首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
 Two reservoirs in western Oregon contain mercury-contaminated sediment and fish as a result of historic mercury mining in the Cottage Grove Lake watershed and mercury amalgamation used in gold mining in the Dorena Lake watershed. On average, sediment in Cottage Grove Lake contains ten times as much mercury as sediment from Dorena Lake (2.720 versus 0.242 ppm). Mercury content in Cottage Grove Lake sediment shows a sharp initial decrease and leveling off with time that reflects the end of the major cinnabar mining phase; deposition of other heavy metals appears to be linked to the clay content of sediment. Mercury input to Dorena Lake has remained fairly constant with time, but small increases in mercury are associated with the deposits of large floods. Copper, lead, and zinc input to Dorena Lake exhibits a marked decrease and leveling off related to the end of commercial mining for these metals. Received: 12 October 1999 · Accepted: 22 March 2000  相似文献   

2.
Trace element concentrations in shallow marine sediments of the Buyat-Ratototok district of North Sulawesi, Indonesia, are affected by submarine disposal of industrial gold mine tailings and unregulated dumping of tailings and wastewater from small-scale gold mining using mercury amalgamation. Industrial mine tailings contained 590–690 ppm arsenic, 490–580 ppm antimony, and 0.8–5.8 ppm mercury. Tailings-affected sediment As and Sb concentrations were 20–30 times higher than in muddy sediments not contaminated with tailings, and 50–60 times higher than pre-mining average. Highest mercury concentrations were observed in sediments affected by small-scale mining using mercury amalgamation (5–29 ppm). Concentrations of most other trace elements were comparable in sediments affected by both types of mining and were slightly higher than regional averages for sediments collected before the onset of industrial mining. Elevated concentrations of both As and Sb in approximately equal proportions suggest tailings dispersal of at least 3.5 km. Mercury released from artisanal gold mining dispersed up to 4 km from river mouths. Slight increases in concentrations of non-mercury trace elements in areas affected by artisanal mining over pre-industrial mining concentrations were probably caused by increased rates of erosion. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

3.
Although fish in Dorena Lake are contaminated with mercury, the source of pollution in the watershed was unconfirmed until the present study. To trace the mercury to its source, fine-grained sediment samples were collected from the major streams of the watershed. A few samples of mine waste/tailings were also obtained from the Bohemia Mining District where mercury was historically used in processing gold and silver ore. Mercury concentrations in sediment from streams that do not drain the central mining district average 0.066 ppm, whereas samples taken downstream of the district contain 0.140-1.339 ppm. Mine waste/tailings contain 13.441 to >50 ppm mercury. The source of mercury contamination in the Dorena Lake watershed is thus the Bohemia Mining District. Historical and geological evidence strongly suggests that the mercury problem in the district resulted from gold-mercury amalgamation practices, but naturally high mercury content in mineralized areas cannot be ruled out with the data presented here.  相似文献   

4.
A reconnaissance investigation of mercury contamination associated with historic gold mining in North Carolina, USA, revealed high concentrations of mercury in channel and floodplain sediments downstream from the Gold Hill mining district. The most intense period of mining activities in this region occurred in the 1840s and 1850s when mercury amalgamation was used to recover fine gold particles from milled ore. This paper evaluates mercury concentrations measured in active channel sediments and two cores recovered from historic floodplain deposits of the lower portion of Dutch Buffalo Creek. Mercury concentrations in these cores range from 0.01 to 2.2 mg/kg, with maximum concentrations more than 35 times background levels. A later peak in copper concentrations is associated with the operation of a large copper mine between 1899 and 1906. Following the most intense periods of mining, both mercury and copper concentrations decrease upcore to constant levels of about twice pre-mining background concentrations. Results suggest that vertical trends in mercury and other trace metals provide a useful tool for interpreting rates of historic floodplain sedimentation in the Piedmont of North Carolina.  相似文献   

5.
 Northland, New Zealand has been affected by natural hot water spring systems depositing elevated concentrations of mercury and arsenic over the past 5 million years. Due to the different erosion levels of these hot water systems, four principal types of mercury and arsenic occurrences are found: active hot springs; layered surface deposits (sinters) deposited by hot springs; highly fractured rock zones formed immediately beneath hot springs; and chemically altered and mineralized rock from the deeper roots of hot spring systems. Mercury occurs principally as cinnabar and as a minor impurity (<1 wt%) in phosphate minerals and iron sulfides, particularly marcasite. Mercury is irregularly distributed through limonitic cements formed during oxidation. Arsenic occurs as a minor impurity (<1 wt%) in phosphate minerals and iron sulfides, particularly marcasite. Arsenic is also variably dispersed through limonite, but not necessarily with mercury. Decomposition of marcasite constitutes the most significant source of mercury and arsenic pollution from the studied sites. Release of mercury and arsenic into the environment from marcasite, phosphates and limonite is enhanced by acidification of the sites (down to pH of 2), caused by oxidation of iron sulfides. Mercury and arsenic concentrations of up to 100 parts per billion should be expected in waters near the deposits; these concentrations are in excess of recommended drinking water levels. Received: 9 April 1999 · Accepted: 2 August 1999  相似文献   

6.
 The San Antonio-El Triunfo mining district, located at a mountainous region 45 km south-east of La Paz, Baja California, has been worked since the late 1700s. Mine waste material produced during 200 years of mineral extraction area poses a risk of local groundwater pollution and eventually, regional pollution to the Carrizal (west basin) and the Los Planes (east basin) aquifers. There are different types of deposits in the mining area. These are dominated by epithermal veins, in which arsenopyrite is an important component. Carrillo and Drever (1998a) concluded that, even though the amount of mine waste is relatively small in comparison to the large scale area, significant As in groundwater derived from the mine waste piles is found locally in the groundwater. This paper shows the results of geochemical analyses of groundwater samples from the San Antonio-El Triunfo area and the Carrizal and Los Planes aquifers during several years of monitoring (1993–1997). The highest values of total dissolved solids (TDS) and As are in the mineralized area where the mining operations occurred (∼1500 ppm TDS and 0.41 ppm As). The lowest concentrations of TDS and As are, in general, away from the mineralized area (∼500 ppm TDS and 0.01 ppm As). Sulfate and bicarbonate (alkalinity) are, in general, high near the mineralized area and low away from it. The arsenic concentrations vary seasonally, especially after the heavy summer thunderstorms. Geochemical modeling (MINTEQA2 and NETPATH) and analysis of the regional geochemical evolution of the groundwater from the mining area towards the aquifer of Los Planes shows that the most likely hydrochemical processes include: dilution, precipitation of calcite, and adsorption of As onto surfaces of iron oxyhydroxides (ferrihydrite). These processes act as natural controls to the extent and amount of As pollution in the Carrizal and Los Planes aquifers. Received: 4 May 1999 · Accepted: 22 February 2000  相似文献   

7.
 The Sudety Mountains contain polymetallic deposits which have been exploited since the Middle Ages. Distinct concentrations of As, Hg, F, Cr in surface water near Zloty Stok suggested that groundwater in the area could also contain elevated metal concentrations. Water samples from 15 locations including Zloty Stream, mine adit discharges, and selected springs generally show low levels of dissolved components and near-neutral pH. However, arsenic concentrations range from 0.99 mg/l to 26.16 mg/l at all 15 sample locations. Mercury concentrations were locally as high as 0.011 mg/l. These high arsenic and mercury concentrations significantly exceed water quality standards and raise concerns for using Zloty Stream for potable water. Recieved: 21 December 1998 · Accepted: 8 June 1999  相似文献   

8.
 Several cores of 31 collected in 1965 in the St. Anna Trough, Kara Sea, have very high concentrations of Hg and As in surface/near-surface samples. Mercury contents range from 94 to 3915 ppb with a mean of 444 ppb and a baseline value of 314 ppb. Arsenic contents range from 5 to 710 ppm with a mean of 51 ppm and a baseline value of 23 ppm. The Hg and part of the As loading is likely anthropogenic from industrial activities in Siberia via atmospheric emission and deposition onto catchments. This is followed by mobilization into fluvial systems and is added to by industrial effluent discharge. Post-depositional diagenesis from depth in the cores contributes to high As values. A north-flowing bottom current transports Hg- and As-bearing suspended material from the Ob River sea discharge zone to depositional environments in the St. Anna Trough. Dumping of military materials and other wastes into the Kara Sea from the late 1940s to 1991 has likely added to Hg and As loading in the trough sediments. The bioavailability of mercury from suspended materials may be the reason why higher than normal levels of these potentially toxic elements are found in European Arctic seabirds, ringed seal and polar bear. Received: 12 December 1999 · Accepted: 23 May 2000  相似文献   

9.
 The historic processing of precious metal ores mined from the Comstock Lode of west-central Nevada resulted in the release of substantial, but unquantified amounts of mercury-contaminated mill tailings to the Carson River basin. Geomorphic and stratigraphic studies indicate that the introduction of these waste materials led to a period of valley-floor aggradation that was accompanied by lateral channel instability. The combined result of these geomorphic responses was the storage of large volumes of mercury-enriched sediment within a complexly structured alluvial sequence located along the Carson River valley. Much of the contaminated sediment is associated with filled paleochannels produced by the cutoff and abandonment of meander loops, and their subsequent infilling with contaminated particles. Geochemically, these deposits are characterized by variations in mercury levels that exceed three orders of magnitude. Continued lateral instability, coupled with an episode of channel-bed incision, followed the decline of Comstock mining, and has reexposed contaminated debris within the banks of the river. Erosion of bank sediments reintroduces mercury-enriched particles to the modern channel bed. It is suggested on the basis of geochemical and sedimentological data that during the bank erosion process, much of the mercury associated with fine (<63 μ) valley-fill deposits are carried downstream without being incorporated to any appreciable extent within the channel-bed sediments. In contrast, mercury associated with larger and denser particles, particularly mercury-gold-silver amalgam grains, are accumulated in the channel-bed sediments as the river traverses polluted reaches of the Carson River valley. Concentration patterns developed along the modern channel indicate that the valley fill is the primary source of mercury to the river today. Thus, these data imply that efforts to reduce the influx of mercury to the aquatic environment should examine methods for reducing bank erosion rates. Received: 13 December 1996 · Accepted: 15 April 1997  相似文献   

10.
Mercury (Hg) and methylmercury (CH3Hg+) concentrations in streambed sediment and water were determined at 27 locations throughout the Sacramento River Basin, CA. Mercury in sediment was elevated at locations downstream of either Hg mining or Au mining activities where Hg was used in the recovery of Au. Methylmercury in sediment was highest (2.84 ng/g) at a location with the greatest wetland land cover, in spite of lower total Hg at that site relative to other river sites. Mercury in unfiltered water was measured at 4 locations on the Sacramento River and at tributaries draining the mining regions, as well as agricultural regions. The highest levels of Hg in unfiltered water (2248 ng/l) were measured at a site downstream of a historic Hg mining area, and the highest levels at all sites were measured in samples collected during high streamflow when the levels of suspended sediment were also elevated. Mercury in unfiltered water exceeded the current federal and state recommended criterion for protection of aquatic life (50 ng/l as total Hg in unfiltered water) only during high streamflow conditions. The highest loading of Hg to the San Francisco Bay system was attributed to sources within the Cache Creek watershed, which are downstream of historic Hg mines, and to an unknown source or sources to the mainstem of the Sacramento River upstream of historic Au mining regions. That unknown source is possibly associated with a volcanic deposit. Methylmercury concentrations also were dependent on season and hydrologic conditions. The highest levels (1.98 ng/l) in the Sacramento River, during the period of study, were measured during a major flood event. The reactivity of Hg in unfiltered water was assessed by measuring the amount available for reaction by a strong reducing agent. Although most Hg was found to be nonreactive, the highest reactivity (7.8% of the total Hg in water) was measured in the sample collected from the same site with high CH3Hg+ in sediment, and during the time of year when that site was under continual flooded conditions. Although Hg concentrations in water downstream of the Hg mining operations were measured as high as 2248 ng/l during stormwater runoff events, the transported Hg was found to have a low potential for geochemical transformations, as indicated by the low reactivity to the reducing agent (0.0001% of the total), probably because most of the Hg in the unfiltered water sample was in the mercury sulfide form.  相似文献   

11.
Mercury concentrations in “A-zone” soil from seventeen urban, suburban, and rural town locations in the area of Dayton, Ohio range from 0.24 to 1.50 ppm. A positive correlation is indicated between the mercury concentrations and the amount of fallout of settleable particulate matter from the air at these sites. Airborne pollution may be an important source of the element in Dayton area soils.  相似文献   

12.
The 1000 km long Ok Tedi/Fly River system receives about 66 Mt/year of mining waste from the Ok Tedi copper-gold porphyry mine. Mine input has increased the suspended sediment load of the Middle Fly River about 5–10 times over the natural background. A significant yet unknown amount of copper-rich material deposits unevenly in the extensive tropical lowland floodplain. Recent alluvial sediments of the Fly River floodplain have copper contents of 620 mg/kg (±1σ: 430–900), whereas the regional background is 40 mg/kg (±σ: 25–60). This pattern is mirrored and enhanced by the gold dispersal pattern with a 7 ppb Au background versus a 140–275 ppb population in mine-derived material. Very high deposition rates (around 4 cm/y) of mine-derived sediment were determined in locations close to the creeks and channels which link the Fly River with the outer floodplain. A thin layer of 1–5 cm of copper-rich material (400–900 mg/kg Cu) was usually found on the bottom of drowned (tributary) valley lakes. Average dissolved copper content in waters of the inner floodplain is around 9 μg/l (±1σ: 5–14) as compared to unpolluted water from the outer floodplain with < 2 μg/l Cu. The present Fly River water, about 600 km downstream of the mine site, has concentrations of 17 ± 3 μg/l dissolved Cu. Received: 30 June 1996 / Accepted: 9 January 1997  相似文献   

13.
 Bottom-water data and trace metal concentration of Cu, Cr, Ni, Pb, Co, Zn, and organic matter in surficial sediment samples from 13 sampling stations of Lake Chapala in Mexico were studied. The lake is turbid with a great amount of flocculated sediments as a result of wind mixing, sediment re-suspension, and Lerma River discharges. Al distribution pattern in sediments was used as an indicator of the Lerma River discharges into Lake Chapala. The highest values of Cu (33.27 ppm), Cr (81.94 ppm), Pb (99.8 ppm), and Zn (149.7 ppm) were detected in sediments near the lake outlet. The bioavailable metal fraction is low for all metals except Pb, which shows 65–93% of the total metal concentration in bioavailable form. The minimum energy zone in the lake was related to organic matter concentration and was located in the SE part of the lake. An analysis of the studied parameters shows two zones: eastern zone (fluvio-deltaic) and central-western zone (lacustrine). Received: 9 September 1998 · Accepted: 16 November 1998  相似文献   

14.
 The marine coastal sediments from Togo have been analysed for the trace elements Cd, Cr, Cu, Ni, Pb, Sr, V, Zn and Zr to ascertain the geo-ecological impact of dumping of phosphorite tailings into the sea. Trace element concentrations ranged from 2–44 ppm for Cd, 22–184 ppm for Cu, 19–281 ppm for Ni, 22–176 ppm for Pb, 179–643 ppm for Sr, 38–329 ppm for V, 60–632 ppm for Zn and 18–8928 ppm for Zr. Regional distribution of trace elements in the marine environment indicates that the concentrations of Cr, Cu, Ni, Pb, V, Sr and Zn increase seawards and along the coastal line outwards of the tailing outfall, whereas Cd and Zr showed reversed spatial patterns. Sorting and transport of phosphorite particles by coastal currents are the main factors controlling the distribution of particle-bound trace metals in the coastal environment. The Cd, Sr and Zn concentrations decrease with decreasing grain size in marine coastal sediments, whereas Cr, Cu, Ni and Zn concentrations increase with decreasing grain size. Percolation and shaking experiments were carried out in laboratory using raw phosphate material and artificial sea water. Enhanced mobilization of Cd from phosphorites by contact with the sea water was observed. Received: 11 May 1998 · Accepted: 20 October 1998  相似文献   

15.
Analyses of stream sediment and soil samples from the Bushveld Complex, South Africa have revealed enhanced precious metal concentrations, which can be related both to mining activities and the presence of hidden concentrations of platinum-group elements (PGEs) and gold. The economically important PGE deposits hosted by the Upper Critical Zone of the Rustenburg Layered Suite are revealed by a high PGE and Au content in the overlying soils. A second zone of elevated precious metal concentrations straddles the boundary between the Main and Upper Zones and has to date been traced for more than 100 km. This zone follows the igneous layering of the Rustenburg Layered Suite and is offset by the Brits Graben. It is therefore thought to be the reflection of a magmatic PGE-Au mineralisation. Received: 31 May 1996 / Accepted: 7 January 1997  相似文献   

16.
The Almadén district is the largest mercury concentration in the world, with a total content of about 250 000 t of mercury, nearly one third of the known total mercury resources of the Earth. Mercury has been exploited since the Celtic and Roman times, with peak production during the Renaissance and between 1939–1945. The district is hosted by a Paleozoic synclinorium overlying Precambrian rocks. The Paleozoic sequence comprises epicontinental quartz arenite rocks, including black shales and quartzites. Diatremes, alkaline lavas of different composition, and late tholeiitic diabases account for the Ordovician to Devonian magmatism. The tectonic setting of this complex suite corresponds to the intraplate type. The mercury deposits of Almadén can be classified into two main types: type 1, early stratiform type ores characterized by cinnabar deposition on the lower Silurian quartzites (Criadero quartzite; e.g. the Almadén and El Entredicho deposits), and type 2, late discordant orebodies (e.g. Las Cuevas), largely hosted or related to diatremes (the `frailesca rocks') of alkaline basaltic composition. In type 1 cinnabar was deposited during diagenesis, in relation to hydrothermal circulation driven by magmatic activity. Type 2 include a variety of deposits having in common the discordant character of the orebodies (e.g. veins, stockworks, massive replacements), and their wide dispersion along the stratigraphic column, i.e. from Lower Silurian (e.g. Nueva Concepción) to Upper Devonian (e.g. Corchuelo). Received: 23 October 1998 / Accepted: 4 January 1999  相似文献   

17.
 Sediments from stormdrain catchments and outlets in Wellington city and sediment traps from Wellington Harbour were sampled for trace metal content. Samples were analysed for total metal content using XRF and ICP-MS. High values of Pb and Zn were found in stormdrain catchments and outlets, decreasing to elevated background rock levels in the harbour. Maximum values were recorded in an inner city stormdrain catchment, with levels of Pb (4605 ppm), Cu (2981 ppm) and Zn (3572 ppm) all higher than the biological probable effects levels (PEL). Concentrations of As, Cr, Cu, Pb, Ni and Zn concentrations in all harbour sediment trap samples were below the PEL. The mean values for each harbour sediment trap sample can be used as an accurate historical baseline in future studies. Stormdrain samples with high trace metal levels were close to industrial and construction sites. The proximity of these outlets to recreational areas should be of concern to local authorities. Received: 28 August 1997 · Accepted: 15 December 1997  相似文献   

18.
 Understanding the mechanisms of mercury evaporation from soil to the atmosphere is necessary for tracing the fate of mercury in the biological environment and for assessing potential health effects and the impact of anthropogenic mercury emissions on the environment. In this article an integrating overview of the current knowledge of the mechanisms of mercury evaporation is presented. Abiological and biological formation of Hg(0) and/or (CH3)2Hg in the uppermost soil layers are the rate limiting processes of mercury evaporation from soils in background areas; the evaporation rate in background areas is probably strongly influenced by deposited airborne mercury. The evaporation rate limiting factors in mercury enriched mineralized areas with large fractions of total mercury being volatile mercury species (relative to background soil in the non-mineralized vicinity) meteorological variations and the transport characteristics of soils for volatile mercury species. Mercury evaporation rates from background soils are usually <0.2 μg·m–2·h–1 and significantly smaller than from mercury-enriched mineralized areas. Received: 20 November 1995 / Accepted: 24 July 1996  相似文献   

19.
 Abundant cinnabar (HgS) mineralization is associated with the Pinchi Fault in central British Columbia. Two formerly producing mercury mines have been developed on this fault: Pinchi and Bralorne Takla. The mercury content of till (a sediment type directly deposited by glaciers) in the area of this fault is primarily controlled by the occurrence of cinnabar mineralization in bedrock and the direction of ice flow. Cinnabar-bearing bedrock was eroded by glaciers, transported in the direction of ice flow, and deposited "down-ice" from its source. An example of such a dispersal train is documented for the Pinchi Mine area where mercury ore was transported over a distance of 12 km, as measured in the clay-sized fraction (< 0.002 mm) of till, and could have been transported over 24 km according to heavy mineral concentrates (specific gravity >3.3) of this same sediment. Antimony, chromium, and nickel dispersal trains were also detected in the region. These data indicate that natural glacial processes can result in the "mobilization" of metals in the surficial environment, a factor which has to be considered at mine sites in glaciated terrain, where mine reclamation and remediation measures are now required. Received: 31 October 1996 · Accepted: 27 May 1997  相似文献   

20.
 Rico, Colorado is a small mountain community that was developed before the turn of the century around and near underground lead-zinc-silver mines. Today, US regulatory concerns in such communities focus on the metal content, particularly of lead, in community soils. This study integrates bedrock geology, surficial geology, mineralogy and geochemistry in order to define the controls on metal distribution in Rico community soils. The principal constituents of concern are As, Pb, and Mn. The results show that mining-related sources are discrete and localized whereas natural sources, including bedrock (mean Pb content of 3 500 ppm), colluvium (mean Pb content of 1 410 ppm), and older alluvium (mean Pb content of 744 ppm) are wider spread and are the principal sources of metals in Rico community soils. Historical mining sites like Rico should be expected to have significant surficial expressions of mineralized bedrock. In these communities, it is important to accurately define the role of all metal sources as a foundation for determining environmental liabilities, cleanup guidelines, and health risk assessments. The application of geology and mineralogy in support of geochemical characterization is necessary to accurately define the origin and distribution of both anthropogenic and natural metal sources at such sites. Received: 27 December 1996 · Accepted: 21 February 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号