首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper analyzes energy efficiency of the industrial corn-ethanol cycle. In particular, it critically evaluates earlier publications by DOE, USDA, and UC Berkeley Energy Resources Group. It is demonstrated that most of the current First Law net-energy models of the industrial corn-ethanol cycle are based on nonphysical assumptions and should be viewed with caution. In particular, these models do not (i) define the system boundaries, (ii) conserve mass, and (iii) conserve energy. The energy cost of producing and refining carbon fuels in real time, for example, corn and ethanol, is high relative to that of fossil fuels deposited and concentrated over geological time. Proper mass and energy balances of corn fields and ethanol refineries that account for the photosynthetic energy, part of the environment restoration work, and the coproduct energy have been formulated. These balances show that energetically production of ethanol from corn is 2–4 times less favorable than production of gasoline from petroleum. From thermodynamics it also follows that ecological damage wrought by industrial biofuel production must be severe. With the DDGS coproduct energy credit, 3.9 gallons of ethanol displace on average the energy in 1 gallon of gasoline. Without the DDGS energy credit, this average number is 6.2 gallons of ethanol. Equivalent CO2 emissions from corn ethanol are some 50% higher than those from gasoline, and become 100% higher if methane emissions from cows fed with DDGS are accounted for. From the mass balance of soil it follows that ethanol coproducts should be returned to the fields.
Tad W. PatzekEmail:
  相似文献   

2.
The Arman field in western Kazakhstan is estimated to hold recoverable reserves of 3.65 million metric tons of oil and 74 million cubic meters of gas. The field began production in 1994 as a joint venture between Oryx Energy, MangistauMunaiGas, and the State Holding Company Zharkyn, and currently is operated by Royal Dutch Shell in a 50:50 joint venture with Lukoil. The geology, crude composition, and production history of Arman is outlined, followed by a review of the field development, contract structure, and operating and capital expenditures. An assessment of field profitability concludes the discussion.
Mark J. KaiserEmail:
  相似文献   

3.
This paper uses annual data on world oil price and consumption from 1965 to 2006 to calibrate a Hotelling model of optimal nonrenewable resource extraction. Numerical solutions are generated for various specifications of the elasticity of demand for both isoelastic demand and linear demand under each of two possible market structures: perfect competition and monopoly. Prior to the 1973 oil crisis, the model that best fits actual data is one of perfect competition with linear demand and a demand elasticity of −0.4. For the periods 1973–1981 and 1981–1990, the model that best fits actual data is one of monopoly with linear demand and demand elasticities of −0.8 and −0.7, respectively, suggesting that the market was strongly influenced by OPEC during this time. Under the model that best fits the most recent period (perfect competition with linear demand and demand elasticity −0.5), the real oil price (in 1982–1984 U.S.$) should fall in the range $60.87–$66.31/barrel over the years 2010–2030.
C.-Y. Cynthia LinEmail:
  相似文献   

4.
By applying the multi-Hubbert curve analysis to coal production in the United States, we demonstrate that anthracite production can be modeled with a single Hubbert curve that extends to the practical end of commercial production of this highest-rank coal. The production of bituminous coal from existing mines is about 80% complete and can be carried out at the current rate for the next 20 years. The production of subbituminous coal from existing mines can be carried out at the current rate for 40–45 years. Significant new investment to extend the existing mines and build new ones would have to commence in 2009 to sustain the current rate of coal production, 1 billion tons per year, in 2029. In view of the existing data, we conclude that there is no spare coal production capacity of the size required for massive coal conversion to liquid transportation fuels. Our analysis is independent of other factors that will prevent large-scale coal liquefaction projects: the inefficiency of the process and either emissions of greenhouse gases or energy cost of sequestration.
Tad W. PatzekEmail:
  相似文献   

5.
This study extends the application of local spatial nonparametric prediction models to the estimation of recoverable gas volumes in continuous-type gas plays to regimes where there is a single geologic trend. A transformation is presented, originally proposed by Tomczak, that offsets the distortions caused by the trend. This article reports on numerical experiments that compare predictive and classification performance of the local nonparametric prediction models based on the transformation with models based on Euclidean distance. The transformation offers improvement in average root mean square error when the trend is not severely misspecified. Because of the local nature of the models, even those based on Euclidean distance in the presence of trends are reasonably robust. The tests based on other model performance metrics such as prediction error associated with the high-grade tracts and the ability of the models to identify sites with the largest gas volumes also demonstrate the robustness of both local modeling approaches.
Emil D. AttanasiEmail:
  相似文献   

6.
The United States has the world’s largest coal reserves and Montana the highest potential for mega-mine development. Consequently, a large-scale effort to convert coal to liquids (CTL) has been proposed to create a major source of domestic transportation fuels from coal, and some prominent Montanans want to be at the center of that effort. We calculate that the energy efficiency of the best existing Fischer–Tropsch (FT) process applied to average coal in Montana is less than 1/2 of the corresponding efficiency of an average crude oil refining process. The resulting CO2 emissions are 20 times (2000%) higher for CTL than for conventional petroleum products. One barrel of the FT fuel requires roughly 800 kg of coal and 800 kg of water. The minimum energy cost of subsurface CO2 sequestration would be at least 40% of the FT fuel energy, essentially halving energy efficiency of the process. We argue therefore that CTL conversion is not the most valuable use for the coal, nor will it ever be, as long as it is economical to use natural gas for electric power generation. This finding results from the low efficiency inherent in FT synthesis, and is independent of the monumental FT plant construction costs, mine construction costs, acute lack of water, and the associated environmental impacts for Montana.
Tad W. PatzekEmail:
  相似文献   

7.
This study uses 239+240Pu-dated varved sediments from Big Round Lake, a proglacial lake on northeast Baffin Island, Arctic Canada to generate a 1000-year-long, annual-resolution record of past climate. Varve thickness is positively correlated with July–August–September temperature measured at Clyde River, 70 km to the north of the lake (r = 0.46, p < 0.001). We therefore interpret the variability and trends in varve thickness to partially represent summer temperature. The coolest Little Ice Age temperatures occurred in this record from 1575 to 1760 AD and were approximately 1.5°C cooler than today (average from 1995 to 2005 AD) and 0.2°C cooler than the last millennium (average from 1000 to 2000 AD). Pre-twentieth-century warmth occurred during two intervals, 970–1150 AD and 1375–1575 AD; temperatures were approximately 1.2°C cooler than today, but 0.1°C warmer than the last millennium. The Big Round Lake varve-thickness record contains features similar to that reconstructed elsewhere in the eastern Canadian Arctic. This high-resolution quantitative record expands our understanding of arctic climate during the past millennium.
Elizabeth K. ThomasEmail:
  相似文献   

8.
Sediments in Lower Murray Lake, northern Ellesmere Island, Nunavut Canada (81°21′ N, 69°32′ W) contain annual laminations (varves) that provide a record of sediment accumulation through the past 5000+ years. Annual mass accumulation was estimated based on measurements of varve thickness and sediment bulk density. Comparison of Lower Murray Lake mass accumulation with instrumental climate data, long-term records of climatic forcing mechanisms and other regional paleoclimate records suggests that lake sedimentation is positively correlated with regional melt season temperatures driven by radiative forcing. The temperature reconstruction suggests that recent temperatures are ~2.6°C higher than minimum temperatures observed during the Little Ice Age, maximum temperatures during the past 5200 years exceeded modern values by ~0.6°C, and that minimum temperatures observed approximately 2900 varve years BC were ~3.5°C colder than recent conditions. Recent temperatures were the warmest since the fourteenth century, but similar conditions existed intermittently during the period spanning ~4000–1000 varve years ago. A highly stable pattern of sedimentation throughout the period of record supports the use of annual mass accumulation in Lower Murray Lake as a reliable proxy indicator of local climatic conditions in the past.
Pierre FrancusEmail:
  相似文献   

9.
Evidence from lake sediments and glacier forefields from two hydrologically isolated lake basins is used to reconstruct Holocene glacier and climate history at Hallet and Greyling Lakes in the central Chugach Mountains of south-central Alaska. Glacial landform mapping, lichenometry, and equilibrium-line altitude reconstructions, along with changes in sedimentary biogenic-silica content, bulk density, and grain-size distribution indicate a dynamic history of Holocene climate variability. The evidence suggests a warm early Holocene from 10 to 6 ka, followed by the onset of Neoglaciation in the two drainage basins, beginning between 4.5 and 4.0 ka. During the past 2 ka, the glacial landforms and lacustrine sediments from the two valleys record a remarkably similar history of glaciation, with two primary advances, one during the first millennium AD, from ~500 to 800 AD, and the second during the Little Ice Age (LIA) from ~1400 to 1900 AD. During the LIA, the reconstructed equilibrium-line altitude in the region was no more than 83 ± 44 m (n = 21) lower than the modern, which is based on the extent of glaciers during 1978. Differences between the summer temperature inferred from the biogenic-silica content and the evidence for glacial advances and retreats suggest a period of increased winter precipitation from 1300 to 1500 AD, and reduced winter precipitation from 1800 to 1900 AD, likely associated with variability in the strength of the Aleutian Low.
Darrell S. KaufmanEmail:
  相似文献   

10.
A computer methodology is presented that allows natural aggregate producers, local governmental, and nongovernmental planners to define specific locations that may have sand and gravel deposits meeting user-specified minimum size, thickness, and geographic and geologic criteria, in areas where the surficial geology has been mapped. As an example, the surficial geologic map of the South Merrimack quadrangle was digitized and several digital geographic information system databases were downloaded from the internet and used to estimate the sand and gravel resources in the quadrangle. More than 41 percent of the South Merrimack quadrangle has been mapped as having sand and (or) gravel deposited by glacial meltwaters. These glaciofluvial areas are estimated to contain a total of 10 million m3 of material mapped as gravel, 60 million m3 of material mapped as mixed sand and gravel, and another 50 million m3 of material mapped as sand with minor silt. The mean thickness of these areas is about 1.95 meters. Twenty tracts were selected, each having individual areas of more than about 14 acres (5.67 hectares) of stratified glacial-meltwater sand and gravel deposits, at least 10-feet (3.0 m) of material above the watertable, and not sterilized by the proximity of buildings, roads, streams and other bodies of water, or railroads. The 20 tracts are estimated to contain between about 4 and 10 million short tons (st) of gravel and 20 and 30 million st of sand. The five most gravel-rich tracts contain about 71 to 82 percent of the gravel resources in all 20 tracts and about 54–56 percent of the sand. Using this methodology, and the above criteria, a group of four tracts, divided by narrow areas sterilized by a small stream and secondary roads, may have the highest potential in the quadrangle for sand and gravel resources.
David M. SutphinEmail:
  相似文献   

11.
A lake sediment core recovered from Lake V57 on Victoria Island, Nunavut, Canada, spanning the last 2000 years, was analyzed for sub-fossil midge remains and organic-matter content (estimated by loss-on-ignition (LOI)). Significant changes in midge community composition occurred during the last 2000 years, with a distinct midge community appearing after 1600 AD. The chironomid community between 0 and 1600 AD was dominated by Heterotrissocladius, Tanytarsus, Abiskomyia, and Paracladius. At approximately 1600 AD, Heterotrissocladius decreased in relative abundance and taxa such as Corynocera ambigua, C. oliveri, Psectrocladius sordidellus type, and Pentanneurini increased in relative abundance. Previously published midge-based inference models for average July air temperature (AJAT) and summer surface–water temperature (SSWT) were applied to the subfossil midge stratigraphy. The AJAT reconstruction indicates relatively cool conditions existed between 1100 and 1600 AD, with exceptional warming occuring after 1600 AD, as lake productivity inferred from organic-matter content increased concomitantly with midge-inferred AJAT and SSWT. The cooler conditions between 1200 and 1600 AD, and the pattern of warming over recent centuries inferred from Lake V57 is broadly consistent with temperature-sensitive biogenic silica records from other sites in the central Canadian Arctic and the treeline zone to the south suggesting a regionally synchronous response to climate forcing.
David F. PorinchuEmail:
  相似文献   

12.
This paper shows how local spatial nonparametric prediction models can be applied to estimate volumes of recoverable gas resources at individual undrilled sites, at multiple sites on a regional scale, and to compute confidence bounds for regional volumes based on the distribution of those estimates. An approach that combines cross-validation, the jackknife, and bootstrap procedures is used to accomplish this task. Simulation experiments show that cross-validation can be applied beneficially to select an appropriate prediction model. The cross-validation procedure worked well for a wide range of different states of nature and levels of information. Jackknife procedures are used to compute individual prediction estimation errors at undrilled locations. The jackknife replicates also are used with a bootstrap resampling procedure to compute confidence bounds for the total volume. The method was applied to data (partitioned into a training set and target set) from the Devonian Antrim Shale continuous-type gas play in the Michigan Basin in Otsego County, Michigan. The analysis showed that the model estimate of total recoverable volumes at prediction sites is within 4 percent of the total observed volume. The model predictions also provide frequency distributions of the cell volumes at the production unit scale. Such distributions are the basis for subsequent economic analyses.
Emil D. AttanasiEmail:
  相似文献   

13.
Two lake-sediment cores from the western and central Canadian Arctic were used to investigate late Holocene climate variability in the region. Both cores were analyzed for pollen, organic matter, biogenic silica, and magnetic susceptibility, and were dated using a combination of 210Pb and 14C techniques. Core MB01, from southwestern Victoria Island, provides a 2600-year-long record. Fossil pollen percentages, along with other parameters, suggest the occurrence of a cold period around 2400 cal year BP (450 BC), followed by slightly warmer conditions by 1800 cal year BP (150 AD), and a return to cooler conditions throughout much of the last millennium. Core SL06, from southern Boothia Peninsula, shows more subtle changes in pollen percentages over its 2500-year duration, but an increase in Cyperaceae and decrease in Oxyria pollen around 1400 cal year BP (550 AD) are indicative of warmer conditions at that time. Quantitative climate reconstructions from these pollen sequences were compared to two other pollen-based climate records from the region and indicate the presence of a widespread wet period ~1500 cal year BP (450 AD), and a cool and dry Little Ice Age. In the reconstructions based on pollen percentage data, the twentieth century summer temperature and annual precipitation in the central and western Canadian Arctic were comparable to that which occurred over the last 2500 years. However, pollen-influx values increase in the most recent sediments, suggesting high plant productivity during the late twentieth century.
Matthew C. PerosEmail:
  相似文献   

14.
Sediment aggregates (“sedimentary pellets”) within the sedimentary record of Lake A (83°00′ N, 75°30′ W), Ellesmere Island, Canada, are used to construct a 1000 year proxy record of ice-cover extent and dynamics on this perennially ice-covered, High Arctic lake. These pellets are interpreted to form during fall or early winter when littoral sediment adheres to ice forming around the lake’s periphery or during summer through the development of anchor ice. The sediment likely collects in ice interstices and is concentrated in the upper ice layers through summer surface ice melt and winter basal ice growth. The pellets remain frozen in the ice until a summer or series of summers with reduced ice cover allows for their deposition across the lake basin. Sedimentary pellet frequency within multiple sediment cores is used to develop a chronology of ice-cover fluctuations. This proxy ice-cover record is largely corroborated by a record of unusual sedimentation in Lake A involving iron-rich, dark-orange to red laminae overlying more diffuse laminae with a lighter hue. This sediment sequence is hypothesized to represent years with reduced ice cover through increased chemocline ventilation and iron deposition. During the past millennium, the most notable period of inferred reduced ice cover is ca. 1891 AD to present. Another period of ice cover mobility is suggested ca. 1582–1774 AD, while persistent ice cover is inferred during the 1800s and prior to 1582 AD. The proxy ice-cover record corresponds well with most regional melt-season proxy temperature and paleoecological records, especially during the 1800s and 1900s.
Jessica D. TomkinsEmail:
  相似文献   

15.
A sedimentary record from lake Stora Viearvatn in northeast Iceland records environmental changes over the past 2000 years. Downcore data include chironomid (Diptera: Chironomidae) assemblage data and total organic carbon, nitrogen, and biogenic silica content. Sample scores from detrended correspondence analysis (DCA) of chironomid assemblage data are well correlated with measured temperatures at Stykkishólmur over the 170 year instrumental record, indicating that chironomid assemblages at Stora Viearvatn have responded sensitively to past temperature changes. DCA scores appear to be useful for quantitatively inferring past temperatures at this site. In contrast, a quantitative chironomid-temperature transfer function developed for northwestern Iceland does a relatively poor job of reconstructing temperature shifts, possibly due to the lake’s large size and depth relative to the calibration sites or to the limited resolution of the subfossil taxonomy. The pre-instrumental climate history inferred from chironomids and other paleolimnological proxies is supported by prior inferences from historical documents, glacier reconstructions, and paleoceanographic studies. Much of the first millennium AD was relatively warm, with temperatures comparable to warm decades of the twentieth century. Temperatures during parts of the tenth and eleventh centuries AD may have been comparably warm. Biogenic silica concentrations declined, carbon:nitrogen ratios increased, and some chironomid taxa disappeared from the lake between the thirteenth and nineteenth centuries, recording the decline of temperatures into the Little Ice Age, increasing soil erosion, and declining lake productivity. All the proxy reconstructions indicate that the most severe Little Ice Age conditions occurred during the eighteenth and nineteenth centuries, a period historically associated with maximum sea-ice and glacier extent around Iceland.
Peter G. LangdonEmail:
  相似文献   

16.
The environmental controls on modern peatland testate amoebae (Protozoa: Rhizopoda) in the North of Ireland were investigated to assess the potential for Holocene palaeoclimate research within this region. Canonical Correspondence Analysis (CCA) revealed that hydrological factors (water table depth and moisture content) are the most important abiotic controls on organism distribution. A series of partial CCAs showed that water table depth explains 15.8% and moisture content explains 5.5% of the total variance. Monte-Carlo permutation tests showed that the results are highly significant (p < 0.002; p < 0.040 respectively). Transfer functions were generated for water table depth using weighted averaging tolerance downweighted (WA-Tol) regression and for moisture content using weighted averaging partial least squares regression (WA-PLS). The performance of the models was assessed using leave-one-out cross-validation (jacknifing). After removal of outlier samples, the improved transfer functions were found to perform well with an r jack2 and root mean square error of predictionjack of 0.83, 4.99 cm for water table depth and 0.76, 4.60% for moisture content respectively. The water table transfer function was applied to a fossil peat sequence from this region and reconstruction errors were generated by 1,000 bootstrap cycles. The water table reconstruction was also carried out using an established pan-European transfer function and was found to be similar to that based on the North of Ireland dataset. This demonstrates the persistent and comparable control of hydrological variables on the distribution of testate amoebae taxa across Europe and implies that regional training sets can suffice as long as no-analogue situations are not encountered.
G. T. SwindlesEmail:
  相似文献   

17.
For the heavily glaciated mountains of southern Alaska, few high-resolution, millennial-scale proxy temperature reconstructions are available for comparison with modern temperatures or with the history of glacier fluctuations. Recent catastrophic drainage of glacier-dammed Iceberg Lake, on the northern margin of the Bagley Icefield, exposed subaerial outcrops of varved lacustrine sediments that span the period 442–1998 AD. Here, an updated chronology of varve thickness measurements is used to quantitatively reconstruct melt-season temperature anomalies. From 1958 to 1998, varve thickness has a positive and marginally significant correlation with May–June temperatures at the nearest coastal measurement stations. Varve sensitivity to temperature has changed over time, however, in response to lake level changes in 1957 and earlier. I compensate for this by log-transforming the varve thickness chronology, and also by using a 400-year-long tree-ring-based temperature proxy to reconstruct melt-season temperatures at Iceberg Lake. Regression against this longer proxy record is statistically weak, but spans the full range of occupied lake levels and varve sensitivities. Reconstructed temperature anomalies have broad confidence intervals, but nominally span 1.1°C over the last 1500+ years. Maximum temperatures occurred in the late twentieth century, with a minimum in the late sixth century. The Little Ice Age is present as three cool periods between 1350 and 1850 AD with maximum cooling around 1650 AD. A Medieval Warm Period is evident from 1000 to 1100 AD, but the temperature reconstruction suggests it was less warm than recent decades—an observation supported by independent geological evidence of recent glacier retreat that is unprecedented over the period of record. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Michael G. LosoEmail:
  相似文献   

18.
Unconventional Energy Resources and Geospatial Information: 2006 Review   总被引:1,自引:1,他引:0  
This article contains a brief summary of some of the 2006 annual committee reports presented to the Energy Minerals Division (EMD) of the American Association of Petroleum Geologists. The purpose of the reports is to advise EMD leadership and members of the current status of research and developments of energy resources (other than conventional oil and natural gas that typically occur in sandstone and carbonate rocks), energy economics, and geospatial information. This summary presented here by the EMD is a service to the general geologic community. Included in this summary are reviews of the current research and activities related to coal, coalbed methane, gas hydrates, gas shales, geospatial information technology related to energy resources, geothermal resources, oil sands, and uranium resources.
American Association of Petroleum Geologists, Energy Minerals DivisionEmail:
  相似文献   

19.
Instrumental climate records from the central Canadian treeline zone display a pattern of variation similar to general Northern Hemisphere temperature trends. To examine whether this general correspondence extends back beyond the instrumental record, we obtained a sediment core from Lake S41, a small lake in the Northwest Territories of Canada at 63°43.11′ N, 109°19.07′ W. A radiocarbon-based chronology was developed for the core. The sediments were analyzed for organic-matter content by loss-on-ignition (LOI), biogenic-silica content (BSi), and chironomid community composition to reconstruct July air temperature and summer water temperature. The paleolimnological records were compared with records of atmospheric CO2 concentration, solar variability, and hemispheric temperature variations over the past 2000 years. The results of the analyses suggest that widely-documented long-term variations in Northern Hemisphere temperature associated with radiative forcing, namely the cooling following the medieval period during the Little Ice Age (LIA), and twentieth century warming, are represented in the central Canadian treeline zone. There is also evidence of a brief episode of warming during the eighteenth century. As evidenced by LOI and BSi, the twentieth century warming is typified by increased lake productivity relative to the LIA. Depending upon the measure, the increased productivity of the twentieth century nearly equals or exceeds that of any other period in the past 2000 years. In contrast, the rate of chironomid head capsule accumulation decreased and remained low during the twentieth century. Although the chironomid-inferred temperature reconstructions indicate cooling during the LIA, they present no evidence of greatly increased temperatures during the twentieth century. Warming during the twentieth century might have enhanced lake stratification, and the response of the chironomid fauna to warming was attenuated by decreased oxygen and lower temperatures in the hypolimnion of the more stratification-prone lake.
Glen M. MacDonaldEmail:
  相似文献   

20.
The sediment fill of Haukadalsvatn, a lake in northwest Iceland, preserves a record of environmental change since deglaciation, 13 ka ago. The rapid sedimentation rate over the past 2 ka (ca. 4 m ka−1) provides a high-resolution archive of late Holocene environmental change. Physical and chemical environmental proxies extracted from cores from the Haukadalsvatn sediment fill provide a reconstruction of sub-decadal-scale climate variability in Iceland over the past 2 ka. Over this interval biogenic silica (BSi) reflects warm April–May temperatures, whereas total organic carbon (TOC) peaks represent an increased flux of carbon to the lake from eolian-derived soil erosion following periods of cold summers accompanied by dry, windy winters. The proxy-based temperature reconstructions show a broad interval of warmth through Medieval times, but this warmth is punctuated by multi-decadal cold intervals. The transition into the Little Ice Age occurred in two steps, with initial summer cooling 1250–1300 AD, and a more severe drop in summer temperatures between 1450 and 1500 AD; both are periods of severe explosive volcanism. Multi-decadal patterns of cold and warm conditions have some characteristics of a North Atlantic Oscillation (NAO)-like signal, but instrumental records and proxy-based reconstructions of the NAO index contain little power in the frequencies most strongly expressed in our data set. Although severe soil erosion in Iceland is frequently equated with settlement, our reconstructions indicate that soil erosion began several centuries before settlement, whereas for several centuries after settlement, when summer temperatures were relatively high, there was little or no soil erosion. Only during the transition into and during the Little Ice Age did soil erosion become a major feature of the record. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Kristín B. ólafsdóttirEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号