首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two Bering Sea marine research programs collaborated during the final years of the 1990s to forge advances in understanding the southeastern Bering Sea pelagic ecosystem. Southeast Bering Sea Carrying Capacity, sponsored by NOAA Coastal Ocean Program, investigated processes on the middle and outer shelf and the continental slope. The Inner Front Program, sponsored by NSF, investigated processes of the inner domain and the front between the inner and middle domains. The purposes of these programs were to (1) increase understanding of the southeastern Bering Sea ecosystem, including the roles of juvenile walleye pollock, (2) investigate the hypothesis that elevated primary production at the inner front provides a summer-long energy source for the food web, and (3) develop and test annual indices of pre-recruit pollock abundance. The observations occurred during a period of unusually large variability in the marine climate, including a possible regime shift. Sea-ice cover ranged from near zero to one of the heaviest ice years in recent decades. Sea-surface temperatures reached record highs during summer 1997, whereas 1999 was noted for its low Bering Sea temperatures. Moreover, the first recorded observations of coccolithophore blooms on the shelf were realized in 1997, and these blooms now appear to be persistent. The programs’ results include an archive of physical and biological time series that emphasize large year-to-year regional variability, and an Oscillating Control Hypothesis that relates marine productivity to climate forcing. Further investigations are needed of the confluences of interannual and even intra-seasonal variability with low-frequency climate variability as potential producers of major, abrupt changes in the southeastern Bering Sea ecosystem.  相似文献   

2.
Mesoscale physical and biological processes are examined at the Gulf Stream front by means of a 4-D simulation including physical and biological data assimilation. The data assimilated are from Leg 1 of the Fall BIOSYNOP cruise, 21 Sept.–8 Oct. 1988, and GULFCAST data for the same period. Focus is on the vertical velocities at the front, the vertical and horizontal transports of nutrients and plankton, and the impact of these transports on phytoplankton biomass, production and organic particle export. It was found that while jet meandering enhances new production at the front, primary production and phytoplankton concentration at the front are not significantly enhanced over those of Slope water. Winds during this period also have little impact on productivity at the front, due to their high temporal variability. Ring–stream interactions, however, significantly increase the net vertical and meridional transports of nutrients and plankton and can lead to phytoplankton patchiness at the front. This emphasizes the importance of submesoscale events between interacting mesoscale physical features in the transport of nutrients and plankton, and in explaining the observations. The enhanced phytoplankton concentrations observed during BIOSYNOP are found to be primarily due to advection (convergence) rather than in situ biological growth.  相似文献   

3.
We have studied nitrogen and phosphorus distributions across the thermohaline front in Kii Channel in winter by using engine-cooling sea water of a ferry boat. On Dec. 1986 and Jan. 1987, differences of PO4–P and DIN across the front are recognized. Especially in the latter case, differences of nutrients concentrations across the front are very obvious. But differences of nutrients across the front on Feb. 1986, Feb. and Mar. 1987 are not obvious. Inspite of winter,Akashiwo had happened in Osaka Bay, nutrients mostly have already been utilized by phytoplankton in inner part of Osaka Bay. Consequently, differences of nutrients concentrations across the front are nearly zero.  相似文献   

4.
Through a simple analytical model, we examine the shear dispersion associated with oscillatory winds in an unstratified coastal ocean. As noted previously in the tidal regime, the vertical-integrated (total) horizontal diffusivity has a maximum where the water depth equals the diffusive depth – defined as the reach of the vertical diffusion during one forcing cycle. Due principally to the long synoptic timescale that characterizes the wind forcing, this depth lies over the outer shelf. When combined with effective mixing of the slope water by meso-scale eddies, the total diffusivity exhibits a minimum around the shelf break, thus facilitating frontogenesis. Due again to the long forcing period, the bottom Ekman flow is well developed at the diffusive depth, which would accentuate the gradient enhancement of the front over the inshore water, which however is bounded above by doubling.Calculations from a primitive-equation numerical model are carried out for both unstratified and stratified oceans. From an initially uniform property gradient, a front is seen to emerge around the shelf break after an oscillating wind is switched on, in a visual demonstration of the proposed frontogenesis. The unstratified solution closely agrees with the analytical solution, and although the front is not particularly sharp, it is comparable to that observed. The stratified solution renders a more realistic simulation of the observed front, but it retains the basic features, suggesting the dominance of the proposed mechanism even in the presence of the cross-frontal circulation.  相似文献   

5.
Recent changes of carbonate deposition were traced in a Black Sea sediment core taken in the western abyssal basin. The sediments were dated from a vertical profile of excess 210Pb. The 210Pb geochronology corresponded well to the 137Cs fallout record. A 20-year cyclic variability of carbon deposition has been traced in the dated sediments and has been related inversely to the long-term changes in temperature of air over the basin, forcing the convection in the upper water column, which may bear influence upon the coccolithophorid blooms by bringing nutrients from deeper water to the surface.  相似文献   

6.
Hydrographic data from National Oceanographic Data Center (NODC) and Responsible National Oceanographic Data Centre (RNODC) were used to study the seasonal variability of the mixed layer in the central Bay of Bengal (8–20°N and 87–91°E), while meteorological data from Comprehensive Ocean Atmosphere Data Set (COADS) were used to explore atmospheric forcing responsible for the variability. The observed changes in the mixed-layer depth (MLD) clearly demarcated a distinct north–south regime with 15°N as the limiting latitude. North of this latitude MLD remained shallow (∼20 m) for most of the year without showing any appreciable seasonality. Lack of seasonality suggests that the low-salinity water, which is perennially present in the northern Bay, controls the stability and MLD. The observed winter freshening is driven by the winter rainfall and associated river discharge, which is advected offshore under the prevailing circulation. The resulting stratification was so strong that even a 4 °C cooling in sea-surface temperature (SST) during winter was unable to initiate convective mixing. In contrast, the southern region showed a strong semi-annual variability with deep MLD during summer and winter and a shallow MLD during spring and fall intermonsoons. The shallow MLD in spring and fall results from primary and secondary heating associated with increased incoming solar radiation and lighter winds during this period. The deep mixed layer during summer results from two processes: the increased wind forcing and the intrusion of high-salinity waters of Arabian Sea origin. The high winds associated with summer monsoon initiate greater wind-driven mixing, while the intrusion of high-salinity waters erodes the halocline and weakens the upper-layer stratification of the water column and aids in vertical mixing. The deep MLD in the south during winter was driven by wind-mixing, when the upper water column was comparatively less stable. The deep MLD between 15 and 17°N during March–May cannot be explained in the context of local atmospheric forcing. We show that this is associated with the propagation of Rossby waves from the eastern Bay. We also show that the nitrate and chlorophyll distribution in the upper ocean during spring intermonsoon is strongly coupled to the MLD, whereas during summer river runoff and cold-core eddies appear to play a major role in regulating the nutrients and chlorophyll.  相似文献   

7.
The response of the mixed layer depth(MLD) and subduction rate in the subtropical Northeast Pacific to global warming is investigated based on 9 CMIP5 models. Compared with the present climate in the 9 models, the response of the MLD in the subtropical Northeast Pacific to the increased radiation forcing is spatially nonuniform, with the maximum shoaling about 50 m in the ensemble mean result. The inter-model differences of MLD change are non-negligible, which depend on the various dominated mechanisms. On the north of the MLD front, MLD shallows largely and is influenced by Ekman pumping, heat flux, and upper-ocean cold advection changes. On the south of the MLD front, MLD changes a little in the warmer climate, which is mainly due to the upper-ocean warm advection change. As a result, the MLD front intensity weakens obviously from 0.24 m/km to0.15 m/km(about 33.9%) in the ensemble mean, not only due to the maximum of MLD shoaling but also dependent on the MLD non-uniform spatial variability. The spatially non-uniform decrease of the subduction rate is primarily dominated by the lateral induction reduction(about 85% in ensemble mean) due to the significant weakening of the MLD front. This research indicates that the ocean advection change impacts the MLD spatially non-uniform change greatly, and then plays an important role in the response of the MLD front and the subduction process to global warming.  相似文献   

8.
Ocean temperature changes between 1991 and 2005 in the eastern Tasman Sea were analysed. This area was chosen because of a combination of data availability, low mesoscale variability and because of its importance in determining the climate of the downwind New Zealand landmass. A large warming extending to the full depth of the water column (c. 800 m) was found to have occurred between 1996 and 2002. This warming was seen in measurements by expendable bathythermographs and also in satellite sea surface temperature and sea surface height products, and has a clear impact on New Zealand's terrestrial temperature. The nature of the warming is discussed, together with likely forcing mechanisms. No local forcing mechanisms are consistent with the observed warming, leading to the conclusion that the signal seen in the Tasman Sea is part of a larger South Pacific‐wide phenomenon.  相似文献   

9.
根据珠江口2015年7月6日至17日航次的CTD(conductivity, temperature, and depth)观测结果,分析得到:珠江口附近海域存在海水的垂向逆温现象,逆温差平均值为0.42 oC,上界深度在1 m-6 m间,下界深度在3 m-10 m间,逆温层平均厚度约为4 m。根据时空分布差异的不同,逆温现象可区分为以下三种情况:(1)在狮子洋、太平水道和蕉门水道的出口汇集处,存在温、盐差异的不同水体的交互过程中,由于潮汐和径流的作用所形成的水平流场差异导致了垂向温度的逆转现象。(2)在珠江口西侧的盐度锋面区域附近,第一航段观测期间锋面内侧低盐水团的温度低于锋面外侧高盐水团约2 oC,此时可观测到逆温现象;但在同一区域的第二航段观测期间由于河口内表层水温的上升,导致了逆温现象消失。该区域盐度锋面附近的两个水团在锋面位置附近发生叠置,冲淡水覆盖于海水之上,两个水团的温、盐差异是温度逆转现象的主因。(3)香港西南侧的上升流区域与盐度锋面的相互作用导致了该区域逆温现象的产生。  相似文献   

10.
This paper reports on the main biogeochemical properties of the Northern Adriatic Sea in the period May 2003–November 2006 within the framework of the European program INTERREG III Italy‐Slovenia. Spatial and temporal distributions of water density, dissolved oxygen, nutrients (nitrogen, phosphorous and silicon) and chlorophyll a are presented. Multivariate methods such as fuzzy k‐means, self‐organising maps and cluster analysis were used to identify the different water masses and to characterise the temporal and spatial variability of the main biogeochemical features present in the area. The results confirm that the Po River outflows and the meteorological forcing factors are the main components triggering the alternation of stratification and mixing of the water column and that strongly affect the trophic state of the basin. In general, oligotrophic conditions dominate, and were more pronounced offshore, but mesotrophy occurred episodically in May 2004 and July 2005, when phytoplankton blooms were observed concomitant with vertical stability of the water column. A marked interannual variability was also observed, supporting the importance of maintaining long‐term observations of the basin.  相似文献   

11.
The Río de la Plata Estuary presents a strong bottom salinity front located over a submerged shoal. Apparently favored by retention processes, it is a spawning ground for several coastal fishes. This estuary is very shallow and essentially wind driven and, moreover, in time scales relevant to biota, estuarine circulation is wind dominated and highly variable. Two intriguing questions are, therefore, how this system can favor retention and what the involved mechanisms are. This paper qualitatively explores mechanisms involved in the estuary where retention is favored applying numerical simulations in which neutral particles – simulating fish eggs and early larvae – are released along the bottom frontal zone and tracked for different wind conditions. Results suggest that retentive features can be a consequence of estuarine response to natural wind variability acting over bathymetric features. For winds from most directions, particles either remain trapped near their launching position or move northeastward to southwestward along the shoal. As alternation of winds that favor along-shoal motion is the dominant feature of wind variability in the region, a retentive scenario results from prevailing wind variability. Additionally, winds that tend to export particles with a poor chance of being restored to the front are neither frequent nor persistent. Results show, therefore, that physical forcing alone might generate a retentive scenario at the inner part of this estuary. The physical retention mechanism is more effective for bottom than for surface launched particles. Wind statistics indicate that the proposed mechanism has different implications for retention along the seasons. Spring is the most favorable season, followed by summer, when particles would have a larger propensity to reach the southern area of the estuary (Samborombón Bay). Fall and winter are increasingly less favorable. All these features are consistent with patterns observed in the region in organisms having different life history traits.  相似文献   

12.
From September to December 1995, three hydrographic surveys were carried out in the eastern Cantabrian Sea (Bay of Biscay). Changes in the water masses pattern were examined to study the variability and main energetic features in the area. At the beginning of December, an intense Poleward Current (PC), which had come from Portuguese slopes, entered the eastern Cantabrian Sea. This current was the most energetic event in this area in winter. The PC waters increased temperature by about 2 °C (subsurface layers) and salinity by 0.2 (surface layers) in the pattern of water masses in the eastern Cantabrian Sea in winter. The core current was approximately 10 km width and 120 m depth and the water transport, estimated from geostrophic current profiles, was of about 1.3 Sv.A well-defined wavelike front with two significant ridges in the western and eastern sampling area, was observed. The variability and meandering flow of the PC were driven by dominantly baroclinic instabilities, which are due to strong vertical velocity shear. In this synoptic-scale system, the potential vorticity advection, the differential vorticity advection, and the geopotential tendency have shown to be the cause of the ageostrophic motion and the main baroclinic disturbances.One important consequence of the entrance of the PC in the eastern Cantabrian Sea was the profound effect on the pattern of nutrients. The current-induced stratification pattern drives the distribution of nutrients in the different layers and the instabilities and meandering pattern of the PC was an important mechanism of fertilisation offshore.  相似文献   

13.
Insight into the dynamics of the Antarctic Coastal Current (ACoC) is achieved by quantifying the contributions of its driving mechanisms to the seasonal variability of its barotropic and baroclinic components. These mechanisms are sought out in the local wind, the sea-ice concentration, wind curl of the Weddell Gyre (Sverdrup transport) and the thermohaline forcing related to warming/cooling and ice melting and freezing. These driving mechanisms induce most of the seasonal variability of both the barotropic and baroclinic components of the ACoC by deepening the pycnocline towards the coast and sharpening the baroclinic profile following thermal wind balance. The resulting coastal current has mainly a barotropic transport (82%) and a major annual cycle, which explains 37% of this component's variability (tides and other high-frequency events generate 40%). The wind contributes with 58% of the seasonal variability of the barotropic component and 23% of the baroclinic; the sea-ice concentration contributes with 8% and 18%, respectively; Sverdrup transport with 4% and 30% and the thermohaline forcing with 30% and 29%. The results of this study are obtained with analysis of fifteen CTD sections (potential density and geostrophic velocities) of RV-Polarstern obtained between 1992 and 2005, as well as composite, spectral and harmonic analyses of 9 years of time series from moored instruments (current speed and temperature), wind speed, atmospheric pressure and sea-ice concentration of satellite imagery.  相似文献   

14.
15.
The paper evaluates atmospheric reanalysis as possible forcing of model simulations of the ocean circulation inter-annual variability in the Gulf of Lions in the Western Mediterranean Sea between 1990 and 2000. The sensitivity of the coastal atmospheric patterns to the model resolution is investigated using the REMO regional climate model (18 km, 1 h), and the recent global atmospheric reanalysis ERA40 (125 km, 6 h). At scales from a few years to a few days, both atmospheric data sets exhibit a very similar weather, and agreement between REMO and ERA40 is especially good on the seasonal cycle and at the daily variability scale. At smaller scales, REMO reproduces more realistic spatio-temporal patterns in the ocean forcing: specific wind systems, particular atmospheric behaviour on the shelf, diurnal cycle, sea-breeze. Ocean twin experiments (1990–1993) clearly underline REMO skills to drive dominant oceanic processes in this microtidal area. Finer wind patterns induce a more realistic circulation and hydrology of the shelf water: unique shelf circulation, upwelling, temperature and salinity exchanges at the shelf break. The hourly sampling of REMO introduces a diurnal forcing which enhances the behaviour of the ocean mixed layer. In addition, the more numerous wind extremes modify the exchanges at the shelf break: favouring the export of dense shelf water, enhancing the mesoscale variability and the interactions of the along slope current with the bathymetry.  相似文献   

16.
In this paper we present results from dynamic simulations of the Northern California Current ecosystem, based on historical estimates of fishing mortality, relative fishing effort, and climate forcing. Climate can affect ecosystem productivity and dynamics both from the bottom-up (through short- and long-term variability in primary and secondary production) as well as from the top-down (through variability in the abundance and spatial distribution of key predators). We have explored how the simplistic application of climate forcing through both bottom-up and top-down mechanisms improves the fit of the model dynamics to observed population trends and reported catches for exploited components of the ecosystem. We find that using climate as either a bottom-up or a top-down forcing mechanism results in substantial improvements in model performance, such that much of the variability observed in single species models and dynamics can be replicated in a multi-species approach. Using multiple climate variables (both bottom-up and top-down) simultaneously did not provide significant improvement over a model with only one forcing. In general, results suggest that there do not appear to be strong trophic interactions among many of the longer-lived, slower-growing rockfish, roundfish and flatfish in this ecosystem, although strong interactions were observed in shrimp, salmon and small flatfish populations where high turnover and predation rates have been coupled with substantial changes in many predator populations over the last 40 years.  相似文献   

17.
长江口外潮汐混合和低盐度羽流形成的泥沙锋和羽状锋对浮游植物与环境因子的空间分布具有重要控制作用。本研究依据 2019 年夏季长江口及邻近海域典型断面叶绿素 a (Chl-a) 浓度和环境因子的调查结果,以锋面为边界,探讨了不同区域 Chl-a 浓度与环境因子的分布特征及相互关系,以期深入了解锋面的生态效应。结果表明,在泥沙锋以内的近岸区域,水体垂直混合均匀;受长江径流输入和泥沙锋“屏障”作用影响,总悬浮物 (TSM) 和营养盐浓度最高,其中TSM为 220.0± 275.3 mg/L,溶解无机氮 (DIN)、溶解无机磷 (DIP) 和溶解硅酸盐 (DSi) 分别可以达到 94.7±21.2 umol/L、 0.85±0.33umol/L 和 95.3±22.6 umol/L;高浓度 TSM 引起显著的光限制效应,导致 Chl-a 浓度较低 (1.7 ±0.5 ug/L)。在羽状锋以外的区域,出现垂直层化现象;表层海水的 TSM 和营养盐显著降低,其中 TSM 为 5.1 mg/L,DIN、DIP 和 DSi 分别为1.0 umol/L、0.03 umol/L 和 2.4 umol/L;Chl-a浓度受到营养盐供应不足的影响,浓度仅为 0.2ug/L。高浓度的 Chl-a (7.5±4.1±g/L) 主要出现在泥沙锋和羽状锋之间的过渡区域,该区域营养盐得到长江径流与上升流的补充;同时,由于大量 TSM在泥沙锋快速沉降,缓解了水体的光限制效应,有利于浮游植物的生长和积累。研究结果验证了泥沙锋和羽状锋对 TSM 与营养盐的重要控制作用,这对于理解长江口及邻近海域藻类灾害高发区的成因具有科学参考价值。  相似文献   

18.
Seasonal and interannual variability of the Subtropical Countercurrent (STCC) in the western North Pacific are investigated using observations by satellites and Argo profiling floats and an atmospheric reanalysis. The STCC displays a clear seasonal cycle. It is strong in late winter to early summer with a peak in June, and weak in fall. Interannual variations of the spring STCC are associated with an enhanced subtropical front (STF) below the surface mixed layer. In climatology, the SST front induces a band of cyclonic wind stress in May north of the STCC on the background of anticyclonic curls that drive the subtropical gyre. The band of cyclonic wind and the SST front show large interannual variability and are positively correlated with each other, suggesting a positive feedback between them. The cyclonic wind anomaly is negatively correlated with the SSH and SST below. The strong (weak) cyclonic wind anomaly elevates (depresses) the thermocline and causes the fall (rise) in the SSH and SST, accelerating (decelerating) STCC to the south. It is suggested that the anomalies in the SST front and STCC in the preceding winter affect the subsequent development of the cyclonic wind anomaly in May. Results from our analysis of interannual variability support the idea that the local wind forcing in May causes the subsequent variations in STCC.  相似文献   

19.
A set of multiply nested atmospheric (The Penn State/NCAR Mesoscale Modeling system—MM5) and oceanic (Regional Ocean Modeling System—ROMS) models has been developed to investigate ecosystem forcing as part of the US. GLOBEC program. This study focuses on the most finely nested oceanic model in the hierarchy, that of the coastal Gulf of Alaska (CGOA) during 2001–2002, and compares the model's results to data collected by GLOBEC investigators. The 3-km resolution model realistically generates two physical features needed to reproduce the CGOA ecosystem: the cross-shelf water mass structure on the Seward Shelf, and the seasonal cycle of vertical structure. In addition, the temporal variability of currents and tracer fields generated by the model is greatly improved compared to previous work, as is the resolution of the Alaska Coastal Current (ACC). However, the treatment of the line-source freshwater source along the coast of Alaska still presents difficulties, because the model cannot resolve the many inlets and fjords where mixing takes place initially. This issue is investigated by testing the model's sensitivity to various forcing mechanisms which could compensate for this weakness, such as the addition of tidal mixing, the use of finely resolved winds, and the use of brackish runoff rather than purely freshwater for the line-source.  相似文献   

20.
A long-term (18 years) prognostic experiment on the formation of the Marmara Sea hydrodynamic structure driven by the exchange through straits with zero atmospheric forcing is carried out using a numerical nonlinear circulation model. The seasonal variability is taken into account by specifying the water temperature in the Bosporus. It is shown that the mutual adaptation of hydrophysical fields and their adjustment to the physical and geographical conditions of the sea are caused by rapid (tens of days) and slow (several tens of years) adjustment mechanisms. An S-shaped jet current directed from the Bosporus Strait to the Dardanelles is formed in the upper 20-m layer. A cyclonic eddy is periodically formed near the northern boundary of the Marmara Sea. An anticyclonic pattern is well defined in the central part of the sea. In deeper layers there is an abyssal jet current formed by the inflow of the high-density Aegean water to the Marmara Sea. These features of the Marmara Sea circulation are confirmed by observational data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号