首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In order to understand the structure and evolution of the Mediterranean Ridge accretionary complex, it is necessary to understand the structure and history of its foreland. The Ionian Abyssal Plain is one of the varying types of foreland. The state of knowledge for that is presented. Its contour and detailed relief are described for the first time. Based on published and hitherto unpublished seismic data, information on the thickness of the Plio-Quaternary and on the Messinian evaporites are presented. Of particular interest are data concerning the pre-Messinian reflectors. They indicate a pattern of tilted blocks and horst-like features created in pre-Messinian time by tensional tectonics. Varying subsidence continued, however, during Messinian time and controlled the thickness of evaporites. At some places (e.g. Victor Hensen Seahill) vertical tectonics seem to be still active. The main tectonic structures of the Ionian Abyssal Plain are not related to the process of the present accretion and subduction at the Africa/Eurasia plate boundary but are pre-existing and should influence the internal structure of the Mediterranean Ridge which is still growing at the expense of the foreland. As a consequence of our structural evidence, we favour the following interpretation: the Ionian Abyssal Plain is not a remainder of the Jurassic Tethyan ocean but originated by extensive attenuation of continental crust.  相似文献   

2.
Mechanisms of mud extrusion on the Mediterranean Ridge Accretionary Complex   总被引:1,自引:0,他引:1  
 Drilling two mud domes on the Mediterranean Ridge during ODP Leg 160 has demonstrated that the eruption of mud breccia began at least 1.5 Ma ago. An evolution through extrusive building of a cone, followed by successive eruptions of clast-bearing mud debris flows and subsequent subsidence can be deduced for both domes. Results from permeability and shear strength tests, grain size analyses, sedimentary textures, and clast provenance provide clues concerning the mechanism of mud volcanism. The collision of Africa with Eurasia resulted in backthrusting of the evaporite-dominated accretionary wedge against a rigid backstop. This allowed egress of overpressured fluid-rich mud of presumed Messinian age from the décollement, although many of the clasts may have originated from the overlying accretionary wedge.  相似文献   

3.
The Mediterranean Ridge is an arcuate ridge of deformed sediment caught up in the convergent plate margin between the African plate and the Aegean. An intensive campaign of SeaMARC I and SeaBeam surveys followed by piston coring has been conducted along the contact between undeformed turbidites of the Sirte Abyssal Plain and folded and faulted sediments of the Mediterranean Ridge. Along the outer edge of the Ridge, surficial sediments have been deformed into sinusoidal ridges and troughs (wavelengths 0.5–2 km, amplitude 20–150 m), which we interpret as folds. In plan view, the ridge and the trough fabric parallels the NW-SE trending regional contours, suggesting that the folds formed in response to compression orthogonal to the Mediterranean Ridge. The outermost ridge is shedding a debris apron out onto the abyssal plain, implying that uplift and deformation are ongoing. We show that the geometry of the outermost folds can be produced by elastic bending of a packet of 5–10 relatively strong layers, each 10–20 m thick, interbedded between weaker layers; we equate the strong layers with gypsum beds in the Messinian upper evaporites. Folding the seafloor from a flat layer into the observed ridge and trough topography would shorten the layer by less than 2%. Two percent shortening (equals two percent thickening) is insufficient to create the observed relief of the Mediterranean Ridge even if the entire sediment column down to basement were involved; we infer that additional shortening/thickening is accommodated by thrust faulting above a decollement at the top of the Messinian salt layer. At distances > 15 km from the deformation front and more than 500 m from the abyssal plain, sharp-edged, fine-grained side-scan lineations with very little vertical relief cut across the kilometer-scale ridge and trough topography. These fine-grained lineations fall in two groups trending N/S to NNE/SSW and ~ENE. We interpret these lineaments as traces of conjugate strike-slip faults formed in the same compressional regime which formed the NW/SE trending folds. The onset of strike-slip faulting may coincide with the cessation of imbricate thrust fan development above the initial salt-controlled decollement surface. The following characteristics of the Mediterranean Ridge are attributed to the presence of evaporites in the incoming sedimentary section: (1) initial deformation by folding rather than thrust faulting; (2) narrow taper; (3) rapid rate of outward growth; (4) karstification.  相似文献   

4.
Facies analysis was carried out on 21 selected cores from the Bannock area in order to investigate the relationships between sedimentation and tectonism. Bannock Basin is a large, > 3500 m (uncorrected) deep subcircular depression near the deformation front of the Mediterranean Ridge facing the Sirte Abyssal Plain. The basin is divided into several sub-basins aligned along a rim-syncline surrounding a central elevated area (salt dome?). High-density brines and anoxic sediments occupy the deepest part of the depressions.

The facies distribution is controlled by the bottom configuration in that pelagic facies typically occur on plateaus and domes, debris-flow deposits in base-of-slope settings, and turbidites in basinal settings. The facies distribution may therefore be used to reconstruct the evolution of the various parts of the rim-syncline.

Erosional gaps may be related to tectonism or may be features created by the passage of major turbiditic events.

The results of our study of the facies associations, and of the rates of sediment accumulation, indicate that the collapse of the eastern part of the rim-syncline pre-dates the collapse of the western part. The western basins are deeper and larger than the eastern ones and (unlike the latter) are aligned at the foot of a strike-slip fault with a vertical offset of at least 700 m.  相似文献   


5.
 The Mediterranean Ridge (eastern Mediterranean) is a large accretionary complex that results from the Africa–Europe–Aegean plates convergence. Multichannel seismic data, combined with previous results showed that the ridge comprises distinct major structural domains facing different forelands: (1) An outer domain is bounded to the south by the ridge toe. Underneath the Ionian and Levantine outer Ridge, Messinian evaporites act as a major decollement level. (2) An axial, or crestal, ridge domain with mud diapiric and mud volcano activity is bounded to the north by backthrust. (3) A less tectonized inner Ridge domain, possibly a series of former forearc basins, abuts the Hellenic Trench. The ridge displays strong along-strike variations. These variations can be interpreted as consequences of an ongoing collision against the Libyan continental promontory.  相似文献   

6.
A brief review of the geological knowledge on the anoxic basins of the eastern Mediterranean is presented. Anoxic basins have been discovered in two different geological settings in the eastern Mediterranean. Bannock Basin belongs to the compressional style of the Mediterranean Ridge, and Tyro and Poseidon Basins belong to the transcurrent tectonic style of the Strabo Trench. The origin of the basins is subsurface salt dissolution triggered by tectonic deformation of the sediments on the Mediterranean Ridge, and tectonic subsidence (pull-apart mechanism) in the Strabo Trench. The onset of a deep-sea brine lake is always related to the outcrop of Messinian salts on the side-walls of the basin. The rate of basin subsidence controls the evolution of the brine lakes, which can also be completely diluted by bottom water circulation.  相似文献   

7.
Based on a new quantitative analysis of sidescan sonar data combined with coring, we propose a revised model for the origin for Mediterranean Ridge mud volcanism. Image analysis techniques are used to produce a synthetic and objective map of recent mud flows covering a 640 × 700 km2 area, which represents more than half of the entire Mediterranean Ridge mud belt. We identify 215 mud flows, extruded during the last 37,000–60,000 years. This time period corresponds to the limit of penetration of the sonar, that we evaluate through geoacoustic modeling of the backscattered signal returned by the mud breccia-hemipelagites contact, and calibrate by coring. We show that during this period, at least 96% of the mud volume has been extruded at the Mediterranean Ridge-Hellenic backstop contact, the remaining being scattered over the prism. We suggest that the source is a Messinian (5–6 Ma) mud reservoir that remained close to the backstop contact, at variance with the classical transport-through-the-wedge model. A revised mud budget indicates that steady-state input is not needed. We propose that the source layer was deposited in deep and narrow pre-Messinian basins, sealed by Messinian evaporites, and finally inverted in post-Messinian times. Onset of motion of the Anatolia-Aegea microplate in the Pliocene resulted in change from slow to fast convergence, triggering shear partitioning at the edges of the backstop and basin inversion. Mud volcanism initiation is probably coeval with the latest events of this kinematic re-organization, i.e. opening of the Corinth Gulf and activation of the Kephalonia fault around 1–2 Ma.  相似文献   

8.
Seawater and brine samples collected along vertical profiles above the Bannock and Tyro Basins (eastern Mediterranean), and gypsum samples collected by dredging and coring the anoxic section of the Bannock Basin, have been studied for their δ18O values. The following conclusions may be drawn from these data: (1) The water of the deep brines is isotopically slightly different from modern Mediterranean bottom water and might be a ‘fossil water’ possibly formed during a recent, climatically cooler stage or when the evaporation was slightly higher than nowadays. (2) The similarity between the δ18O values of the brine samples from the Bannock and Tyro Basins supports the possibility that the ages of the two basins are very close to each other. (3) Gypsum crystals on the bottom of the Bannock Basin are probably being formed by the dissolution and reprecipitation of sub-bottom (or outcropping) Messinian evaporites. This hypothesis is supported by the oxygen isotopic values exhibited by the gypsum crystallization water and by the oxygen and sulphur isotopic composition of gypsum. (4) The shells of pelagic organisms included in gypsum are probably very recent, but not contemporary, and may be referred to cooler environmental conditions.  相似文献   

9.
The Gulf of Cadiz lies astride the complex plate boundary between Africa and Eurasia west of the Betic-Rif mountain belt. We report on the results of recent bathymetric swathmapping and multi-channel seismic surveys carried out here. The seafloor is marked by contrasting morphological provinces, spanning the SW Iberian and NW Moroccan continental margins, abyssal plains and an elongate, arcuate, accretionary wedge. A wide variety of tectonic and gravitational processes appear to have shaped these structures. Active compressional deformation of the wedge is suggested by folding and thrusting of the frontal sedimentary layers as well as basal duplexing in deeper internal units. There is evidence for simultaneous gravitational spreading occurring upslope. The very shallow mean surface and basal slopes of the accretionary wedge (1° each) indicate a very weak decollement layer, geometrically similar to the Mediterranean Ridge accretionary complex. Locally steep slopes (up to 10°) indicate strongly focused, active deformation and potential gravitational instabilities. The unusual surface morphology of the upper accretionary wedge includes “raft-tectonics” type fissures and abundant sub-circular depressions. Dissolution and/or diapiric processes are proposed to be involved in the formation of these depressions.  相似文献   

10.
The Eastern Mediterranean Sea is a remnant of a deep Mesozoic oceanic basin, now almost totally consumed as a result of long-term plate convergence between Eurasia and Africa. The present-day surface morphology of the Eastern Mediterranean relates both to the early history of formation of the deep basins and the recent geodynamic interactions between interfering microplates. Among the most conspicuous morphologic features of the basin is an arc-shape, elongated and wide, bathymetric swell bisecting the entire basin from the Ionian to Levantine areas, known as the Mediterranean Ridge. During the last decade this tectono-sedimentary accretionary prism, which results from the Hellenic subduction, has been intensively surveyed by swath mapping, multichannel seismic profiling and deep dives. We present here, and briefly discuss, the main morphological characteristics of this feature as derived from swath bathymetric data that considerably help to better assess the lateral and north–south morphostructural variability of the Mediterranean Ridge. This study reveals that the characteristics and morphostructural variability of the Mediterranean Ridge are related to: (1) a specific incipient collision geodynamic setting south of Crete, where the African and Aegean continental margins are nearly in contact, (2) a unique regional kinematics, controlled by frontal convergence south of Crete (central Mediterranean Ridge) and oblique subduction with opposite sense of shear for the western (Ionian) and eastern (Levantine) domains of the Mediterranean Ridge, that explain the lateral variations of deformation and (3) particularities of its sedimentary cover, which includes massive salt layers within the outer Mediterranean Ridge and local salt deposits within the inner domains, that control the north–south morphostructural variability of the sedimentary wedge.  相似文献   

11.
Mud Volcanoes and Dome-Like Structures at the Eastern Mediterranean Ridge   总被引:2,自引:0,他引:2  
Çifçi  G.  Limonov  A.  Dimitrov  L.  Gainanov  V. 《Marine Geophysical Researches》1997,19(5):421-438
Marine Geophysical Research - The Mediterranean Ridge is interpreted as a large accretionary complex, which originated due to the northern subduction of the African lithosphere below the Eurasian...  相似文献   

12.
Abstract

The continental margin of northern Sinai and Israel consists of a seaward‐inclined wedge, made up predominantly of foreset beds of mainly Nile‐derived clastics. They overlie seaward‐thickening Messinian (Upper Miocene) evaporites. Detailed bathymetric and seismic surveys reveal large areas of sea floor disturbances off northern Sinai and in several places off Israel, expressed by a complex block topography of the outer continental shelf and slope. These disturbed areas appear to be gigantic, deep‐seated, compound rotational slumps over down‐slope flowing evaporites. Many of the disturbances are above landward lobes of evaporites which fill buried Late Miocene erosion channels of the pre‐Messinian retreat of the sea. Flowage of the evaporites was presumably caused by excessive pore pressures, generated by the Pliocene‐Quaternary overload, in confined layers of the elastics interbedded within the evaporites.  相似文献   

13.
Seismic studies offshore southern Chile have revealed the presence of a 70–80 km wide accretionary prism seaward of the Golfo de Penas (GPAP), where the Chile Ridge collided with the South American Plate between 3 and 6 Ma ago. Using the paleo-positions of the Chile Ridge relative to South America, the maximum age of this accretionary prism, which continues to be formed in the aftermath of the ridge–continent collision, has been estimated. Building on these earlier findings, this study presents a mass balance analysis based on a 2D model of accretionary wedge and trench geometry. This model can explain the relative importance of sedimentary fluxes and deformation front migration for the wedge restoration. The proposed model can also serve to evaluate the effects of fluctuations in (1) terrigenous sediment flux related to climate change, and (2) subduction channel thickness on the accretionary prism growth. Notably, the data reveal that the key parameters controlling the rebuilding of the GPAP are the terrigenous sediment flux (75 km2/106 years), the relative advance of the deformation front (39.6 km/106 years), and the thickness of the subduction channel (0.1 km). Moreover, the range of possible solutions for the observed size of the accretionary prism is narrowed by fitting the present-day thickness of sediments at the deformation front. Finally, climate-induced variations in sedimentary fluxes on the margin can affect the rate of growth of the accretionary prism during short periods of time (<100,000 years).  相似文献   

14.
Two distinct series of slumps deform the upper part of the sedimentary sequence along the continental margin of the Levant. One series is found along the base of the continental slope, where it overlies the disrupted eastern edge of the Messinian evaporites. The second series of slumps transects the continental margin from the shelf break to the Levant Basin. It seemed that the two series were triggered by two unrelated, though contemporaneous, processes. The shore-parallel slumps were initiated by basinwards flow of the Messinian salt, that carried along the overlying Plio-Quaternary sediments. Seawater that percolated along the detachment faults dissolved the underlying salt to form distinctly disrupted structures. The slope-normal slumps are located on top of large canyons that cut into the pre-Messinian sedimentary rocks. A layer of salt is found in the canyons, and the Plio-Quaternary sediments were deposited on that layer. The slumps are bounded by large, NW-trending faults where post-Messinian faulted offset was measured. We presume that the flow of the salt in the canyons also drives the slope-normal slumps. Thus thin-skinned halokynetic processes generated the composite post-Tortonian structural patterns of the Levant margin. The Phoenician Structures are a prime example of the collapse of a distal continental margin due to the dissolution of a massive salt layer.  相似文献   

15.
Based on bathymetric data and multichannel seismic data, the Manila subduction system is divided into three segments, the North Luzon segment, the seamount chain segment and the West Luzon segment starts in Southwest Taiwan and runs as far as Mindoro. The volume variations of the accretionary prism, the forearc slope angle, taper angle variations support the segmentation of the Manila subduction system. The accretionary prism is composed of the outer wedge and the inner wedge separated by the slope break. The backstop structure and a 0.5–1 km thick subduction channel are interpreted in the seismic Line 973 located in the northeastern South China Sea. The clear décollement horizon reveals the oceanic sediment has been subducted beneath the accretionary prism. A number of splay faults occur in the active outer wedge. Taper angles vary from 8.0° ± 1° in the North Luzon segment, 9.9° ± 1° in the seamount segment to 11° ± 1° in the West Luzon segment. Based on variations between the taper angle and orthogonal convergence rates in the world continental margins and comparison between our results and the global compilation, different segments of the Manila subduction system fit well the global pattern. It suggests that subduction accretion dominates the north Luzon and seamount chain segment, but the steep slope indicates in the West Luzon segment and implies that tectonic erosion could dominate the West Luzon segment.  相似文献   

16.
Mud volcanoes, mud cones, and mud ridges have been identified on the inner portion of the crestal area, and possibly on the inner escarpment, of the Mediterranean Ridge accretionary complex. Four areas containing one or more mud diapirs have been investigated through bathymetric profiling, single channel seismic reflection profiling, heat flow measurements, and coring. A sequence of events is identified in the evolution of the mud diapirs: initially the expulsion on the seafloor of gasrich mud produces a seafloor depression outlined in the seismic record by downward dip of the host sediment reflectors towards the mud conduit; subsequent eruptions of fluid mud may create a flat topped mud volcano with step-like profile; finally, the intrusion of viscous mud produces a mud cone.The origin of the diapirs is deep within the Mediterranean Ridge. Although a minimum depth of about 400 m below the seafloor has been computed from the hydrostatic balance between the diapiric sediments and the host sediments, a maximum depth, suggested by geometric considerations, ranges between 5.3 and 7 km. The presence of thermogenic gas in the diapiric sediments suggests a better constrained origin depth of at least 2.2 km.The heat flow measured within the Olimpi mud diapir field and along a transect orthogonal to the diapiric field is low, ranging between 16 ± 5 and 41 ± 6 mW m–2. Due to the presence of gas, the thermal conductivity of the diapiric sediments is lower than that of the host hemipelagic oozes (0.6–0.9 and 1.0–1.15 W m–1 K–1 respectively).We consider the distribution of mud diapirs to be controlled by the presence of tectonic features such as reverse faults or thrusts (inner escarpment) that develop where the thickness of the Late Miocene evaporites appears to be minimum. An upward migration through time of the position of the décollement within the stratigraphic column from the Upper Oligocene (diapiric sediments) to the Upper Miocene (present position) is identified.  相似文献   

17.
We run a series of analogue models to study the effect of stratigraphic heterogeneities of an evaporite formation on thin-skinned deformation of the Southeastern Pyrenean Basin (SPB; NE Spain). This basin is characterized by the existence of evaporites, deposited during the Early-Middle Eocene with lateral variations in thickness and lithological composition. These evaporites are distributed in three lithostratigraphic units, known as Serrat Evaporites, Vallfogona and Beuda Gypsum formations and acted as décollement levels, during compressional deformation in the Lutetian. In addition to analogue modeling, we have used field data, detailed geological mapping and key cross-sections supported by seismic and well data to build a new structural interpretation for the SPB. In this interpretation, it is recognized that the basal and upper parts of the Serrat Evaporites acted as the main décollement levels of the so-called Cadí thrust sheet and Serrat unit. A balanced restoration of the basin indicates that thrust faults nucleated at the stratigraphic transition of the Serrat Evaporites (zone with lateral variations of thickness and lithological composition), characterized by a wedge of anhydrite and shale. The analogue models were setup based on information extracted from cross-sections, built in two sectors with different lithology and stratigraphy of the evaporites, and the restored section of the SPB. In these models, deformation preferentially concentrated in areas where thickness change, defined by wedges of the ductile materials, was inbuilt. Based on the structural interpretation and model results, a kinematic evolution of the SPB is proposed. The kinematic model is characterized by the generation of out-of-sequence structures developed due to lateral stratigraphic variations of the Serrat Evaporites. The present work shows a good example of the role of stratigraphic heterogeneities of an evaporite formation which acts as décollement level on structural deformation in a fold-thrust belt. The results of this work have implications for hydrocarbon exploration and are relevant for studying structural geometry and mechanics in shortened evaporite basins.  相似文献   

18.
The Gagua Ridge, carried by the Philippine Sea Plate, is subducting obliquely beneath the southernmost Ryukyu Margin. Bathymetric swath-mapping, performed during the ACT survey (Active Collision in Taiwan), indicates that, due to the high obliquity of plate convergence, slip partitioning occurs within the Ryukyu accretionary wedge. A transcurrent fault, trending N95° E, is observed at the rear of the accretionary wedge. Evidence of right lateral motion along this shear zone, called the Yaeyama Fault, suggests that it accommodates part of the lateral component of the oblique convergence. The subduction of the ridge disturbs this tectonic setting and significantly deforms the Ryukyu Margin. The ridge strongly indents the front of the accretionary wedge and uplifts part of the forearc basin. In the frontal part of the margin, directly in the axis of the ridge, localized transpressive and transtensional structures can be observed superimposed on the uplifted accretionary complex. As shown by sandbox experiments, these N330° E to N30° E trending fractures result from the increasing compressional stress induced by the subduction of the ridge. Analog experiments have also shown that the reentrant associated with oblique ridge subduction exhibits a specific shape that can be correlated with the relative plate motion azimuth.These data, together with the study of the margin deformation, the uplift of the forearc basin and geodetic data, show that the subduction of the Gagua Ridge beneath the accretionary wedge occurs along an azimuth which is about 20° less oblique than the convergence between the PSP and the Ryukyu Arc. Taking into account the opening of the Okinawa backarc basin and partitioning at the rear of the accretionary wedge, convergence between the ridge and the overriding accretionary wedge appears to be close to N345° E and thus, occurs at a rate close to 9 cm yr–1. As a result, we estimate that a motion of 3.7 cm yr–1±0.7 cm should be absorbed along the transcurrent fault. Based on these assumptions, the plate tectonic reconstruction reveals that the subducted segment of the Gagua Ridge, associated with the observable margin deformations, could have started subducting less than 1 m.y. ago.  相似文献   

19.
A detailed reconstruction of the morphology and recent tectonic activity of the Northern Ionian basin is provided on the basis of newly acquired high-resolution swath bathymetric and single and multichannel seismic profiles. The tectonic domains in this area are the Calabrian accretionary wedge and the Apulian foreland. The contact between the two domains, oriented NW–SE, morphologically coincides with a sea-bottom erosional channel (Taranto canyon) characterized on both sides by mass movements induced by slope instability. Along the accretionary wedge/Apulian foreland boundary three different morphological sectors have been recognized whose main characters are represented by a southward stepped increase of erosional canyon activity resulting in a pronounced slope acclivity and a superficial sediment instability. By means of seismic data we correlate the morphology of the sea-bottom to different contractional and flexural processes of the accretionary wedge/foreland system. The interaction between the different rheological domains in the subduction/collision processes could have also induced horizontal stress represented by areas of tectonic release. In an area like this, where very few detailed surveys have been carried out, this study represents the first attempt in correlating the recent tectonic activity to the morphological features and in locating possible slope instability that has to be evaluated for the positioning of offshore infrastructures.  相似文献   

20.
The External Calabrian Arc is located off the convex side of the Calabro-Peloritanian Arc in the northern Ionian Sea. A systematic reflection seismic survey indicates that it is made of different structural elements whose characters seem consistent with an active accretionary margin. The main structures are the Crotone-Spartivento slope (comparable to an inner trench slope) and the intermediate depressions (comparable to a trench area). Internal to these elements, the Crotone-Spartivento basin may represent a fore-arc basin. This partly outcrops in Calabria and its structure suggests that the accretionary margin developed at least since middle-upper Miocene.Subduction processes do not affect a true oceanic crust, because of the great thickness of sediments covering the whole eastern Mediterranean. Hence some peculiar features occur in the system. as the cobblestone topography, or are lacking, as a typical and continuous trench zone.In the areas with cobblestone topography we distinguish a Calabrian Ridge sensu stricto from a Calabrian Ridge sensu lato. The former is a N-S trending swell, external to the supposed trench zone, interpreted as a sedimentary outer-arc ridge produced by rather surficial tectonic accumulation of sediments further chaoticized by gravitative mechanisms. The Ridge s.l. is a very wide area with low relief and little or no seismic penetration. Tectonization seems gentler than in the Ridge s.s. and structural axes seem to possess different orientations. These areas are interpreted as due to a widespread surficial chaoticization above presumed decollement layers occurring within the sedimentary column of the Ionian bathyal plain.The pattern of deformations of the Calabrian Ridge seems consistent with the Calabro-Peloritanian Arc actively overriding the eastern Mediterranean, with a resultant direction of movement essentially towards the East.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号