首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 846 毫秒
1.
本文通过夕线石的结构、成分及产出状态,系统讨论和总结了其变质形成过程.含夕线石的变质岩原岩未必对应泥质岩,富夕线石岩石成分上更不能与任何的泥质岩成分对应.原岩本身富铝如多数泥质岩是形成夕线石非常有利的成分条件,但是,即使有合适的温压条件,也未必能够形成夕线石,组分的差异性迁移才是夕线石形成的必要条件.夕线石的形成与变形...  相似文献   

2.
黔北浣溪铝土矿床为产于石炭系黄龙组灰岩古侵蚀风化面或志留系韩家店组黏土岩、页岩、砂岩等侵蚀间断面之上的一水硬铝石沉积型大型铝土矿床,初步探明铝土矿资源量2000×104余吨。研究表明,浣溪铝土矿床地表矿体质量总体优于深部,地表矿体具有中铁、低硫特征,深部矿体具有中铁、高硫特征。矿石主要化学组分为Al2O3、SiO2、Fe2O3、TiO2及烧失量,占矿石组分的95%~98%,Al2O3与SiO2呈负相关关系;镓、锂是矿床的伴生有益元素。矿床的形成主要受地层岩性、向斜构造、古气候、古沉积环境等因素控制;炎热潮湿的古气候条件和半封闭海湾环境利于成矿。  相似文献   

3.
Quartz‐rich veins in metapelitic schists of the Sanandaj‐Sirjan belt, Hamadan region, Iran, commonly contain two Al2SiO5 polymorphs, and, more rarely, three coexisting Al2SiO5 polymorphs. In most andalusite and sillimanite schists, the types of polymorphs in veins correlate with Al2SiO5 polymorph(s) in the host rocks, although vein polymorphs are texturally and compositionally distinct from those in adjacent host rocks; e.g. vein andalusite is enriched in Fe2O3 relative to host rock andalusite. Low‐grade rocks contain andalusite + quartz veins, medium‐grade rocks contain andalusite + sillimanite + quartz ± plagioclase veins, and high‐grade rocks contain sillimanite + quartz + plagioclase veins/leucosomes. Although most andalusite and sillimanite‐bearing veins occur in host rocks that also contain Al2SiO5, kyanite‐quartz veins crosscut rocks that lack Al2SiO5 (e.g. staurolite schist, granite). A quartz vein containing andalusite + kyanite + sillimanite + staurolite + muscovite occurs in andalusite–sillimanite host rocks. Textural relationships in this vein indicate the crystallization sequence andalusite to kyanite to sillimanite. This crystallization sequence conflicts with the observation that kyanite‐quartz veins post‐date andalusite–sillimanite veins and at least one intrusive phase of a granite that produced a low‐pressure–high‐temperature contact aureole; these relationships imply a sequence of andalusite to sillimanite to kyanite. Varying crystallization sequences for rocks in a largely coherent metamorphic belt can be explained by P–T paths of different rocks passing near (slightly above, slightly below) the Al2SiO5 triple point, and by overprinting of multiple metamorphic events in a terrane that evolved from a continental arc to a collisional orogen.  相似文献   

4.
刘加强 《地质与勘探》2012,48(3):508-517
[摘 要] 滇东南地区上二叠统吴家坪阶下部铝土矿不整合于峨眉山玄武岩或灰岩之上,查明其物质来源对铝土矿勘探具有重要意义。对铝土矿及峨眉山大火成岩省玄武岩、花岗岩及下伏灰岩的地球化学指标进行研究,结果表明:滇东南铝土矿常量元素主要由SiO2、Fe2O3、Al2O3、TiO2 和FeO 组成;铝土矿中富集Zr、Hf、Nb、Ta 元素,表明Zr、Hf、Nb、Ta 等高场强元素在滇东南地区铝土矿矿化过程中较为稳定,且Zr、Hf、Nb、Ta 表现出良好的相关性;铝土矿球粒陨石标准化曲线与峨眉山玄武岩配分曲线趋势一致,均富集轻稀土元素,而与下伏灰岩差异较大,且Zr-Hf、Nb-Ta 图解与峨眉山玄武岩呈线性关系,而与矮郎河过铝质花岗岩的相关性不强。据此推断滇东南地区上二叠统吴家坪阶下部铝土矿主要物质来源为峨眉山玄武岩。  相似文献   

5.
河南巩县铝土矿位于华北地台的南部,其基底岩系为前寒武纪的变质岩系,其上有震旦系、寒武系和下、中奥陶统的地层。中奥陶统灰岩层是铝土矿的直接底板,灰岩的顶面凹凸不平,多被铁质浸染呈黄褐色,局部地方有残积的贫铁矿层,中石炭统铝土矿层呈平行不整合覆盖其上。  相似文献   

6.
Magnetite formed in different environments commonly has distinct assemblages and concentrations of trace elements that can potentially be used as a genetic indicator of this mineral and associated ore deposits. In this paper, we present textural and compositional data of magnetite from the Chengchao iron deposit, Daye district, China to provide a better understanding in the formation mechanism and genesis of the deposit and shed light on analytical protocols for in-situ chemical analysis of hydrothermal magnetite. Magnetite grains from the ore-related granitoid pluton, mineralized endoskarn, magnetite-dominated exoskarn, and vein-type iron ores hosted in marine carbonate intruded by the pluton were examined using scanning electron microscopy and analyzed for major and trace elements using electron microprobe. Back-scattered electron images reveal that primary magnetite from the mineralized skarns and vein-type ores were all partly reequilibrated with late-stage hydrothermal fluids, forming secondary magnetite domains that are featured by abundant porosity and have sharp contact with the primary magnetite. These textures are interpreted as resulting from a dissolution–reprecipitation process of magnetite, which, however, are mostly obscure under optically.Primary magnetite grains from the mineralized endoskarn and vein-type ores contain high SiO2 (0.92–3.21 wt.%), Al2O3 (0.51–2.83 wt.%), and low MgO (0.15–0.67 wt.%), whereas varieties from the exoskarn ores have high MgO (2.76–3.07 wt.%) and low SiO2 (0.03–0.23 wt.%) and Al2O3 (0.54–1.05 wt.%). This compositional contrast indicates that trace-element geochemical composition of magnetite is largely controlled by the compositions of magmatic fluids and host rocks of the ores that have reacted with the fluids. Compared to its precursor mineral, secondary magnetite is significantly depleted in most trace elements, with SiO2 deceasing from 1.87 to 0.47 wt.% (on average) and Al2O3 from 0.89 to 0.08 wt.% in mineralized endoskarn and vein type ores, and MgO from 2.87 to 0.60 wt.% in exoskarn ores. On the contrary, average content of iron is notably increased from 69.2 wt.% to 71.9 wt.% in the secondary magnetite grains. The results suggest that the dissolution–reprecipitation process has been important in significantly removing trace elements from early-stage magnetite to form high-grade, high-quality iron ores in hydrothermal environments. The textural and compositional data confirm that the Chengchao iron deposit is of hydrothermal origin, rather than being crystallized from immiscible iron oxide melts as previously suggested. This study also highlights the importance of textural characterization using various imaging techniques before in-situ chemical analysis of magnetite, as is the case for texturally complicated UTh-bearing accessory minerals that have been widely used for UPb geochronology study.  相似文献   

7.
The study area forms part of an emerging iron ore province of southern Cameroon. Geochemistry analyses reveal that the siliceous itabirite has a very simple chemical composition, with Fe2O3 and SiO2 representing more than 96 wt.% of the average composition; suggesting chemical precipitates of silica and iron. Low Al2O3 and TiO2 concentrations and a weak positive correlation between them point to a minor detrital component in the precipitated marine sediments. The Si/Al ratio (average 52.7) indicates the hydrothermal origin of the studied itabirite. The Al–Si discrimination diagram supports this interpretation through the plot of all data in the hydrothermal field. The studied samples have low iron content (about 39.32% Fe), high gangue content (40.97% SiO2 and 1.3 % Al2O3) and low concentration of the deleterious elements (0.16 % P and < 0.01% S). The main gangue mineral is silica which can be efficiently removed from iron ores during preparation of raw materials for the blast furnace process. According to commercial standards for crude iron ores, it may be concluded that the Zambi iron ores are a low‐grade magnetic ore that can be profitably exploited for the production of iron for steel production.  相似文献   

8.
Constraints from P-T pseudosections (MnNCKFMASH system), foliation intersection/inflection axes preserved in porphyroblasts (FIAs), mineral assemblages and textural relationships for rocks containing all three Al2SiO5 polymorphs indicate a kyanite→ andalusite→ sillimanite sequential formation at different times rather than stable coexistence at the Al2SiO5 triple point. All three Al2SiO5 polymorphs grew in the Chl, Bt, Ms, Grt, St, Pl and Crd bearing Ordovician Clayhole Schist in Balcooma, northeastern Australia separately along a looped P-T-t-D path that swaps from clockwise to anticlockwise in the tectono-metamorphic history of the region. Kyanite grew during crustal thickening in an Early Silurian Orogenic event followed by decompression/heating, andalusite and fibrolitic sillimanite growth during Early Devonian exhumation.  相似文献   

9.
Bauxite deposits of the Fria district, Guinea, have been exploited since 1960. These lateritic bauxites, located on the upper parts of plateaus, result from weathering of paleozoic schists. The ores are composed of gibbsite associated with pyrophyllite, Al-substituted gœthite, and kaolinite. Pyrophyllite and Al-substituted gœthite may contain up to 9% of the total Al2O3 content of the bauxite; this cannot be recovered through the Bayer process because these phases are insoluble in the leaching solutions. Kaolinite is soluble under Bayer leaching but this dissolution induces precipitation of sodium aluminosilicates, which apart from loss of further alumina results in decreasing efficiency of the process through scale formation. Detailed knowledge of the distribution of the different ore types and their mineralogical composition is necessary for efficient processing.  相似文献   

10.
Metapelitic hornfelses in the contact aureole of the Vedrette di Ries pluton exhibit the terminal decomposition of Zn-poor Fe-staurolite in a muscovite-quartz-free domain. The reaction takes place only within coarsegrained sillimanite that has replaced andalusite porphyroblasts during prograde metamorphism. The product is a gahnite-poor hercynitic spinel, which occurs as very small grains closely associated in space with resorbed staurolite. Microstructural observations indicate that bereynite growth postdates the pseudomorphs of sillimanite after andalusite. The textural evidence for a genetic relationship between hercynite and staurolite is confirmed by the identical Fe/Mg/Zn ratios of the two minerals, which causes the collinearity of hercynite, staurolite and Al2SiO5 in FeO–MgO–ZnO–Al2O3–SiO2–H2O composition space (FMZASH), and indicates hercynite formed by the reaction: Fe-staurolite = 3.85hercynite + 5.1sillimanite + 2.55quartz + 2H2O Staurolite inclusions within andalusite did not break down to form hercynite, indicating a kinetic control, as well as little overstepping of the equilibrium conditions, of the reaction forming hercynite. Assuming overstepping did not occur, modelling of the reaction with existing thermodynamic data in the simplified FASH system suggests that the terminal breakdown of staurolite to form hercynite occurred at 2.5–3.75kbar and 585–655°C.  相似文献   

11.
Raman spectra of the three Al2SiO5 polymorphs; andalusite, sillimanite and kyanite were recorded as a function of pressure at room temperature. All the Raman active bands which could be observed from the high-pressure cell showed a linear pressure dependence for each of the three Al2SiO5 polymorphs and no phase changes were observed over the pressure ranges used in this study. In andalusite and to a lesser extent in sillimanite, vibrations which could be correlated with internal motions of the SiO4 tetrahedra were generally well separated from the lattice modes and showed a greater pressure dependence than that observed for other modes. The distinct pressure dependence of the internal SiO4 modes is less evident in kyanite, probably due to the lack of continuous tetrahedral chains and the fact that the rigid SiO4 tetrahedra now form an integral part of the structural network. At ambient pressure, kyanite also exhibits two fluorescence bands at 705 and 706.2 nm which are due to small amounts of Cr3+ in the kyanite crystals. These fluorescence bands showed a non-linear frequency shift as pressure was increased.  相似文献   

12.
The Parnassos-Ghiona bauxite deposits of Greece are hosted within carbonate rocks and have been formed during different geological ages. The most economically important deposits occur in the B3 bauxite horizon, which is developed over long distance as a continuous layer of 1–10 m in thickness, within Cretaceous limestones. Due to intense tectonics, a significant (approximately 30 vol.%) bauxite ores along and near their contact with faults show a brittle deformation and change in the color from red to black-gray, in a distance of tens of meter. Commonly gray to whitish bauxites are aluminum-enriched (> 65 wt.% Al2O3) and iron depleted.  相似文献   

13.
The distribution and textural features of staurolite–Al2SiO5 mineral assemblages do not agree with predictions of current equilibrium phase diagrams. In contrast to abundant examples of Barrovian staurolite–kyanite–sillimanite sequences and Buchan‐type staurolite–andalusite–sillimanite sequences, there are few examples of staurolite–sillimanite sequences with neither kyanite nor andalusite anywhere in the sequence, despite the wide (~2.5 kbar) pressure interval in which they are predicted. Textural features of staurolite–kyanite or staurolite–andalusite mineral assemblages commonly imply no reaction relationship between the two minerals, at odds with the predicted first development (in a prograde sense) of kyanite or andalusite at the expense of staurolite in current phase diagrams. In a number of prograde sequences, the incoming of staurolite and either kyanite, in Barrovian sequences, or andalusite, in Buchan‐type sequences, is coincident or nearly so, rather than kyanite or andalusite developing upgrade of a significant staurolite zone as predicted. The width of zones of coexisting staurolite and either kyanite, in Barrovian sequences, or andalusite, in Buchan‐type sequences, is much wider than predicted in equilibrium phase diagrams, and staurolite commonly persists upgrade until its demise in the sillimanite zone. We argue that disequilibrium processes provide the best explanation for these mismatches. We suggest that kyanite (or andalusite) may develop independently and approximately contemporaneously with staurolite by metastable chlorite‐consuming reactions that occur at lower P–T conditions than the thermodynamically predicted staurolite‐to‐kyanite/andalusite reaction, a process that involves only modest overstepping (<15°C) of the stable chlorite‐to‐staurolite reaction and which is favoured, in the case of kyanite, by advantageous nucleation kinetics. If so, the pressure difference between Barrovian kyanite‐bearing sequences and Buchan andalusite‐bearing sequences could be ~1 kbar or less, in better agreement with the natural record. The unusual width of coexistence of staurolite and Al2SiO5 minerals, in particular kyanite and andalusite, can be accounted for by a combination of lack of thermodynamic driving force for conversion of staurolite to kyanite or andalusite, sluggish dissolution of staurolite, and possibly the absence of a fluid phase to catalyse reaction. This study represents an example of how kinetic controls on metamorphic mineral assemblage development have to be considered in regional as well as contact metamorphism.  相似文献   

14.
Nuwaifa Formation is a part of sequence stratigraphy that belongs to the Jurassic system exposed in the western desert of Iraq. The Jurassic system consists of Ubaid, Hussainiyat, Amij, Muhaiwir, and Najmah formations. Each formation is composed of basal clastic unit overlain by upper carbonate unit. Nuwaifa karst bauxite was developed in fossil karsts within the Ubaid Formation in areas where maximum intersection of fractures and faults exist. This bauxitization process affected the upper surface of the Ubaid limestone formation, which directly underlies the Nuwaifa bauxite Formation. Nuwaifa Formation represents karst-filling deposit that consists of a mixture of allochthonous (sandstone, claystone, and mudstone) and autochthonous lithofacies (bauxite kaolinite, kaolinitic bauxite, iron-rich bauxite, and flint clay). Most bauxite bodies occur within the autochthonous lithofacies and are lenticular in shape with maximum thickness ranges from few meters to 35 m and in some place up to 100 m. Petrographically, the bauxite deposit exhibits collomorphic-fluidal, pisolitic, oolitic, nodular, brecciated, and skeletal textures indicative of authigenic origin. Mineralogy boehmite and gibbsite are the only bauxite minerals; the former is dominant in the upper parts of the bauxite profiles, whereas the latter is dominant throughout the lower and middle part of the bauxite. Kaolinite, hematite, goethite, calcite, and anatase occur to a lesser extent. The study bauxites are mainly composed of Al2O3 (33–69.6 wt.%), SiO2 (8.4–42 wt.%), Fe2O3 (0.5–15.9 wt.%), and TiO2 (0.7–6.1 wt.%) with LOI ranging from 13.5 to 19.1 wt.%. Geochemical investigations indicate that the immobile elements like Al2O3, TiO2, Cr, Zr, and Ni were obviously enriched, while SiO2, Fe2O3, CaO, MgO, Zn, Co, Ba, Mn, Cu, and Sr were depleted during bauxitization process. The results of this study strongly suggest that the bauxite deposits of the Nuwaifa Formation are derived from the kaolinite of the Lower Hussainiyat Formation.  相似文献   

15.
This study examines the electron localization function (ELF) isosurfaces of the Al2SiO5 polymorphs kyanite, sillimanite, and andalusite to see how differences in coordination and geometry of the cations and anions affect the ELF isosurfaces. Examination of the ELF isosurfaces indicates that their shapes are dependent on the coordination and geometry of the oxygen atoms and are not sensitive to coordination of the surrounding cations. Of the 18 crystallographically distinct oxygen atoms in the Al2SiO5 polymorphs, 13 are bonded to two aluminum atoms and one silicon atom (Al2–O–Si) and are associated with two different ELF isosurface shapes. The shape of the ELF isosurface is dependent on the distance at which the oxygen atom lies from a plane defined by the three surrounding cations: at a distance greater than 0.2 Å the ELF can be defined as horseshoe-shaped and at a distance less then 0.2 Å it can be described as concave hemispherical. This feature is also seen in the ELF isosurfaces for the oxygens bonded to three aluminum atoms (Al3–O) where the isosurfaces can be defined as trigonally toroidal and uniaxially trigonally toroidal. The changes in the ELF isosurfaces for the three coordinated oxygens are also indicative of changes in hybridization. The ELF isosurface for the two-fold coordinated oxygen (Al–O–Si) has a large mushroom-shaped isosurface along the Al–O bond and a concave hemispherical isosurface along the Si–O. The four-fold coordinated oxygen (Al4–O) contains two concave hemispherical isosurfaces along the shorter Al–O bonds and a banana-shaped isosurface, which encompasses the longer Al–O bonds. In addition, this study shows the homeomorphic relationship between the ELF isosurfaces and electron density difference maps with respect to number and arrangement of domains.  相似文献   

16.
The Coniacian-Santonian high-phosphorus oolitic iron ore at Aswan area is one of the major iron ore deposits in Egypt. However, there are no reports on its geochemistry, which includes trace and rare earth elements evaluation. Texture, mineralogy and origin of phosphorus that represents the main impurity in these ore deposits have not been discussed in previous studies. In this investigation, iron ores from three localities were subjected to petrographic, mineralogical and geochemical analyses. The Aswan oolitic iron ores consist of uniform size ooids with snowball-like texture and tangentially arranged laminae of hematite and chamosite. The ores also possess detrital quartz, apatite and fine-grained ferruginous chamosite groundmass. In addition to Fe2O3, the studied iron ores show relatively high contents of SiO2 and Al2O3 due to the abundance of quartz and chamosite. P2O5 ranges from 0.3 to 3.4 wt.% showing strong positive correlation with CaO and suggesting the occurrence of P mainly as apatite. X-ray diffraction analysis confirmed the occurrence of this apatite as hydroxyapatite. Under the optical microscope and scanning electron microscope, hydroxyapatite occurred as massive and structureless grains of undefined outlines and variable size (5–150 μm) inside the ooids and/or in the ferruginous groundmass. Among trace elements, V, Ba, Sr, Co, Zr, Y, Ni, Zn, and Cu occurred in relatively high concentrations (62–240 ppm) in comparison to other trace elements. Most of these trace elements exhibit positive correlations with SiO2, Al2O3, and TiO2 suggesting their occurrence in the detrital fraction which includes the clay minerals. ΣREE ranges between 129.5 and 617 ppm with strong positive correlations with P2O5 indicating the occurrence of REE in the apatite. Chondrite-normalized REE patterns showed LREE enrichment over HREE ((La/Yb)N = 2.3–5.4) and negative Eu anomalies (Eu/Eu* = 0.75–0.89). The oolitic texture of the studied ores forms as direct precipitation of iron-rich minerals from sea water in open space near the sediment-water interface by accretion of FeO, SiO2, and Al2O3 around suspended solid particles such as quartz and parts of broken ooliths. The fairly uniform size of the ooids reflects sorting due to the current action. The geochemistry of major and trace elements in the ores reflects their hydrogenous origin. The oolitic iron ores of the Timsha Formation represent a transgressive phase of the Tethys into southern Egypt during the Coniacian-Santonian between the non-marine Turonian Abu Agag and Santonian-Campanian Um Barmil formations. The abundance of detrital quartz, positive correlations between trace elements and TiO2 and Al2O3, and the abundance mudstone intervals within the iron ores supports the detrital source of Fe. This prediction is due to the weathering of adjacent land masses from Cambrian to late Cretaceous. The texture of the apatite and the REE patterns, which occurs entirely in the apatite, exhibits a pattern similar to those in the granite, thus suggesting a detrital origin of the hydroxyapatite that was probably derived from the Precambrian igneous rocks. Determining the mode of occurrence and grain size of hydroxyapatite assists in the maximum utilization of both physical and biological separation of apatite from the Aswan iron ores, and hence encourages the use of these ores as raw materials in the iron making industry.  相似文献   

17.
矽线石成分分析标准物质研制   总被引:1,自引:0,他引:1  
随着矽线石应用领域的逐步拓展,英国、南非和日本等国家已研制了4种矽线石标准物质,而我国仅有一种矽线石国家二级标准物质,无论从组分的浓度梯度范围还是定值指标等方面,均难以满足我国研究需求。本文针对我国矽线石的分布情况,在黑龙江林口县和河南内乡县采集典型矽线石原矿2种,在黑龙江林口县采集矽线石精矿1种,按照国家一级标准物质研制标准和规范要求,研制了3种矽线石成分分析国家一级标准物质(批准编号为GBW07843、GBW07844、GBW07845)。均匀性检验结果表明,除个别指标(Y-1的TFe_2O_3、Cu和J-1的Mn O等)外,3种标准物质检测指标的F值均小于临界值F0.05(24,25)=1.96,组内和组间无明显差异;Y-1的TFe_2O_3、Cu和J-1的MnO等指标的组内和组间差异主要来源于分析方法误差,由此表明此批标准物质均匀性良好。在14个月考察期内,3种标准物质计算得到的拟合直线斜率b1均不显著,表明3种标准物质有较好的稳定性。经我国10家实验室使用多种分析方法对矿石中的主量元素、痕量元素和矽线石含量(硅铝,SAl_2O_3)等共计39种组分联合定值,各组分的相对扩展不确定度处于0.60%~29.9%区间,3种矽线石标准物质主量成分Al_2O_3的含量分别为25.85%、28.16%和55.06%。该系列矽线石标准物质可满足地质、环境等研究领域相关样品分析质量监控工作的需求。  相似文献   

18.
The Águas Claras and Pico Mines are two world-class iron-ore mines hosted within the Lower- Proterozoic banded iron-formations (locally known as itabirites) of the Minas Supergroup located in the Quadrilátero Ferrífero district, Minas Gerais, Brazil. The Águas Claras orebody consists of a 2,500-m-long roughly tabular-shaped lens hosted within the dolomitic itabirite of the Cauê Formation. Dolomitic itabirite is the protore of the soft high-grade iron ore, which is the main ore type of the Águas Claras orebody, representing about 85% of the 284 Mt mined since 1973, with the remaining 15% comprising hard high-grade ore. Hematite is the main constituent of the iron ores. It occurs as martite, granular hematite and locally as specularite. Magnetite appears subordinately as relicts within martite and hematite crystals. Gangue minerals are very rare. These consist of dolomite, chlorite, talc, and apatite, and are especially common in contact with the protore. This virtual absence of gangue minerals is reflected in the chemistry of ores that are characterized by very high Fe contents (an average of 68.2% Fe).The Pico orebody is a continuous ~3,000-m-long body of a lenticular shape hosted within siliceous itabirite, which is the protore of the soft high- and low-grade ores at the Pico Mine. The soft high-grade ores, together with the low-grade ores, called iron-rich itabirite, are the main types of ore, and respectively represent approximately 51 and 29% of the reserves. The remaining 20% consists of hard high-grade ore. The iron oxide mineralogy is the same as that of the Águas Claras Mine, but in different proportions. Gangue minerals are very rare in the high-grade ores, but are slightly more common in the iron-rich itabirite. Quartz is the dominant gangue mineral, and is found with minor quantities of chlorite. The chemistry of the high-grade ores is characterized by high Fe contents (an average of 67.0%) and low P, Al2O3, and SiO2, which are concentrated in the fines. Iron-rich itabirites average 58.6% Fe and 13.5% SiO2.The genesis of the soft high-grade ores and iron-rich itabirites is related to supergene processes. Leaching of the gangue minerals by groundwater promoted the residual iron enrichment of the itabirites. This process was favored by the tropical climate and topographic situation. The original composition of the itabirites and the presence of structures controlling the circulation of the groundwater have influenced the degree of iron enrichment. The hard high-grade ores are of a hypogene origin. Their genesis is attributed to hydrothermal solutions that leached the gangue minerals and filled the spaces with hematite. This process remains a source of debate and is not yet fully understood.Editorial handling: S.G. Hagemann  相似文献   

19.
The body of hydroxylellestadite metasomatic rock penetrated by a borehole drilled at the Gumeshevsk deposit at depths of 530–534 m includes a thin interval of younger lower temperature tobermorite-plombierite metasomatic rock with subordinate amounts of Ca-Si gel, tacherenite, cubic lime, and thaumasite. Hydroxylellestadite has never before been found in calc skarns. The hydroxylellestadite metasomatic rock is cut by gypsum and fukalite veinlets, and the tobermorite-plombierite metasomatic rock is intersected by thaumasite veinlets. The pristine rock of the metasomatics was marble, and the metasomatic rock replaced andradite-bearing wollastonite skarn (with wollastonite replaced by foshagite). The ore minerals (chalcopyrite, valleriite, sphalerite, and others) were formed after the hydroxylellestadite metasomatite but most probably before the tobermorite-plombierite metasomatic rock and the veinlets of calcic minerals. The metasomatic rock was produced at significant variations in the oxygen, sulfur, and carbon dioxide fugacities. The composition of the hydroxylellestadite is, according to its microprobe analysis, as follows (wt %): SiO2 17.10, TiO2 0.01, Al2O3 0.02, FeO 0.20, MnO 0.00, MgO 0.04, CaO 55.40, Na2O 0.14, K2O 0.09, P2O5 0.12, CO2 1.90 (chemical analysis), SO3 21.60, F 0.16, Cl 0.14, total 96.92. The plombierite (SiO2 43.8–44.1 wt %, CaO 30.5–31.1 wt %) in the metasomatic rock notably differs from rare plombierite (SiO2 48.18 wt %, CaO 39.19 wt %) contained in the veinlets of thaumasite (SiO2 12.70 wt %, CaO 30.69 wt %, SO3 17.78 wt %).  相似文献   

20.
 One of the main uncertainties in mineralogical models of the Earth's lower mantle is the nature of the aluminous mineral: it is not clear whether Al forms its own minerals or is mainly contained in (Mg,Fe)SiO3-perovskite. This question is very important, since it is known that if Al were mainly hosted by perovskite, it would radically change Fe/Mg-partitioning and phase equilibria between mantle minerals, and also alter many physical and chemical properties of perovskite, which is currently believed to comprise ca. 70% of the volume of the lower mantle. This, in turn, would require us to reconsider many of our geochemical and geophysical models for the lower mantle. This work considers the possibility of a V3O5-type structured modification of Al2SiO5 to be the main host of Al in the lower mantle, as proposed by previous workers. We report ab initio calculations, based on density functional theory within the generalised gradient approximation (GGA) with plane wave basis set and nonlocal pseudopotentials. We consider polymorphs of Al2SiO5 (kyanite, andalusite, sillimanite, and hypothetical V3O5-like and pseudobrookite-like phases), SiO2 (stishovite, quartz) and Al2O3 (corundum). Computational conditions (e.g., plane-wave energy cutoff, Brillouin zone sampling) were carefully chosen in order to reproduce small energy changes associated with phase transitions between the Al2SiO5 polymorphs. Good agreement of crystal structures, bulk moduli, atomisation energies and the phase diagram of Al2SiO5 with experimental data was found. Strong disagreement between the calculated lattice parameters and density of V3O5-like phase of Al2SiO5 and experimental values, assigned to it by previous workers, suggests that a V3O5-structured phase of Al2SiO5 was never observed experimentally. In addition, we found that the most stable high-pressure assembly in Al2SiO5 system is corundum+stishovite, and the value of the transition pressure at T = O K (113 kbar) is in excellent agreement with experimental estimates (95–150 kbar). We explain the instability of octahedrally coordinated silicates of Al to decomposition on the basis of Pauling's second rule. Received: 18 May 1999 / Accepted: 5 November 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号