since 80 Ma; more than 260 km of it is attributed to tectonic displacement in the Arctic Ocean due to the opening of the Canadian Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号