首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
黄俊杰  苏谦  钟彪  白皓  王武斌 《岩土力学》2013,34(3):703-710
从力学相似性的角度进行多年冻土斜坡路基失稳变形离心模型试验,分析最大融深状态下冻土斜坡路基土层性质、高度以及地基坡度对其稳定性的影响规律,研究冻土斜坡路基失稳变形特性、失稳机制及模式,将片石路基与普通路基进行对比分析。试验结果表明,冻土斜坡路基土层力学性质、路基高度和地基坡度对其稳定具有显著影响,路基的变形在冻融交界面发生骤变,变形主要集中在冻融交界面之上的土层;在本试验条件下,多年冻土斜坡路基合理高度约为5 m;当斜坡路基高度为5 m时,地基坡度大于1: 6,路基横向变形迅速增大;冻土斜坡路基的沉降和横向变形表现出较大的不均匀性,冻土斜坡路基变形失稳的根本原因是冻融交界附近软弱带的抗剪强度不足,阳坡冻融交界面之上的土层沿软弱带滑移破坏;路基破坏可分为浅层开裂破坏、深层开裂破坏和整体滑移破坏3种;冻土斜坡片石路基的水平位移和沉降明显小于普通路基,片石路基具有较好的整体稳定性。  相似文献   

2.
青藏铁路多年冻土区保温护道路基温度场数值模拟研究   总被引:1,自引:0,他引:1  
葛建军 《冰川冻土》2008,30(2):274-279
多年冻土区路基铺设保温护道的目的在于削弱边坡热侵蚀作用对路基下多年冻土温度状况的影响,防止多年冻土上限特别是阳坡侧冻土上限下降,减少人为活动对路堤坡脚及附近天然地表的破坏;防止路侧地表积水渗入基底;对边坡产生反压,防止路肩滑塌,以保证路基的稳定.结合试验工程监测资料,采用数值模拟方法分析了青藏铁路多年冻土区路基保温护道的效果,结果表明:保温护道并没有达到设计的目的,由于路基和护道几何形状对空气对流和太阳辐射的影响,不仅达不到保护冻土地基的目的,反而加大阴阳坡温度差异,导致路基病害的发生.  相似文献   

3.
青藏铁路普通路基下部冻土变化分析   总被引:5,自引:2,他引:3  
吴青柏  刘永智  于晖 《冰川冻土》2007,29(6):960-968
高温高含冰量冻土地区,青藏铁路采取了冷却路基、降低多年冻土温度的工程措施.然而青藏铁路仍有大量路段未采用任何工程措施,因此修筑普通路基后冻土变化也是普遍关心的问题.根据青藏铁路普通路基下部土体温度监测的近期结果,分析了季节冻土区、已退化多年冻土区和多年冻土区路基下部冻土变化特征.结果表明,不同区域修筑普通路基,其下部土体温度、最大季节冻结深度、多年冻土上限等存在较大的差异.在季节冻土和已退化多年冻土区,右路肩下部(阴坡)已形成冻土隔年层;在多年冻土强烈退化区,其路基下部形成融化夹层;在高温多年冻土区,其路基下部上限存在抬升和下降,上限附近土体温度有升高的趋势.在低温多年冻土区,其路基下部上限全部抬升,上限附近土体存在"冷量"积累,有利于路基下部多年冻土热稳定性.因此,低温多年冻土区修筑普通路基后,冻土变化基本是向着有利于路基稳定性的方向发展,在其它地段修筑普通路基,冻土变化是向着不利于路基稳定性的方向发展的.特别是阴阳坡太阳辐射差异,导致了土体热状态和多年冻土上限形态产生较大的差异,这种差异将会对路基稳定性产生一定的影响.  相似文献   

4.
青藏铁路遮阳板措施应用效果观测研究   总被引:10,自引:6,他引:4  
冯文杰  马巍 《冰川冻土》2006,28(1):108-115
在青藏铁路的施工建设中,许多主动保护冻土的措施已经被采用,遮阳板就是其中之一.遮阳板措施的保温效果在应用只有1 a的时间里面就表现出来,在第1个冷暖季节过后,在遮阳板保护下的路基土体温度就较普通路基低,在路基左路肩部位(阳坡)低出3~5℃;在路基的左右护道、路肩孔和中心孔冻土上限抬升在1.0~1.7 m,平均抬升1.1 m.遮阳板措施对于保护路基冻土效果较其它主动保护冻土措施更快、更明显,是多年冻土区工程建设中主动保护冻土措施的首选措施之一.  相似文献   

5.
以青藏铁路沱沱河段路基边坡作为试验区,且在试验区路基边坡两侧种植了乡土护坡草本植物垂穗披碱草,通过对种植在试验区路基阴坡、阳坡生长5年的垂穗披碱草,做了野外原位根系拉拔试验,获得了垂穗披碱草根系抗拔力。研究表明:种植在阳坡的垂穗披碱草根系抗拔力为3088N,阴坡抗拔力为2352N,即种植在阳坡的垂穗披碱草根系抗拔力显著大于阴坡,影响其抗拔力大小的主要因素与土壤含水量及其变化有密切关系,试验区阳坡接受光照时间、程度均强于阴坡,试验区阳坡坡面土壤水分蒸发量大于阴坡这种差异形成阴坡、阳坡坡体土壤含水量不同的主要原因;垂穗披碱草根系抗拔力大小与须根数量、根径、根长、株高、根表面积、分蘖数之间均呈线性关系,其中抗拔力与须根数量之间呈显著性线性相关,阳坡垂穗披碱草抗拔力随根系数量增加的幅度显著大于阴坡,即当须根数量为40~60条时,阳坡垂穗披碱草的抗拔力集中分布在11~25N,阴坡抗拔力分布在8~15N;当须根数量为60~140条时,阳坡垂穗披碱草的抗拔力分布在30~70N,阴坡抗拔力为20~50N。根据路基边坡阴坡、阳坡垂穗披碱草根系抗拔力试验结果,评价了阴、阳两种坡向条件下垂穗披碱草根系护坡力学贡献,这对青藏铁路路基边坡种植草本植物实现该边坡与周边自然生态环境之间的协调发展具有理论指导意义。  相似文献   

6.
青藏铁路冻土路基变形监测与分析   总被引:5,自引:0,他引:5  
马巍  刘端  吴青柏 《岩土力学》2008,29(3):571-579
基于现场监测资料,对作为青藏铁路中的主要保护冻土的几种路基形式(如:通风管路基、块石路基、块石护坡路基、保温材料路基和普通素土路基)进行了变形和温度分析,发现所有路基的变形均以沉降变形为主,且其变形与其下伏冻土的地温场变化密切相关。经过2~3个冻融周期后,通风管路基、块石路基、块石护坡路基和保温材料路基的变形已趋于稳定,而无任何措施的普通路基目前变形仍未稳定。另外,各种路基左右路肩均存在变形差。基于以上分析可得到一个启示:在高温、高含冰量冻土地区,由于路基下多年冻土温度升高产生的高温冻土压缩变形而引起的路基沉降变形具有相当大的量级,很有可能成为冻土路基发生破坏的一个重要原因,工程实践中应给予足够的重视。  相似文献   

7.
《岩土力学》2017,(11):3304-3310
U型块石路基作为块石护坡与块石基底两种结构路基的组合,同时也作为青藏铁路的一种主要补强措施,其在高温冻土区的长期降温效果备受关注。基于长期的现场监测资料,对青藏铁路楚玛尔河高温冻土区一处U型块石路基的长期降温过程、降温机制以及变形特征进行了研究。结果表明:U型块石路基表现出持续稳定的降温效果,路基下部多年冻土上限附近降温明显,上限抬升迅速,且进入稳定状态。基底块石层底、顶板温差存在明显冷暖季差异。阴坡侧块石层每年1月至3月初为相对强烈自然对流期,阳坡侧相对缩短半个月时间。受工程热扰动影响,深层的多年冻土在经历2~3年升温过程后,呈现显著的降温过程。路基变形整体表现为较小的沉降量,变形主要来源于早期路基下部高温冻土层的压缩变形。总之,U型块石路基在高温冻土区表现出长期有效的降温效果,变形量有限且已趋于稳定,路基整体稳定性可以得到保证。  相似文献   

8.
青藏铁路多年冻土路基稳定性及防治措施研究   总被引:8,自引:7,他引:1  
李勇  韩龙武  许国琪 《冰川冻土》2011,33(4):880-883
青藏铁路冻土路基的稳定性是多年冻土区列车安全运营的重要保证.影响路基稳定性的主要因素是路基地温场的变化、路基两侧地表水以及地下水(冻结层上水、冻结层间水)和地层含冰量大小,即冻土路基防护措施的强弱和水热影响程度.保证冻土路基稳定性的防治原则是减少太阳辐射和周围环境的水影响,易采用路基两侧排水、增加片(碎)石护坡(道)、...  相似文献   

9.
通风管、抛碎石和保温材料保护冻土路堤的工程效果分析   总被引:4,自引:4,他引:0  
吴志坚  马巍  盛煜  牛富俊  孙志忠 《岩土力学》2005,26(8):1288-1293
根据青藏铁路北麓河试验段2年以来的气温降温期的现场监测资料,对多年冻土区保护冻土路堤的3种典型结构型式的试验段(通风管路堤、抛碎石护坡路堤和保温材料路堤)各断面的地温规律进行了分析和积温计算。试验段初步计算结果表明,3种路基结构型式对于保护多年冻土区路堤均能起到一定的作用,为青藏铁路在多年冻土区保护冻土路堤的设计和施工提供了一定的理论依据。  相似文献   

10.
青藏铁路路桥过渡段沉降变形影响因素分析   总被引:4,自引:0,他引:4  
牛富俊  林战举  鲁嘉濠  刘华 《岩土力学》2011,32(Z2):372-377
青藏铁路于2006年7月1日建成通车,已运行5年。总体上铁路路基是稳定的,但由于铁路建设在以高温高含冰量为特征的多年冻土之上,冻土的微小变化会诱发路基病害的发生,其中路桥过渡段沉降变形是比较典型,也是最为普遍的一类路基病害。通过对青藏铁路西大滩至尺曲谷地164座桥梁路桥过渡段沉降病害调查及相关因素分析。过渡段路基沉降与桥走向的南北端、路基坡向、路基高度、多年冻土类型(含冰量)、地温、路基结构以及地质条件等因素相关。桥北端平均沉降量大于南端,阳坡大于阴坡;沉降量随着路基高度呈对数趋势增加;富冰、饱冰等高含冰量冻土区沉降明显高于多冰、少冰地段,高温多年冻土区沉降量高于低温多年冻土区;路基结构对过渡段沉降也有一定的响应性,表现为特殊结构路基沉降较小;粉土、粉质黏土等细颗粒地层段沉降量比砾石土等其他岩性地段大。通过相关性分析表明,过渡段路基沉降与坡向相关系数最大,为0.234,其次为与路基填土高度,为0.213,与桥南北端、路基结构、冻土含冰量也呈正相关关系;与地温的负相关性比较显著,为-0.210,其次与地质条件呈现出负相关性  相似文献   

11.
青藏铁路清水河段片石护坡路堤温度特性研究   总被引:3,自引:3,他引:0  
通过对青藏铁路清水河试验段片石护坡、无片石护坡的冻土路堤和地基的温度进行的全面监测,对比分析了路堤体内及基底的地温、积温及温度场中最大融化深度的变化情况,结果表明,采用片石护坡措施的试验路堤,与对比段(普通路堤)相比,降温效果明显。负积温量值大于对比段,最大融化深度抬升幅度较大。因此,片石护坡能够有效发挥降低地温、保护多年冻土的作用,并有利于坡面防护,是一种施作方便,既能用于新建,又能用于补强的多年冻土主动保护措施。  相似文献   

12.
青藏高原多年冻土区碎石护坡降温作用及效果分析   总被引:6,自引:3,他引:3  
孙志忠  马巍  李东庆 《冰川冻土》2007,29(2):292-298
基于青藏高原北麓河多年冻土区碎石护坡路基与普通路基温度监测资料分析,结果表明:碎石层的铺设具有减小坡面年平均温度及坡面温度年较差的作用;与普通路基相比,碎石护坡在暖季主要起到隔热作用,但在冷季主要存在不利于路基散热的弊病.从路基人为冻土上限抬升状况、温度降低程度和路基变形量的差异来看,碎石护坡路基较普通路基有利于冻土路基的热稳定性.但碎石护坡调节路基内部温度场是一个长期过程,即坡面温度对多年冻土温度的影响具有滞后性,若作为青藏铁路多年冻土区补强措施使用时应慎重.  相似文献   

13.
青藏铁路多年冻土区路基变形裂缝发生机理及其防治   总被引:16,自引:0,他引:16  
青藏铁路多年冻土区路基工程的修建,改变了路基基底多年冻土的热量平衡状态.通过对青藏铁路多年冻土区试验工程和已经施工的路基工程所发生的变形裂缝的调查和分析,认为多年冻土区路基几何尺寸不对称和路基边坡坡向不同导致的路基人为上限形态不同,是造成多年冻土区路基温度场不对称以及基底土体冻结融化过程不同步的主要原因,也是造成路基变形裂缝的主要原因.文章在此基础上提出了减少或消除路基温度场不对称,从而减少或消除这类变形裂缝的主要工程结构形式和工程措施,作者的看法和结论已经在2003年青藏铁路冻土区路基工程设计和成形路基补强工程措施设计中得到广泛应用.  相似文献   

14.
在介绍青藏高原多年冻土退化背景及其工程影响的基础上,通过主要冻土路基现场监测和沿线调查,对青藏铁路冻土路基2002年以来的地温发展过程、热学稳定性及次生冻融灾害进行了分析。结果表明:青藏铁路自2006年通车后冻土路基整体稳定,列车运行速度达100 km/h,达到设计要求,但不同结构路基的热学稳定性不同,采取"主动冷却"方法的路基稳定性显著优于传统普通填土路基。管道通风路基、遮阳棚路基及U型块石路基冷却下伏多年冻土的效果显著,块石基底路基左右侧对称性较差,而处于强烈退化冻土区和高温冻土区的普通路基热稳定性差,需结合路基所在区域局地气候因素予以调整或补强。以热融性、冻胀性及冻融性灾害为主的次生冻融灾害对路基稳定性存在潜在危害,主要表现为路基沉陷、掩埋、侧向热侵蚀等,其中目前最为严重的病害是以路桥过渡段沉降为代表的热融性灾害。  相似文献   

15.
青藏铁路路基创造性采用了主动冷却路基的设计理念修建而成,目前铁路已经安全运营超过10年。青藏铁路路基修筑在多年冻土之上,路基下部冻土温度变化是衡量路基是否稳定的关键因素。基于长期(2008—2019年)地温观测资料,对昆仑山垭口南坡青藏铁路K980+000低温多年冻土区块石路基坡脚至坡脚外30 m范围内的冻土上限变化、年际地温变化、季节性地温变化进行分析,研究了路基工程行为对低温多年冻土的长期影响机制。结果表明:冻土地温不断升高,冻土上限逐年下移;与天然孔比较,路基坡脚处地温增温幅度反而较小,主要可能受块石路基冷却效应的影响;冷季与暖季呈现出不对称的增温趋势。冻土路基普遍增温的趋势仍然存在,出于对多年冻土的保护与保证工程稳定性的考虑,应尽量采用冷却路基的思想修建路基。同时,应加强对路基的监测,分析长期增温过程后路基稳定性变化,并对路基下部冻土的变化做出定量研究。  相似文献   

16.
青藏铁路块石气冷结构路堤下冻土温度场变化分析   总被引:18,自引:7,他引:11  
马巍  吴青柏  程国栋 《冰川冻土》2006,28(4):586-595
基于青藏铁路沿线多年冻土区温度监测断面,选取了不同冻土分区中的8个块石路堤结构(块石路基、块石护坡、块石路基加块石护坡)断面,对其下温度场的变化分析研究.结果表明:经过2~3个冻融循环后,块石结构路堤下冻土上限已抬升了1.4~5.3 m,说明块石路堤结构已起到了积极调节下伏冻土温度的作用.结果也显示,在上限抬升的同时,其下部的冻土地温也在升高,但是这种过程已逐渐被块石路堤结构的降温所抑制,而这种抑制程度受控于不同的冻土区域.在不同的冻土分区中,无论是何种形式的块石路堤结构,其降温趋势是不同的.Ⅳ和Ⅲ冻土区块石路堤基底的负温积累比较明显,而I和Ⅱ区的较弱.  相似文献   

17.
青藏铁路碎石护坡-热管复合措施的补强效果研究   总被引:2,自引:1,他引:1  
青藏铁路高温冻土区的普通路基和保温材料路基均处于热不稳定状态, 需要对它们增设碎石护坡-热管复合措施来强化处理, 新增设的补强措施对路基下部冻土的保护效果如何是人们极为关心的问题. 因此, 对北麓河高温高含冰量路段增设了碎石护坡及热管的复合补强措施后路基下部土体的热状态进行观测.结果显示:普通路基在增设补强措施后, 人为冻土上限进一步抬升, 阴阳坡下均出现显著的降温趋势, 且路基下温度场逐渐趋于对称, 降温范围逐渐向路基中心及深部发展, 路堤中心深部地温仍处于增温状态, 但增温趋势明显缓减; 保温材料路基在增设补强措施后, 人为冻土上限也进一步的抬升至保温板附近, 融化夹层在2个冻融周期后消失, 路堤中心温度在2个冻融周期后出现了降温趋势. 这些效果说明, 补强措施在调控路基内部及下部多年冻土温度时发挥了积极作用.  相似文献   

18.
工程作用和气候转暖影响加剧了工程下部多年冻土的退化,导致冻土工程稳定性发生显著变化。本文从气候转暖和工程活动下多年冻土变化和冻融灾害的视角探讨了气候转暖与工程稳定性的关系,给出了青藏高原气候转暖下活动层厚度、冻土温度等变化和青藏公路和青藏铁路工程下部多年冻土上限、冻土温度和路基变形等特征。同时,系统梳理了青藏高原冻土工程防治冻土融化的工程技术措施,讨论了未来气候变暖下青藏高原多年冻土的变化特征及其对冻土工程服役性的影响。青藏高原多年冻土在过去数十年来发生了不同程度的退化,工程作用加速了工程下部多年冻土退化,严重影响工程稳定性。青藏铁路采取了冷却路基、降低多年冻土温度的技术措施,但冻土工程仅能适应气候变暖1 ℃的情况。未来气候变暖1.5 ℃,青藏铁路冻土工程的补强措施需尽早谋划。  相似文献   

19.
青藏铁路多年冻土地区碎石护坡路基非线性分析   总被引:1,自引:0,他引:1  
为了研究碎石护坡对冻土区路基温度场的影响,以青藏铁路试验段现场观测的气候和地质资料为上边界条件,运用带相变瞬态温度场有限元数值解法,对不同厚度的碎石护坡路基进行了分析。结果表明:粒径为10 cm的碎石护坡对多年冻土区路基的稳定性有保护作用;碎石护坡对路基坡脚附近地温影响较大,采用碎石护坡对防止路基纵向裂缝的产生有一定的作用;实际应用中碎石层厚度不能太厚。  相似文献   

20.
青藏高原海拔高,太阳辐射强,坡向效应显著.其中阴阳坡效应不仅导致多年冻土空间分布格局的差异性,也严重影响了冻土路基工程稳定性.目前虽有大量关于阴阳坡热效应的研究,但定量化和多因素耦合作用的研究,特别是场地内多次重复测量的定量评估研究仍不多见.通过对青藏高原多年冻土区北麓河盆地两个具有相反坡向研究场近4年(2016年9月至2020年5月)近地表温湿度、辐射和风速等野外多重观测资料的分析,研究了高海拔多年冻土区阴阳坡效应对近地表水热及能量平衡的影响.结果表明:在坡向的长期影响下,阴阳坡下垫面性质(辐射、温湿度和土壤质地等)存在较大的差异.其中,阳坡土质相对粗糙,不利于水分的保持,阴坡反之.0.05m深度阳坡(朝南坡向)的日冻融循环次数明显高于阴坡(朝北坡向)o2016-2019年阳坡和阴坡的日冻融循环总次数分别为368和109次,差异非常明显.阳坡各深度土壤温度均显著大于阴坡,温差约1.4℃.浅层地温对地表热量变化的响应速率较快,但随深度的增加阴坡地温的响应速率逐渐滞后于阳坡,且这一现象在融化阶段更为显著.融化阶段,阳坡水分的变化速率较快,随深度的变幅较大,但土壤含水量却明显低于阴坡.地表性质差异如温湿度、反照率和风速等控制着地表能量的交换过程,致使阳坡土壤热通量和短波辐射均大于阴坡.研究对深入理解高海拔、坡地多年冻土区气候—冻土关系及多年冻土模拟边界条件优化具有重要意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号