首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
G. Ekmann 《Solar physics》1974,38(1):73-75
Based on pinhole photometer observations in 4–6 wavelength regions we have searched for a connection between the intensities of the umbra and the penumbra of sunspots. For the 1.67 μm wavelength region it is apparent that spots with dark umbrae also have dark penumbrae. In the other wavelength regions similar relations are found. The darkness of the spot is probably connected with the degree of complexity of the spot.  相似文献   

2.
Using LTE calculations of the structure of T Tauri stellar atmospheres heated by radiation from an accretion shock (Dodin and Lamzin 2012), we have calculated the spectrum of the hot spot emerging on the stellar surface by taking into account non-LTE effects for He I, He II, Ca I, and Ca II. Assuming the pre-shock gas density N 0 and velocity V 0 to be the same at all points of the accretion stream cross section, we have calculated the spectrum of the star+circular spot system at various N 0, V 0, and parameters characterizing the star and the spot. Using nine stars as an example, we show that the theoretical optical spectra reproduce well the observed veiling of photospheric absorption lines as well as the profiles and intensities of the so-called narrow components of He II and Ca I emission lines with an appropriate choice of parameters. The accreted gas density in all of the investigated stars except DK Tau has been found to be N 0 > 1012 cm?3. We have managed to choose the parameters for eight stars at a calcium abundance in the accreted gas ξ Ca equal to the solar one, but we have been able to achieve agreement between the calculations and observations for TW Hya only by assuming ξ Ca to be approximately a factor of 3 lower than the solar one. The estimated parameters do not depend on interstellar extinction, because they have been determined from the spectra normalized to the continuum level. The calculated intensity of Ca II lines has turned out to be lower than the observed one, but this contradiction can be eliminated by assuming that, in addition to the accreted gas with a high density N 0, a more rarefied gas also falls onto the star. The theoretical equivalent widths and relative intensities of the subordinate He I lines disagree significantly with the observations. This is apparently because non-LTE effects should be taken into account when calculating the structure of the upper layers of the hot spot, the accuracy of the cross sections for collisional processes from upper levels is insufficient, and the spot inhomogeneity should probably be taken into account.  相似文献   

3.
The abundance of Fe relative to H is obtained by using resonantly scattered intensities of λ 284 of Fe XV that were measured with OSO-7 and resonantly scattered intensities of Lα of H I that were obtained by Gabriel (1971). Because of possible differences in electron densities along lines of sight for these non-simultaneous measurements and in relative calibrations, results are rather uncertain but still indicate that the average Fe abundance relative to H in the corona appears to be at least as large as a recent photospheric abundance. Some limitations in using this method for obtaining abundances are examined for future experiments with simultaneous measurements and well calibrated detectors.  相似文献   

4.
5.
The method of determination of heavy element abundances in H II regions (the strong-line method) uses the assumption that some combinations of strong emission line intensities in spectra of H II regions can serve as indicators of metallicities and electron temperatures in nebulosities. Three sets of strong lines are considered, namely, A (R 3, R 2, N 2, S 2 lines), B (R 3, R 2, N 2 lines), and C (R 3, N 2, S 2 lines). Strong line intensities are normalized to the H ?? intensity). We searched for an unambiguous relationship between strong emission line intensities of these line sets in spectra of H II regions and their compositions. The extensive model grid for H II regions is computed. Chemical compositions of nebulosities and intensities of A and C lines are shown to be related unambiguously. For the B line set, 5% of model H II regions do not have any unambiguous relationship, namely, the models with appreciably different oxygen and nitrogen abundances in H II regions can have similar intensities of the B set lines. The versions of strong-line method (calibrations) using the A and C lines are more reliable than those based on the B lines.  相似文献   

6.
J.S. Morgan 《Icarus》1985,62(3):389-414
Spectrographic data on the Io torus from 15 nights of observations spread over a 4-month period in 1981 are presented here. The [SII] λλ6716, 6731; [SII] λλ4069, 4076; [OII] λλ3726, 3729; and [SIII] λ3722 lines were simultaneously measured on each spectrogram. An east-west asymmetry was observed in the optical emissions, showing larger western intensities and a more diffuse and radially extensive nebula to the east. Two configurations of [SII] longitudinal asymmetry that were stable over at least 4 days were observed. The magnetic longitudes of ~ 180 and 300° are shown to be of particular interest. Longitudinal structure was not detected in either the [OII] intensity or the plasma density as measured by the [OII] and [SII] doublet ratios. Errors in the line ratios could mask density variations as large as a factor of ~ 1.5. A radial variation in the ratio of OII/SII was observed, with the ratio being largest near Io's orbit. Monthly variabilitywas detected in both the intensity and density of the tours. The [SII] line ratios indicated an increase in ne over the 4-month period that was accompanied by increased intensities. For single measurements, no correlation between the [SII] intensities and the [SII] λ6716/λ6731 line ratio was detected, but this could be a result of errors in the line ratio determinations. Extremely low values of this same ratio were measured. These appear to indicate errors in the presently accepted [SII] transition probabilities. These [SII] line ratios indicate that very-high-density regions are present in the torus, and it is shown how these regions could have significantly influenced these measurements.  相似文献   

7.
The time-dependent modulation of galactic cosmic rays in the heliosphere is studied by computing intensities using a time-dependent modulation model. By introducing recent theoretical advances in the transport coefficients in the model, computed intensities are compared with Voyager 1, International Monitoring Platform (IMP) 8, and Ulysses proton observations in search of compatibility. The effect of different modulation parameters on computed intensities is also illustrated. It is shown that this approach produces, on a global scale, realistic cosmic-ray proton intensities along the Voyager 1 spacecraft trajectory and at Earth up to ≈?2004, whereafter the computed intensities recover much more slowly towards solar minimum than observed in the inner heliosphere. A modified time dependence in the diffusion coefficients is proposed to improve compatibility with the observations at Earth after ≈?2004. This modified time dependence led to an improved compatibility between computed intensities and the observations along the Voyager 1 trajectory and at Earth even after ≈?2004. An interesting result is that the cosmic-ray modulation during the current polarity cycle is not determined only by changes in the drift coefficient and tilt angle of the wavy current sheet, but is also largely dependent on changes in the diffusion coefficients.  相似文献   

8.
The original coronal index of the solar activity (CI) has been constructed on the basis of ground-based measurements of the intensities of the coronal line of 530.3 nm (Rybanský in Bull. Astron. Inst. Czechoslov., 28, 367, 1975; Rybanský et al. in J. Geophys. Res., 110, A08106, 2005). In this paper, CI is compared with the EUV measurements on the CELIAS/SEM equipment based on the same idea as the original idea of the coronal index. The correlation is very good for the period 1996?–?2005 (r=0.94 for daily values). The principal result of this paper is the introduction of the modified coronal index (MCI) which in all uses and contexts can replace the existing CI index. Daily MCI values extend over a time period of six solar activity cycles. Future MCI measurements will be derived from more reliable measurements made by space-based observatories that are not influenced by the weather. MCI measurements are and will continue to be archived at the web site of the Slovak Central Observatory in Hurbanovo ( http://www.suh.sk/obs/vysl/MCI.htm ).  相似文献   

9.
The results of longitudinal magnetic field measurements B z in the hot accretion spot in three classical T Tauri stars (CTTS) are reported. In all three stars the magnetic field is detected at a level above 2σ in the formation region of the narrow component of the He I 5876 Å emission line. In the case of DS Tau the longitudinal field B z in the hot spot was also measured from the narrow emission components of the Na I D lines, implying +0.8 ± 0.3 kG, which is equal to the B z field component measured from the He I 5876 Å line. Our results suggest that the 6-m telescope of the Special Astrophysical Observatory can be used to study magnetic fields in the hot spots of CTTS with magnitudes down to 13m, making it possible to double the number of stars of this type with measured B z values in the accretion zone.  相似文献   

10.
F.W. Taylor  A.D. Jones 《Icarus》1976,29(2):299-306
We present some results of a theoretical and laboratory program to determine the thermal infrared spectral properties of the principal gaseous constituents of the atmosphere of Jupiter. G. Birnbaum has measured laboratory spectra in the 16 to 1000 um wavelength range for hydrogen and hydrogen-helium mixtures at Jovian temperatures. These are compared to theoretically computed spectra in order to determine the temperature dependence of the line strengths in the pressure-induced rotational band and the overlap parameters from the translational band. Existing spectral data for methane do not agree well with measurements of the ν4 band at room temperature. A revised allocation of line intensities is proposed. Existing data for the ν2 (10 um) band of ammonia do agree reasonably well with measurements at room temperature and at ?77δC, but there are some important discrepancies which remain to be explained.  相似文献   

11.
The 557.7 nm OI night airglow emission was measured in the central polar cap by ground-based photometric systems at Thule Air Base, Greenland during the winter seasons from 1972–1973 to 1974–1975 and at Thule-Qanaq, Greenland during the winter season of 1973–1974. The behavior of the 557.7 nm night airglow emission in the polar cap was found to be quite different from that observed at mid and low latitudes. No diurnal variation greater than ±5% exist in the data. Large amplitude variations in the 557.7 nm daily average emission intensities can change by up to a factor of approximately 8 over periods ranging from 4 to 19 days. These long-term airglow variations cover at least a 100 km horizontal range as determined by a correlation coefficient of 0.94 between daily average 557.7 nm airglow intensities observed at Thule Air Base and Thule-Qanaq. An interplanetary magnetic field sector related behavior is evident in the daily average intensities which shows an increase of intensity in a positive (+) sector and a decrease of intensity in a negative (?) sector. No significant correlation was found between the 557.7 nm daily average intensities and Zurich sunspot number RZ, although a season to season positive trend was evident. Correlations between the 557.7 nm daily average intensities and planetary magnetic indices ΣKp and Ap were found to be inconclusive due to sector related effects. The Barth and Chapman mechanisms are discussed as possible source mechanisms for the 557.7 nm airglow in the central polar cap, and a hypothesis is presented to explain the airglow variations.  相似文献   

12.
Based on our photometric observations in 2015–2016 and archival photometric data for the active red giant PZ Mon, we have found the main characteristics of the stellar surface: the unspotted surface temperature Teff = 4730 K, the spot temperature Ts = 3500 K, and the relative spot area from 30 to 40%. The best agreement with the observations has been achieved in our three-spot model including a cool polar spot with a temperature of ~3500 K as well as large and small warm spots with a temperature of ~4500 K. The stable polar spot is responsible for the long-period brightness variations. Its presence is confirmed by an analysis of the TiO 7054 Å molecular band. The small-amplitude 34-day variability is attributable to the warm spots located on the side of the secondary component, which determine the relatively stable active longitude.  相似文献   

13.
Measurements of night-time 6300 Å airglow intensities at the Arecibo Observatory have been compared with dissociative recombination calculations based on electron densities derived from simultaneous incoherent backscatter measurements. The agreement indicates that the nightglow can be fully accounted for by dissociative recombination. Thecomparisons are examined to determine the importance of quenching, heavy ions, ionization above the F-layer peak, and the temperature parameter of the model atmosphere. Comparable fits between the observed and calculated intensities are found for several available model atmos- pheres (e.g. CIRA, Jacchia). The least-squares fitting process, used to make the comparisons, produces comparable fits over a wide range of combinations of neutral densities and of reaction constants. Yet, the fitting places constraints upon the possible combinations: these constraints indicate that the latest laboratory chemical constants and densities extrapolated to a base altitude are mutually consistent. However, by imposing an additional constraint, an aero- nomically derived preference is given for about one O(1D) per combination. A preference is also given for the lower base densities of O2 derived from rockets rather than from models. Altitude profiles for the 6300 Å and 5577 Å emissions are deduced. In the early evening, there are no large discrepancies in the fits that might indicate an effect from elicited states of O+, vibrational excitation of O2, or both. The technique of comparing observed and cal- culated 6300 Å intensities has considerable potential as an aeronomical tool for examination of other possible sources of emission and for determination of relative changes in the neutral atmosphere.  相似文献   

14.
W. Mattig 《Solar physics》1971,18(3):434-442
In order to test the usual method for correcting sunspot intensity measurements for stray light, we have measured, during the Mercury transit of 1970 May 9, the intensities of Mercury, a sunspot umbra, and the aureole. The direct observations result in Mercury intensities < 0.06 I and aureole intensities <0.01 I . The stray light correction to the spot intensities has been <(0.03 ± 0.01) I . The main contribution to the stray light on the solar disc is shown to be produced by a spread-function with a half width of 10 arc sec. Consequently, for stray light corrections the range R R + + 20 in the aureole has to be measured very precisely; furthermore, a remarkable fraction of the stray light in the center of an umbra originates from the surrounding penumbra.Mitteilungen aus dem Fraunhofer Institut, Nr. 102.  相似文献   

15.
Energetic ion (E ? 290 keV) and electron (Ee ? 220 keV) burst intensities were simultaneously monitored at various regions of the plasma sheet and magnetosheath by the CPME JHU/APL instruments on board the IMP-7 and 8 s/c during an extended period from day 250, 1975 to day 250, 1976 when the two spacecraft were closely trailing each other in crossing the geomagnetotail. The energy spectra of the energetic particle populations of different regions in the magnetotail were also computed and monitored simultaneously at the positions of the two spacecraft. The results indicate that the energetic particle intensities are higher and the energy spectra in general considerably softer inside the plasma sheet than the adjacent magnetosheath. The spectral index γ of a power law fit in the computed energy spectrum inside the plasma sheet occasionally exceeds γ > 10 for the ions and γ > 6 for the electrons. Furthermore simultaneous monitoring of particle intensities in the vicinity of the neutral sheet and the high latitude plasma sheet shows higher intensities in the former region. The observations suggest that the energetic particles escape to the magnetosheath from their source inside the plasma sheet by a rigidity dependent process. A dawn-dusk asymmetry in the particle acceleration and escape processes is implied in the observations and discussed in detail.  相似文献   

16.
We present an assessment of the accuracy of the calibration measurements and atomic physics models that go into calculating the SDO/AIA response as a function of wavelength and temperature. The wavelength response is tested by convolving SDO/EVE and Hinode/EIS spectral data with the AIA effective area functions and by comparing the predictions with AIA observations. For most channels, the AIA intensities summed over the disk agree with the corresponding measurements derived from the current version (V2) of the EVE data to within the estimated 25 % calibration error. This agreement indicates that the AIA effective areas are generally stable in time. The AIA 304 Å channel, however, does show degradation by a factor of almost 3 from May 2010 through September 2011, when the throughput apparently reached a minimum. We also found some inconsistencies in the 335 Å passband, possibly due to higher-order contamination of the EVE data. The intensities in the AIA 193 Å channel agree to within the uncertainties with the corresponding measurements from EIS full CCD observations. Analysis of high-resolution X-ray spectra of the solar-like corona of Procyon and of EVE spectra allowed us to investigate the accuracy and completeness of the CHIANTI database in the AIA shorter wavelength passbands. We found that in the 94 Å channel, the spectral model significantly underestimates the plasma emission owing to a multitude of missing lines. We derived an empirical correction for the AIA temperature responses by performing differential emission measure (DEM) inversion on a broad set of EVE spectra and adjusting the AIA response functions so that the count rates predicted by the full-disk DEMs match the observations.  相似文献   

17.
An analysis is presented of photometric measurements of the NI (λ = 520nm),OI(λ = 630nm)and other emissions made at Nord, where the invariant latitude is Λ = 80°4. The time variations of the intensities are interpreted in the following way by comparison with simultaneous ground based or satellite measurements.The N(2D) atoms formed in the dayside cleft are carried by the neutral wind in a plume across the polar cap, so that the ratio of λ(630 nm) to λ(520 nm) intensities decreases along the plume with increasing distance from the source region.In the polar cap, but outside the plume region, 630 nm emission is produced by electron impact of polar rain and by substorms that reach high latitudes. Ionization produced at the same time, especially by the substorms, will produce further 630 nm emission through dissociative recombination. In any case, the region outside the plume may be regarded as a source region, with a high value of the ratio I(630)I(520). This explains in part the diurnal variations, since this ratio is depressed as Nord crosses the dayside plume.The electron energy along the oval increases progressively from the dayside to the nightside. The intensity ratio increases with increasing electron energy because N(2D) is quenched more rapidly than O(1D). Thus the ratio rises progressively from noon to midnight.An effect of the interplanetary magnetic field is superimposed on this pattern : as its North-South component Bz increases, the oval contracts so that Nord becomes nearer from the cleft source and the intensity ratio increases on the dayside. The inverse effect is also observed. On the nightside, negative Bz is associated with substorms that produce poleward expansions of the poleward oval boundary, that brings more energetic precipitation to Nord. This causes the intensity ratio to increase with decreasing Bz in a way that is opposite to that for the dayside.  相似文献   

18.
J. Köppen 《Solar physics》1975,42(2):325-332
Observations of a sunspot during and after a partial solar eclipse are described. The amount of scattered light confirms the existence of a spread function component with a half width of 10″. The observations also indicate the possibility of severely underestimating this component by aureole measurements. Umbral continuum intensities of 0.10 I in the red spectral region were directly measured, the correction for scattered light amounts to 0.02 I . Intensities calculated with four umbral models are larger than the observed values, indicating this sunspot to be cooler by some 100 K. The wings of two strong Ca i lines are equally explained by the models of Henoux, Kneer, and Stellmacher/Wiehr. Yun's model can be ruled out because of too high a temperature.  相似文献   

19.
I. Kulyk  K. Jockers 《Icarus》2004,170(1):24-34
We present the results of photometric measurements of the inner jovian satellites Thebe, Amalthea and Metis based on extensive optical observations taken from October 1999 to January 2002. The observations were made in the phase angle range from 8.1° to 0.3°. The Two-Channel Focal Reducer of the Max-Planck Institute for Aeronomy attached to the 2-m RCC telescope at Terskol Observatory (Pik Terskol, Northern Caucasus) was used in coronagraph mode. The observations were performed at a wavelength of 0.887 μm. Mean observational uncertainties corresponding to 1σ rms errors were 3% for the leading and trailing sides of Amalthea, 7 and 9% for the leading and trailing sides of Thebe and 9% for the leading side of Metis after taking into account the longitude brightness variations. Photometric data calibrated on an absolute scale were used to evaluate the near-opposition behavior of satellite brightness. All three satellites exhibit significant opposition brightening, but the strength of this effect, measured as the ratios of intensities at α1=1.6° and α2=6.7° does not vary significantly among these satellites. In order to measure the opposition surge parameters the empirical law proposed by Karkoschka and Hapke's model were used. The parameters of the satellite opposition effects are presented and discussed. The values of geometric albedos calculated with best-fit Hapke parameters are 0.096, 0.157, and 0.24 for Thebe, Amalthea, and Metis respectively. We found that the average leading/trailing ratios of surface reflectance at the measured phase angles are 1.53±0.05, 1.25±0.04, 1.04±0.08 for Amalthea, Thebe, and Metis.  相似文献   

20.
As part of the overall ground-based calibration of the Helioseismic and Magnetic Imager (HMI) instrument an extensive set of polarimetric calibrations were performed. This paper describes the polarimetric design of the instrument, the test setup, the polarimetric model, the tests performed, and some results. It is demonstrated that HMI achieves an accuracy of 1% or better on the crosstalks between Q, U, and V and that our model can reproduce the intensities in our calibration sequences to about 0.4%. The amount of depolarization is negligible when the instrument is operated as intended which, combined with the flexibility of the polarimeter design, means that the polarimetric efficiency is excellent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号