首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The geophysically-important adiabat (?T/?P)s has been measured at pressures up to 50 kbar and temperatures up to 1000°C. A simple power law describes the relationship between (?T/?P)s and the compression of the material. The power is independent of the material and of the temperature within the uncertainty. This consistency in the power allows the extrapolation of the adiabat to pressure and temperature conditions of the mantle of the earth. The adiabatic gradient is shown to be significantly smaller than the melting gradient.  相似文献   

2.
The phase behaviour of MSiO4 compounds (MHf, Zr, U and Th0 has been investigated at high pressures and temperatures in a diamond-anvil press coupled with laser heating. All of these compounds have been found to undergo two or perhaps three phase transformations at pressures below 300 kbar. The high-pressure phase transformations of these compounds differ from one another, with the exception of HfSiO4 and ZrSiO4, which undergo identical phase transformations. The ultimate phase assemblages of these compounds are of dense component dioxides (although this is yet to be confirmed in ThSiO4). It is suggested that the heat-producing elements U and Th would exist as dioxide solid solutions rather than silicates in the deep interior of the earth. Moreover, the densities of these dioxides are more than twice as great as mantle silicates and even slightly greater than pure iron under similar P, T conditions. Gravitational separation due to mandle convection may transport these dioxides to the deep interior of the earth to form deep heat sources. It is also suggested, however, that these deep heat sources are located in the inner-outer core boundary instead of in the lower mantle.  相似文献   

3.
The characteristic functions relating relative permeabilities and capillary pressures to fluid saturations (krSPc models) are of great importance for the modelling of sub-surface multi-phase flow and transport. In order to test their performance and to identify their important parameters, four well-known three-phase krSPc models have been tested against published experimental data on non-aqueous phase liquid (NAPL) migration in the unsaturated zone. Both homogenous systems and systems with embedded heterogeneities have been analysed.  相似文献   

4.
The macroscopic modelling of two-phase flow processes in subsurface hydrosystems or industrial applications on the Darcy scale usually requires a constitutive relationship between capillary pressure and saturation, the Pc(Sw) relationship. Traditionally, it is assumed that a unique relation between Pc and Sw exists independently of the flow conditions as long as hysteretic effects can be neglected. Recently, this assumption has been questioned and alternative formulations have been suggested. For example, the extended Pc(Sw) relationship by Hassanizadeh and Gray [Hassanizadeh SM, Gray WG. Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Adv Water Resources 1990;13(4):169–86] proposes that the difference between the phase pressures to the equilibrium capillary pressure is a linear function of the rate of change of saturation, thereby introducing a constant of proportionality, the coefficient τ. It is desirable to identify cases where the extended relationship needs to be considered. Consequently, a dimensional analysis is performed on the basis of the two-phase balance equations. In addition to the well-known capillary and gravitational number, the dimensional analysis yields a new dimensionless number. The dynamic number Dy quantifies the ratio of dynamic capillary to viscous forces. Relating the dynamic to the capillary as well as the gravitational number gives the new numbers DyC and DyG, respectively. For given sets of fluid and porous medium parameters, the dimensionless numbers Dy and DyC are interpreted as functions of the characteristic length and flow velocity. The simulation of an imbibition process provides insight into the interpretation of the characteristic length scale. The most promising choice for this length scale seems to be the front width. We conclude that consideration of the extended Pc(Sw) relationship may be important for porous media with high permeability, small entry pressure and high coefficient τ when systems with a small characteristic length (e.g. steep front) and small characteristic time scale are under investigation.  相似文献   

5.
Capillary pressure (Pc)–saturation (S)–relative permeability (kr) relationships must be quantified to accurately predict non-aqueous phase liquid (NAPL) distribution in the subsurface. Several experimental techniques are presented here for two-fluid PcSkr relationships for various saturation paths to better define the effect of fractional wettability on these relationships. During the primary drainage path of the PcS curves, the air–water system showed no distinct trend as a function of the fraction of sand treated by organosilane (S) to render it non-water wetting. In a NAPL–water system, however, a consistent decrease of capillary pressure with increase of the fraction of non-water wetting sands was observed. The much lower contact angle for air–water (a–w) system may result in the observed insensitivity of the a–w PcS curves to fractional wettability, at least for the PD pathway. For the main imbibition path of NAPL–water system, capillary pressure decreased as the fraction of the S component increased, requiring forced imbibition (negative capillary pressures) for a certain range of saturations. Systems with an increasing percentage of the S component also exhibited a higher water kr and lower NAPL or air kr at a given saturation for the primary drainage and main imbibition paths in both air–water and NAPL–water systems. The increase of water kr with increase of the fraction of the S component can be explained by the ability of water to occupy larger and highly conductive pores in such a system. Experimental krS data for the primary drainage path of NAPL–water system presented here were used to test the Bradford et al. [Bradford SA, Abriola LM, Leij FJ. Wettability effects on two- and three-fluid relative permeabilities. J Contam Hydrol 1997;28:171–91] model and the modified Mualem model for estimating the krS curves from measured PcS data as a function of fractional wettability. Both models predicted significantly less variation in the krS curves than measured indicating that they did not adequately represent the system under investigation.  相似文献   

6.
The value of the acoustic Grüneisen parameter, γa, in the earth's interior has been computed using data from recent models obtained by inversion of normal data. In this paper we emphasize the data from the PEM model of the earth because there has been sufficient smoothing of the seismic data so that the derivatives d ln νs/d ? and d ln νp/d ? can be well defined at all depths.The results for the lower mantle show that γa decreases exponentially from 1.3 to 1.0, and there are several consistent cross-checks of the limiting values. We find γa is about 1.5 for the inner core and outer core. These results confirm, in broad outline, the results of others who computed γ for the core by entirely different methods. They also confirm a higher value of γ in the inner core. The value of γa in the lower mantle follows a ρ?1.35 law, which is reminiscent of the expirical law γρ = constant, commonly used in shock-wave analyses.  相似文献   

7.
针对工程中大量存在的平面应变问题,依据平面应变条件和广义胡克定律,基于SMP、Lade-Duncan、AC-SMP和广义Mises强度准则,推导出考虑中主应力及泊松比影响的无黏性土主、被动土压力计算公式,并将其扩展至黏性土,讨论基于各强度准则土压力计算公式的适用范围。结果表明:考虑中主应力对土强度的贡献后,基于各强度准则所计算的主动土压力均小于朗肯主动土压力,被动土压力均大于朗肯被动土压力;主动土压力Pa随着泊松比的增大而减小,被动土压力PP随着泊松比的增大而增大,且泊松比越大,与实测数据更为接近;基于同一强度准则下得到的主、被动土压力适用的内摩擦角范围随着泊松比的增大而增大;基于各强度准则的土压力计算公式均能较好的描述挡土结构上土压力的大小,其中广义Mises强度准则计算结果与实际工程更为吻合,研究成果可为挡土结构上土压力的计算提供一定理论参考。  相似文献   

8.
The Log-Spiral-Rankine (LSR) model, which is a generalized formulation for assessing the active and passive seismic earth pressures considering the internal friction and cohesion of backfill soil, is reviewed and improved in this study. System inconsistencies in the LSR model are identified, which result from an inaccurate assumption on the vertical normal stress field (σz=γz) in a general cϕ soil medium, and from omitting the effect of soil cohesion when solving for the stress states along the failure surface. The remedies to the said inconsistencies are presented, and local and global iteration schemes are introduced to solve the resulting highly coupled multivariate nonlinear system of equations. The modified LSR model provides a more complete and accurate solution for earth retaining systems, including the geometry of the mobilized soil body, the stress state along the failure surface, as well as the magnitude and the point of application of the resultant earth thrust.  相似文献   

9.
Summary For the discussion of the physico-chemical state and the phase transitions in the earth interior it is necessary to compare the results of geophysical field measurements with geophysical solid state investigations in the laboratory under extremep,T-conditions. In correspondence with the theoretical studies about the behaviour of the materials in the deep earth we investigated two groups of materials: (I) different types of rocks with reference to their elastic and thermal behaviour under extreme conditions, (II) simple compounds of elements which belong possibly to the representatives of the deep mantle and the earth interior. The method for measurement of the thermal diffusivity and the influence of anisotropy on the propagation of elastic waves in different rocks is described. The results of the dependence of the electric resistivity on pressure and temperature on synthetic and natural chalkogenides of the 3d-transition metals are discussed.Publication No. 474 of the Central Earth Physics Institute, Academy of Sciences, 15 Potsdam, Telegrafenberg, GDR.  相似文献   

10.
The partition coefficients of potassium, DK, between molten sanidine, KAlSi3O8, and molten roedderite, K2Mg5Si12O30, with FeS-rich alloy and pure Fe metal liquids have been investigated in a multi-anvil press, between 5 and 15 GPa, at a temperature of 2173 K, and at an oxygen fugacity between 0.5 and 3 log units below the iron-wüstite (IW) buffer. No pressure dependence of the DK coefficients in sulphur-free and sulphur-bearing systems was found within the investigated pressure range. We also observed minor effect of the silicate melt composition for an nbo/t (non-bridging oxygen to tetrahedral cation ratio) higher than 0.8 ± 0.4. In contrast, the partitioning of potassium varies strongly with the metallic phase composition, with an increase of K-solubility in the metallic liquid for high sulphur and oxygen contents.We review all available high-pressure data to obtain reliable DK coefficients for the interaction between molten silicates and Fe-alloy liquids at pressures and temperatures relevant to those of core formation in a terrestrial magma ocean. The dominant controlling parameters appear to be the temperature and the chemical composition of the metallic phase, with DK coefficients significantly increased with temperature, and with the sulphur and oxygen contents of the Fe-alloy liquid. Our considerations distinguish two extreme cases, with an S-free or S-bearing iron core, which yield K contents of ∼25 or ∼250 ppm, respectively. These two extreme values have very different consequences for thermal budget models of the Earth's core since its formation.  相似文献   

11.
The LMTO method is used to calculate the electronic band structure of iron in the ϵ-phase (hcp) and in the γ-phase (fcc) for seven compressions from 4 to 980 GPa. The electronic specific heat cυe(T) is calculated for each phase by numerical integration from the resultant density of states. Previous work is thus supported for γ-iron and extended to ϵ-iron, the most likely inner core component. A simple parameterization of cυe is given for use in making geophysical estimates. Other thermodynamic parameters which are calculated are the electronic free energy, the thermal electronic pressure, and an electronic Gruneisen parameter, γe.Recent studies of liquid iron and iron alloys indicate that the density of states at the Fermi level does not differ much from that calculated for pure crystalline iron. We cautiously apply our results to the outer core and find that cυe = 1.7 ± 0.7R and γe = 1.3 ± 0.4. This indicates that the total heat capacity of the core is one-quarter that of the entire Earth.  相似文献   

12.
The method of measuring the pore pressure of stratum fluid in deep bore-holes is presented. Taking the sedimentary basins in North China as an example, the variation law of pore pressure measured in strata within the depth range of 0 to 4 km is analyzed. Furthermore, the relation between the regional distribution of abnormal pore pressures in 3 000 m depth and seismic activities is discussed in connection with the earthquakes of M S5.0 that occurred after 1 900 in the studied region. The study result indicates that the strata pore pressure P 0 measured in deep bore-holes is not exactly the same as the hydrostatic pressure PH. Ultra pore pressure does exist, though not commonly. The relation that the pore pressures (P 01, P 02 and P 03) measured in exploration, evaluation and exploitation wells in Oil-fields and the hydrostatic pressuree (P H) of the above wells is as follows: 1 P 01>P 02>P H>P 03 in areas with ultra pore pressures; 2 P H>P 01>P 02>P 03 in areas where the pore pressures are normal or on the lower side. The relation between the regional distribution of ultra pore pressures and the activity of earthquakes of M S5.0 has been analyzed. The result shows that, with latitudes 36.0°–36.5°N as a demarcation, pore pressures are ultra-high in the south and are normal or lower in the north. In the south, the measured pore pressure is obviously higher than the hydrostatic pressure below the depth of about 2 000 m and it increases as a power function with increasing depth; meanwhile, the earthquake activity there is weaker. In the north, however, the measured pore pressure increases as a linear function with increasing depth; meanwhile, the earthquake activity there is stronger. This project sponsored by the Chinese Joint Seismological Science Foundation.  相似文献   

13.
We have carried out in situ X-ray diffraction experiments on the FeS–H system up to 16.5 GPa and 1723 K using a Kawai-type multianvil high-pressure apparatus employing synchrotron X-ray radiation. Hydrogen was supplied to FeS from the thermal decomposition of LiAlH4, and FeSHx was formed at high pressures and temperatures. The melting temperature and phase relationships of FeSHx were determined based on in situ powder X-ray diffraction data. The melting temperature of FeSHx was reduced by 150–250 K comparing with that of pure FeS. The hydrogen concentration in FeSHx was determined to be x = 0.2–0.4 just before melting occurred between 3.0 and 16.5 GPa. It is considered that sulfur is the major light element in the core of Ganymede, one of the Galilean satellites of Jupiter. Although the interior of Ganymede is differentiated today, the silicate rock and the iron alloy mixed with H2O, and the iron alloy could react with H2O (as ice or water) or the hydrous silicate before the differentiation occurred in an early period, resulting in a formation of iron hydride. Therefore, Ganymede's core may be composed of an Fe–S–H system. According to our results, hydrogen dissolved in Ganymede's core lowers the melting temperature of the core composition, and so today, the core could have solid FeSHx inner core and liquid FeHx–FeSHx outer core and the present core temperature is considered to be relatively low.  相似文献   

14.
All the finite strain equations that we are aware of that are worth considering in connection with the interior of the Earth are given, with the assumptions on which they are based and corresponding relationships for incompressibility and its pressure derivatives in terms of density. In several cases, equations which have been presented as new or independent are shown to be particular examples of more general equations that are already familiar. Relationships for deriving finite strain equations from atomic potential functions or vice versa are given and, in particular it is pointed out that the Birch-Murnaghan formulation implies a sum of power law potentials with even powers. All the equations that survive simple plausibility tests are fitted to the lower mantle and outer core data for the PEM earth model. For this purpose the model data are extrapolated to zero temperature, using the Mie-Grüneisen equation to subtract the thermal pressure (at fixed density) and the pressure derivative of this equation to substract the thermal component of incompressibility. Fitting of finite strain equations to such zero temperature data is less ambiguous than fitting raw earth model data and leads immediately to estimates of the low temperature zero pressure parameters of earth materials. On this basis, using the best fitting equations and constraining core temperature to give an extrapolated incompressibilityK 0=1.6×1011Pa, compatible with a plausible iron alloy, the following numerical data are obtained: Core-mantle boundary temperature 3770 K Zero pressure, zero temperature densities: lower mantle 4190 kg m–3 outer core (solidified) 7500 kg m–3 Zero pressure, zero temperature incompressibility of the lower mantle 2.36×1011PaHowever, an inconsistency is apparent betweenP() andK() data, indicating that, even in the PEM model, in which the lower mantle is represented by a single set of parameters, it is not perfectly homogeneous with respect to composition and phase.  相似文献   

15.
We test the hypothesis that the general trend of P-wave and S-wave sonic log velocities and resistivity with depth in the pilot hole of the KTB site Germany, can be explained by the progressive closure of the compliant porosity with increasingly effective pressure. We introduce a quantity θc characterizing the stress sensitivity of the mentioned properties. An analysis of the downhole measurements showed that estimates of the quantitiy θc for seismic velocities and electrical formation factor of the in situ formation coincide. Moreover, this quantity is 3.5 to 4.5 times larger than the averaged stress sensitivity obtained from core samples. We conclude that the hypothesis mentioned above is consistent with both data sets. Moreover, since θc corresponds approximately to the inverse of the effective crack aspect ratio, larger in situ estimates of θc might reflect the influence of fractures and faults on the stress sensitivity of the crystalline formation in contrast to the stress sensitivity of the nearly intact core samples. Finally, because the stress sensitivity is directly related to the elastic nonlinearity we conclude that the elastic nonlinearity (i.e., deviation from linear stress-strain relationship i.e., Hooke's law) of the KTB rocks is significantly larger in situ than in the laboratory.  相似文献   

16.
Accurate modeling of storage of carbon dioxide (CO2) in heterogeneous aquifers requires experiments of the capillary pressure as function of temperature and pressure. We present a method with which static drainage and imbibition capillary pressures can be measured continuously as a function of saturation at various temperature (T) and pressure (P) conditions. The measurements are carried out at (TP) conditions of practical interest. Static conditions can be assumed as small injection rates are applied. The capillary pressure curves are obtained for the unconsolidated sand–distilled water–CO2 system. The experimental results show a decrease of drainage and imbibition capillary pressure for increasing CO2 pressures and pronounced dissolution rate effects for gaseous CO2. Significant capillary pressure fluctuations and negative values during imbibition are observed at near critical conditions. The measurement procedure is validated by a numerical model that simulates the experiments.  相似文献   

17.
The “anomalous” layer in the lowermost mantle, identified as D″ in the notation of K.E. Bullen, appears in the PREM Earth model as a 150 km-thick zone in which the gradient of incompressibility with pressure, dKdP, is almost 1.6, instead of 3.2 as in the overlying mantle. Since PREM shows no accompanying change in density or density gradient, we identify D″ as a thermal boundary layer and not as a chemically distinct zone. The anomaly in dKdP is related to the temperature gradient by the temperature dependence of Ks, for which we present a thermodynamic identity in terms of accessible quantities. This gives the numerical result (?Ks/?T)P=?1.6×107 Pa K?1 for D″ material. The corresponding temperature increment over the D″ range is 840 K. Such a layer cannot be a static feature, but must be maintained by a downward motion of the lower mantle toward the core-mantle boundary with a strong horizontal flow near the base of D″. Assuming a core heat flux of 1.6 × 1012 W, the downward speed is 0.07 mm y?1 and the temperature profile in D″, scaled to match PREM data, is approximately exponential with a scale height of 73 km. The inferred thermal conductivity is 1.2 W m?1 K?1. Using these values we develop a new analytical model of D″ which is dynamically and thermally consistent. In this model, the lower-mantle material is heated and softened as it moves down into D″ where the strong temperature dependence of viscosity concentrates the horizontal flow in a layer ~ 12 km thick and similarly ensures its removal via narrow plumes.  相似文献   

18.
The enthalpies of formation from the oxides of Mg2SnO4 and Co2SnO4 were found by oxide melt solution calorimetry to be +1.13 ± 0.48 kcal/mol and ?2.31 ± 0.28 kcal/mol, respectively. Using these data, the slopes, ?P/?T, for disproportionation of these spinels to the component oxides at high pressure were calculated to be +30.4 ± 4.2 bar/K for Mg2SnO4 and ?10.3 ± 2.4 bar/K for Co2SnO4, in general agreement with the data of Jackson et al. (1974a,b). Using thermochemical data for the formation of olivines, for olivine-spinel transitions and for the transformation of quartz to stishovite, we calculate pressures for the disproportionation of silicate spinels to be in the range 150–200 kbar. Calculated slopes ?P/?T for the disproportionation reactions are ?10.7, ?24.9, ?11.2, and +7.6 bar/K for Mg2SiO4, Fe2SiO4, Co2SiO4, and Ni2SiO4. The large negative slope calculated for Fe2SiO4 results from a surprisingly large positive slope reported for the olivine-spinel transition in that compound (Akimoto et al., 1969). Further consideration of the systematic trends in the thermodynamics of spinel formation from the oxides suggests that the silicate spinels should have entropies of formation close to zero, resulting in values of ?P/?T which are zero or at most only slightly negative. This confirms the conclusion of Jackson, Liebermann, and Ringwood that values of ?P/?T for spinel disproportionation are unlikely to be more negative than ?10 bar/K and may well be slightly positive. Reaction of spinels to form other post-spinel phases, particularly ilmenite and perovskite, are discussed in terms of available thermochemical data.  相似文献   

19.
In order to analyze observed seismicity in central Japan and Venezuela, we applied a new method to identify semi-periodic sequences in the occurrence times of large earthquakes, which allows for the presence of multiple periodic sequences and/or events not belonging to any sequence in the time series. We also explored a scheme for diminishing the effects of a sharp cutoff magnitude threshold in selecting the events to analyze. A main four-event sequence with probability P c  = 0.991 of not having occurred by chance was identified for earthquakes with M ≥ 8.0 in central Japan. Venezuela is divided, from West to East, into four regions; for each of these, the magnitude ranges and identified sequences are as follows. Region 1: M ≥ 6.0, a six-event sequence with P c  = 0.923, and a four-event sequence with P c  = 0.706. Region 2: M ≥ 5.6, a five-event sequence with P c  = 0.942. Region 3: M ≥ 5.6, a four-event sequence with P c  = 0.882. Region 4: M ≥ 6.0, a five-event sequence with P c  = 0.891. Forecasts are made and evaluated for all identified sequences having four or more events and probabilities ≥0.5. The last event of all these sequences was satisfactorily aftcast by previous events. Whether the identified sequences do, in fact, correspond to physical processes resulting in semi-periodic seismicity is, of course, an open question; but the forecasts, properly used, may be useful as a factor in seismic hazard estimation.  相似文献   

20.
Hysteresis parameters Hcr, Hc, Jrs, Js, and their ratios Hcr/Hc, Jrs/Js have been measured for a large number of accurately prepared grain size fractions of magnetite in the range between 5 and 150 μm. For several grain size fractions three different concentrations of magnetite are used: 100, 0.1, and 0.002 vol.%. Most of the measurements were repeated after annealing the specimens to 600°C. For some specimens in the pseudo-single (PSD) and multidomain (MD) range Hc and Hcr have been measured as functions of temperature. Plots of the results from Hc, Hcr/Hc and Jrs/Js versus the grain size reveal curves with a convex and a concave part. Concentration and annealing affects the values of the hysteresis parameters, especially for grains coarser than 25 μm but the shape of the curves remains the same. The inflection point from convex to concave for all curves occurs at 25 μm and it appears to be independent of concentration and annealing. It is therefore proposed to define the transition from PSD to MD as the inflection point of these curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号