首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents results from the numerical modelling of the transport of atmospheric noble gases (He, Ne, Ar, Kr, Xe), tritiated water and 3He produced by radioactive decay of 3H, in unconsolidated lacustrine sediment. Two case studies are discussed: (1) the evolution of 3H and 3He concentrations in the sediment porewater of Lake Zug (Switzerland) from 1953 up to the present; and (2) the response of dissolved atmospheric noble gas concentrations in the sediment porewater of a subtropical lake to an abrupt climatic change that occurred some 10 kyr before the present. (1) Modelled 3H and 3He porewater concentrations are compared with recent data from Lake Zug. An estimate of the effective diffusion coefficients in the sediment porewater is derived using an original approach which is also applicable also to lakes for which the historical 3H and 3He concentrations in the water column are unknown. (2) The air/water partitioning of atmospheric noble gases is sensitive to water temperature and salinity, and thus provides a mechanism by which these environmental variables are recorded in the concentrations of atmospheric noble gases in lakes. We investigate the feasibility of using noble gas concentrations in the porewater of lacustrine sediments as a proxy for palaeoenvironmental conditions in lakes. Numerical modelling shows that heavy noble gases in sediment porewater, because of their comparatively small diffusion coefficients and the strong temperature sensitivity of their equilibrium concentrations, can preserve concentrations corresponding to past lake temperatures over times on the order of 10 kyr. Noble gas analysis of sediment porewaters therefore promises to yield valuable quantitative information on the past environmental states of lakes.  相似文献   

2.
The characteristics of nitrogen fractions in the surface sediments of lakes from Eastern Plain Region, Yunnan-Guizhou Plateau Region, Northeast China Region, Qinghai-Tibet Plateau Region and Mongolia-Xinjiang Plateau Region were investigated and the differences of five lake regions on nitrogen fractionation were discussed. The results indicated that organic nitrogen (Norg) was the major nitrogen fraction accounting for 76.38–92.02 % of Ntot in sediments. The rank order of average Norg and Ntot of sediments in five lake regions was: Yunnan-Guizhou Plateau Region > Northeast China Region > Mongolia-Xinjiang Plateau Region > Qinghai-Tibet Plateau Region > Eastern Plain Region. The exchangeable nitrogen had a similar distribution as organic nitrogen in the studied sediments. NH4 +–N is the main exchangeable nitrogen of sediments in the studied lakes except in Lake Qinghai and Lake Yamdrok which contained higher nitrate concentrations than ammonium. Fixed ammonium (Nfix) in the sediments of studied lakes was irregularly distributed with the values ranging from 99.45 to 329.02 mg/kg. TOC was significantly and positively correlated with ammonium, nitrate, Norg and Ntot, while Nfix was negatively correlated with nitrate probably due to electrostatic attraction between Nfix and nitrate in layers of sediments.  相似文献   

3.
Hulun Lake and Taihu Lake are both large shallow lakes in China. In summer and winter of 2009, water, sediments and fish samples were collected from the two lakes and the concentrations of metal(loids) were analyzed. The results demonstrated that aqueous concentrations of arsenic (As), chromium (Cr), cadmium (Cd), nickel (Ni) and copper (Cu) in Hulun Lake were significantly higher than those in Taihu Lake. Especially, the As concentrations (about 130 μg/L) in Hulun Lake dramatically exceeded the permissible level of drinking water. Compared with Taihu Lake, metal(loid) concentrations in the sediments of Hulun Lake were significantly lower, which might have less impacts on the metal exchanges between water and sediments. In contrast, concentrations of the measured metal(loids) (including As) in fish from Hulun Lake and Taihu Lake were comparable, suggesting that the dramatic difference in aqueous and sediment metal(loid) concentrations had less influence on the metal(loid) bioavailability. The higher concentrations of dissolved organic carbon (DOC) and cations (e.g., Na+, K+ and Mg2+) in lake water might contribute to the reduced metal(loid) bioavailability to fish in Hulun Lake.  相似文献   

4.
Sedimentary phosphorus (P) composition was investigated in Effingham Inlet, a fjord located on the west coast of Vancouver Island in Barkley Sound. Solid-state 31P nuclear magnetic resonance (NMR) spectroscopy was applied to demineralized sediment samples from sites overlain by oxic and anoxic bottom waters. The two sites were similar in terms of key diagenetic parameters, including the mass accumulation rate, integrated sulfate reduction rate, and bulk sediment organic carbon content. In contrast, P benthic fluxes were much higher at the anoxic site. 31P NMR results show that P esters and phosphonates are the major organic P species present at the surface and at depth in sediments at both sites. Polyphosphates were only found in the surface sediment of the site overlain by oxic waters. The varying stability of polyphosphates in microorganisms under different redox conditions may, in part, explain their distribution as well as differences in P flux between the two sites.  相似文献   

5.
From June 2004 to December 2004, Lake Dianchi, which had large scale of cyanobacterial blooms was investigated in order to study P-fractionation in the suspended matter and the sediment. The investigation improves our understanding of phosphorus in Lake Dianchi and the relationship between phosphorus and cyanobacterial blooms. It contributes to the available literature on the behavior of P in hypertrophic lakes. The distribution of P-fractions in Lake Dianchi was not uniform from northwest to south, but was closely related to the trophic status of the whole lake. The concentrations of total phosphorus, labile P (NH4Cl-P), Organic P (NaOH-NRP) and loss on ignition in suspended matter were positively correlated with the strength of cyanobacterial blooms. Total phosphorus in suspended matter was relatively stable for almost half an year and closely related to Chl. a concentration. The main content of organic phosphorus is in the cyanobacterial blooms. The concentrations of phosphorus bound to metal oxides and carbonates (NaOH-SRP and HCl-P) in sediment were similar to NaOH-SRP and HCl-P in the corresponding suspended matter. The latter two forms of P in suspended matter were not affected by cyanobacterial blooms, indicating that the inorganic phosphorus is derived from the sediment after resuspension from the sediment due to wind and wave action. The contribution of the different P-fractions to TP in sediment and in suspended matter indicates that NH4Cl-P in the suspended matter is an important buffer for maintaining dissolved phosphorus in water.  相似文献   

6.
Organic P (OP) plays an important role in soil P cycling and is a potential P source for wetland plants. In this study, a modified chemical sequential fractionation method and 31P nuclear magnetic resonance spectroscopy (31P NMR) of NaOH–EDTA extracts were used to examine the distribution of organic P fractions and compounds in soil profiles of the Beijing Yeyahu Wetland, China. The influence of acid treatment prior to NaOH–EDTA extraction on 31P NMR spectra was also investigated. Results show that highly resistant OP was the major class of organic P. The rank order of organic P fractions was highly resistant OP (on average accounting for 68.5% of total OP) > moderately resistant OP (15.8%m of total OP) > moderately labile OP (11.4% of total OP) > labile OP (4.3% of total OP). Most of the organic P fractions decreased with soil depth due to the accumulation of plant residues in surface soils and the deposition and diagenesis of soils. Moderately (r = 0.586, p < 0.01) and highly (r = 0.741, p < 0.01) resistant OP fractions were positively correlated with soil organic matter. Phosphorus compounds including orthophosphate (23–74.6% of total P in spectra), monoester phosphate (18.6–76%), diester phosphate (nil-7.8%) and pyrophosphate (nil-6.7%) were characterized using 31P NMR. Monoester-P was the dominant soil organic P compound identified. The proportion of monoester-P increased significantly in NaOH–EDTA extracts with HCl pretreatment and it was confirmed by chemical analysis. Therefore, it can be concluded that HCl pretreatment can remove more than half of the inorganic P and increase the overall recovery rate of organic P during subsequent NaOH–EDTA extraction, which might be a new approach for organic P detection. Furthermore, the OP chemical sequential fractionation method presented in this study is an integrated and comprehensive approach which can be used for further verification.  相似文献   

7.
The accumulation and mobility of Fe, Mn, Al, Cu, Ni and Pb in the sediments of two lakes (Clearwater, pH 4.5; and McFarlane, pH 7.5) near Sudbury, Ontario have been investigated. The Al, Cu and Ni concentrations are expectedly relatively high in the overlying waters of Clearwater Lake and much lower for Al and Cu in McFarlane Lake. The low trace metal concentrations found in the anoxic porewaters of Clearwater Lake could be explained by a sharp increase in porewater pH concomitant with SO42 reduction and H2S production within the first 1–2 cm of the sediments, which has conceivably led to the precipitation of mineral phases such as AL(OH)3, NiS, and CuS. In both lakes, Fe concentrations in anoxic porewaters appear to be controlled by FeS and/or FeCO3 formation. Solubility calculations also indicate MnCO3 precipitation in McFarlane Lake. In Clearwater Lake, however, both porewater and total Mn were relatively low, a possible result of the continuous loss of Mn(II) through the acidic interface. It is suggested that upwardly decreasing total Mn profiles resulting from the removal of Mn from the top sediment layers under acidic conditions may constitute a reliable symptom of recent lake acidification.The downward diffusion of AI, Cu and Ni from the overlying water to the sediments has been estimated from their concentration gradients at the interface and compared to their total accumulation rates in the sediments. In both lakes the diffusion of Al is negligible compared to its accumulation rate. However, diffusion accounts for 24–52% of the accumulation of Cu in the sediments of Clearwater Lake, but appears negligible in McFarlane Lake. The downward diffusive flux of Ni is important and may explain 76–161% of the estimated Ni accumulation rate in Clearwater Lake, and 59% in McFarlane Lake. The porewater Cu and Ni profiles suggest that the subsurface sedimentary trace metal peaks observed in Clearwater Lake (as in other acid lakes) may not be caused by sediment leaching or by a recent reduction in sedimentation but may have a diagenetic origin instead. Diffusion to the sediments thus appears to be an important and previously overlooked trace metal deposition mechanism, particularly in acid lakes.  相似文献   

8.
The Riogrande II reservoir in Colombia has a total storage capacity of 240 million m3 and lies 2,270 m above sea level. The reservoir is used for power generation, water supply and environmental improvement. Dissolved manganese (Mn) is removed from reservoir water dedicated to domestic use by purification processes. Removal of Mn, however, poses a major challenge to purification processes and warrants the study of ways to naturally reduce dissolved Mn levels in the reservoir. The source of Mn within the reservoir is not well understood, however, presumably arises from sediment mobilization initiated by variation in pH, redox potential (ORP or Eh), dissolved oxygen (O2) and ionic strength conditions. This study investigated conditions within the reservoir to further understand Mn transfer from the sediment into the water column. O2, pH, oxidation–reduction potential (ORP or Eh), organic matter content and electric conductivity were measured in water samples and sediment from the reservoir. Sequential extraction (SE) procedures were used to test the specific effects exerted by each of these conditions on Mn mobilization from the sediments. The European Community Bureau of Reference (BCR) sequential extraction procedure was used to quantify metals in sediment (referred to as the BCR extraction below). Statistical analysis of geochemical data from water samples (both water column and sediment pore water) and sediments demonstrated the conditions under which Mn can be released from sediments into the water column. The results indicated a primarily oxic water column and anoxic reducing conditions in the sediment (ORP or Eh ≤ ?80 mV). The pH of water in contact with bottom sediments varied from 7.6 to 6.8. The pH of sedimentary pore water varied from 6.8 to 4.7. The sediments contained significant amounts of organic matter (20 %). Chemical extractions showed that the exchangeable fraction contained over 50 % of the total Mn within sediments. Microscopic analysis using scanning electron microscopy–energy dispersive spectroscopy (SEM–EDS) indicated that Mn does not occur within well-crystallized mineral phases in the Riogrande II sediments. A large proportion of Mn exists instead as material adsorbed onto the surfaces of recently deposited sediment particles. Bacterial oxidation of organic matter may cause the observed anoxic conditions at the bottom of the reservoir. Mineralization of organic matter therefore contributes to reducing conditions within the sediments. Mobilization of Mn from the sediment into the water column may result from reductive dissolution of this fraction. Manganese release by this mechanism diminishes the water quality of the Riogrande II reservoir and warrants further study.  相似文献   

9.
In the work presented here, a Zr-oxide diffusive gradients in thin films (DGT) was used to monitor the release flux of phosphorus (P), ferrum (Fe), and arsenic (As) in the water–sediment interface of Aibi Lake—a typical shallow lake located in the arid regions of Northwest China. Results showed that: (1) In the water–sediments interface of Aibi Lake, the ranges (average values) of labile As, labile P, and labile Fe levels in DGTs are 3.846–101.840 (43.934) µg L?1, 0.006–0.232 (0.070) mg L?1, and 0.202–52.984 (15.832) mg L?1, respectively. Among 0–20 cm of the vertical profile there was a stable distribution of three elements, while below the interface as 0 cm–(??80) cm there were relatively large changes of these. (2) Fitting analysis showed that there were significant correlations between labile Fe and labile P, and labile As in four DGTs, which showed that in the water–sediments of Aibi Lake, Fe, P, and As are released simultaneously. (3) Combined with former research, we found that the redox of Fe3+ to Fe2+ may cause the release of P and As to the sediments and water body from the former Fe–P and Fe–As; the proportion of P/Fe of four DGTs was all relatively lower than 1, suggesting that the redox of Fe3+ caused the P to be released. (4) This research showed that the concentrations of P, Fe, and As of the water–sediments interface of the lake was obviously lower than that of the water body and sediments of Aibi Lake as well as others of central and eastern China. ZrO-DGT can accurately reflect the distribution of P, Fe, and As of Aibi Lake. These findings can provide initial verification for the use of ZrO-DGT technology in the research of elements at the water–sediment interface in lakes of Xinjiang Province in Northwest China.  相似文献   

10.
 Long sediment cores (>1 m) were collected from eight Precambrian Shield lakes in southern Ontario, Canada and analyzed for mercury (Hg), loss-on-ignition (LOI), and a suite of 36 other elements. Results indicated at least 100-fold variation in sediment Hg concentrations between lakes in close proximity (from 450 ppb), comparable to the variation reported for lakes across the whole of Canada. Strong areal correlations between Hg concentrations and LOI (r 2 =0.77), between Hg and other trace element concentrations (Pb, Zn, Cd, Sb, As, Br), and similarities in the vertical concentration profiles of Hg and LOI, all point to the importance of organic matter in the release, transport and redistribution of metals in watershed systems. The spatial pattern of Hg concentrations in deep, precolonial sediments (>20 cm) was found to mirror the pattern of Hg concentrations in modern surface sediments, an observation that was confirmed in a follow-up survey (r 2 =0.85;n=25 lakes), indicating that natural processes govern the unequal distribution of Hg among these lakes. Between-lake differences in surface sediment Hg concentrations normalized to organic carbon (Hg/C) were also reflected by Hg concentrations in smallmouth bass normalized to 35 cm length (R 2 =0.63;n=15 lakes). The latter relationship suggests that smallmouth bass and lake sediment indicators provide mutually supportive information regarding Hg loading to the lacustrine environment from geological sources in the watershed system. Received: 31 October 1996 · Accepted: 27 May 1997  相似文献   

11.
Information on the chemical composition of phosphorus (P) fractions in sediments is fundamental to understanding P bioavailability and eutrophication in lake ecosystems. Phosphorus fractions and its bioavailability in sediments cores of Lake Hongfeng, southwest China, were investigated using a chemical sequential extraction scheme. Relationships between P fractions, P bioavailability and particle sizes were discussed. P fractions concentrations were ranked in the order: Residual-P > NaOH–rP > NaOH–NRP > HCl–P > BD–P > NH4Cl–P, and all of them decreased with increasing sediment depth. Statistical analysis showed that concentrations of bioavailable P (BAP) which includes the NH4Cl–P, BD–P, NaOH–rP and NaOH–NRP fractions ranged from 404.68 to 1,591.99 mg/kg and accounted for 26.8–71.8 % of the concentrations of total phosphorus (TP) in the top 5 cm sediments, whereas in the whole sediment cores, their concentrations ranged from 239.70 to 1,591.99 mg/kg and accounted for 26.8–76.0 % of TP. The results suggested that the sediments were a large potential source of P for algae blooms in Lake Hongfeng. Phosphorus fractions and their potential bioavailability were influenced by the sediment particle sizes, especially the bioavailability of the NH4Cl–P fraction, which was strongly affected by the presence of fine particle sizes in the sediments.  相似文献   

12.
Organic matter in sediments, for instance, carbon, nitrogen and phosphorus, can be used to reconstruct the paleoecological and pollution history of lakes and their catchment basins. In this paper, the contents of allochthonous organic carbon (allochthonous OC) and autochthonous organic carbon (autochthonous OC) in sediment cores taken from Wuliangsuhai Lake and Daihai Lake in northern China are quantified by using a binary model, and phosphorus forms in the sediment cores from the two lakes are extracted by sequential extraction techniques. The results indicate that the palaeoenvironment and paleoclimate of Daihai Lake and its catchment basin in the recent 250 years can be well reconstructed based on the content of allochthonous OC. The climate was relatively humid and warm in the period of 1865–2005, while relatively dry and cold in the period of 1765–1865. The sedimentary information of allochthonous OC in the 22–42-cm portion of the sediment cores in Daihai Lake corresponds to the final cold fluctuation of the Little Ice Age that occurred since the Middle Holocene. The difference of phosphorus forms in the sediment cores between the two lakes indicates that phosphorus input to the lakes and the correlation between phosphorus forms and distribution and the changes of environment are influenced by the eutrophication mechanisms and environmental conditions of the two lakes.  相似文献   

13.
An exploratory study was carried out at 22 sampling stations along the Langat River, Selangor in order to investigate on the vitality of cation exchange capacity (CEC) in sediment (0–5 cm). Parameters such as pH, Eh, salinity, and electrical conductivity (EC) were determined. The CEC in sediment has been calculated by the determination of Ca2+, Na+, Mg2+, and K+ using the flame atomic absorption spectrophotometer, while the organic matter content in sediment was ascertained using the loss on ignition method. The characteristic of the sediment shows that pH (3.09–7.46), salinity (0.02–10.71 ppt), EC (3.39–517 μS/cm) and Eh (?16.20–253.10 mV) were substantially high in variation. This study also revealed that exchangeable Ca2+ and Mg2+ were controlled by organic matter contents, while exchangeable Na+ and K+ were influenced by salinity. Salinity was observed to play a major part in controlling all the exchangeable cations, as it gives strong significant correlations with Na+, K+, Mg2+, CEC, and organic matter at p?<?0.01. The presence of seawater, clay mineralogy, and organic matter proves that it does play an important role in determining the CEC and soon relates to the pollution magnitude in the sediment.  相似文献   

14.
Contents and δ34S values of several S compounds, enumerations of S-reducing bacteria (SRB) and Fe-reducing bacteria (IRB), and Fe, Pb and In concentrations were determined for 210Pb-dated sediment cores from two lakes in Quebec, Canada. Both lakes are located approximately 70 km downwind of the Horne smelter and refinery in Rouyn-Noranda. Increases in Fe, Pb and In concentrations and a decrease in the δ34S values of total S in both lake sediment cores coincide with the start-up of the smelter in 1927. The shift towards more negative δ34S values was primarily caused by an increase in the extent of S isotope fractionation during bacterial (dissimilatory) SO4 reduction due to SO4 loading of the lakes after smelting began. Consequently, an enhanced accumulation of 32S-enriched reduced inorganic S compounds is evident in the sediments. δ34S values of organic S in the sediments decreased only slightly due to the smelter emissions between 1930 and 1980. Hence, due to the sulfide depositing mechanisms, S isotope ratios constitute a useful tracer recording the onset of S pollution in sediments of the two previously SO4-limited lakes investigated. In contrast, total S concentrations alone are not reliable indicators for anthropogenic S loading in lake sediment records.  相似文献   

15.
In order to better understand phosphorus (P) cycling and origins in the sediment of the Lake Illawarra, two sediment cores were extracted in November, 2010 and a modified sequential extraction scheme (SEDEX) was used to profile the exchangeable P (Pex), reactive Fe/Al-bound P (Preac), reductive Fe/Al-bound P (Predu), authigenic apatite P (Pauth), detrital P (Pdet), organic P (Porg) and residual P (Presi). The total sedimentary P (TP) ranged from 93 to 437 μg g?1, and was dominated by inorganic P. The average percentage of each fraction of P in the sediment followed the sequence: Preac (28.6 %) > Presi (23.5 %) > Pauth (19.1 %) > Predu (17.0 %) > Porg (4.9 %) > Pex (4.7 %) > Pdet (2.2 %). The profiles of TP and Porg showed two peak values with depth, which were matched to land use history in the Lake Illawarra catchment. The sediment depth profiles indicated that Fe oxyhydroxides play a predominant role in the P cycle in the sediments of the lagoon. This is supported by significant positive correlation between Preac and reactive Fe and a negative correlation between Pauth and Fe. Pauth and Preac concentrations were also well negatively correlated, possibly a result of competitive equilibrium between Fe and Ca for P. The estimated P burial efficiency was up to 82 % for this lagoon, which is likely related to the high sediment accumulation rate and the high value of R Fe-P. In addition, the bioavailable P, which consists of Pex, Preac, and Porg, represented a significant proportion of the sedimentary P pool, accounting, on average, for 38 % of the TP. This result indicates that the sediment is a potential internal source of P for this lake ecosystem.  相似文献   

16.
红枫湖、百花湖沉积物中磷的存在形态研究   总被引:35,自引:1,他引:34  
湖泊沉积物中磷存在形态,是理解湖泊系统中磷的生物地球化学循环的重要方面,对研究湖泊富营养化等环境问题具有重要意义。本次工作中,采用连续提取化学分析技术,对红枫-百花尖沉积物中磷的存在形态及其剖面变化进行了研究,磷的存在形态包括:吸附态磷(Losely sorbedP)、铁结合态磷(Fe-bound P)、钙结合态磷(Ca-bound P)、矿物晶格中结合力强的残留态磷(Detrial-P)和有机态  相似文献   

17.
Reconstruction of temporal and spatial climate development on a seasonal basis during the last few centuries may help us better understand modern-day interplay between natural and anthropogenic climate variability. The objective of this paper is to reconstruct hydrology and landscape changes of East Siberia during the termination of the Little Ice Age and the subsequent Recent Warming. We analysed sediment samples from the saltwater Sulfatnoe Lake, Bolshoye Alginskoe and freshwater Shuchie Lake using high-resolution X-ray fluorescence spectroscopy at 1-mm scan resolution, Fourier-transform infrared techniques and pollen analyses. The depth–age models of the cores were constructed by 210Pb activity using the constant rate of supply model. The lake sediment cover of these lakes began to form from ca. 1870. Three significant periods (1870–1895, 1895–1925 and from 1925 to the present) were defined in hydrology and chemical regime of these lakes for the past 140 years. Lake levels were extremely low and high saturated with salts during the final period of the Little Ice Age. Lake levels began to slowly rise from 1870 to 1895 and vegetation was poor at that period. Intensive desalination of the lakes occurred in 1895–1925, and environment conditions were temperate and favourable for the majority of the taxa of the regional vegetation. Regional precipitation significantly increased and water saturation of the catchments was high from 1925 to the present. The chemical precipitation of carbonate stopped completely in Lake Shichie and reduced considerably in Lake Sulfatnoe and B. Alginskoe. Strong increasing trend of weathering of the lake catchments began in 1970 and still continues.  相似文献   

18.
On the basic of selective extractions, loosely sorbed phosphorus (ADS-P) has been shown to constitute much of the total phosphorus in the P-rich near-surface sediments of Lake Søbygaard, Denmark. The concentrations of ADS-P are seasonally variable, ranging from 0.2 mg Pg?1 DW in the winter to more than 2 mg Pg?1 DW in the summer. The variations can be observed as deep as 10 cm into the sediment but are most pronounced in the upper few centimeters. During the summer, lake and pore water pH levels are very high, and photosynthetic activity causes elevation to pH 10–11 in the lake. Laboratory experiments demonstrated a strong association between ADS-P and high pore water pH. It is likely that Lake Søbygaard represents an extreme example of pH control on sediment/water phosphorus equilibria in which high concentrations of internal ADS-P contribute significantly to the total P load of the Lake.  相似文献   

19.
Eutrophication of lakes and reservoirs has become a worldwide environmental problem, and nitrogen (N) has been recognized as one of the key factors responsible for eutrophication. Nitrogen adsorbed on sediments may be released via chemical and biological processes under changing environmental conditions. Spatial distributions of concentrations of ammonia nitrogen (NH4 +–N), nitrate nitrogen (NO3 ?–N) and total nitrogen (TN) were investigated in sediments and overlying water of Dongting Lake, the second largest freshwater lake in China. The concentration of TN in the sediments exhibited strong spatial variation with relatively high values in the eastern part and relatively low values in the southern part of the lake. The TN concentration in the water of different regions of Dongting Lake was affected by the internal load of sediment N. The vertical distribution of TN in sediment cores showed a decreasing trend with an increase in depth. Concentrations of NH4 +–N in the sediment cores decreased with the depth increase until 6–8 cm and then increased slowly. However, concentrations of NO3 ?–N in the sediment cores showed an opposite trend from those of NH4 +–N. A kinetic release experiment of NH4 +–N showed that the maximum release rate occurred in the first 5 min and the amount of NH4 +–N release reached 77.93–86.34 % of the total amount in 0–10 min. The release of NH4 +–N in the surface sediments of Dongting Lake fits a first-order kinetics function.  相似文献   

20.
Changes in water chemistry along the High Arctic fluvial–lacustrine system located in Wedel Jarlsberg Land in the SW Spitsbergen (Svalbard) were investigated during the summer season of 2010 and 2011. The newly formed river–lake system consists of three lakes connected with the Brattegg River. The first bathymetric measurements of these lakes were made by the authors in 2010. The Brattegg River catchment represents a partly glaciered Arctic water system. The studied lakes are characterized by low mineralization and temperature of water. The value of the electrolytic conductivity (EC) ranges from 30.2 to 50.5 μS cm?1 and the temperature of surface water from 1.5 to 7.8 °C. The temperature increase takes place downstream starting from Upper Lake to the outflow from Myrktjørna Lake. The waters of lakes have higher temperatures than the stream. The predominant ions are HCO3 ? (up to 16.5 mg L?1), Cl? (6.66–8.53 mg L?1), Ca2+ (2.40–4.45 mg L?1) and Na+ (2.65–3.36 mg L?1). The highest values of ammonium and DOC found in the lowest Myrktjørna Lake seem to be related to the presence of aquatic organisms and also birds. From the group of 10 analyzed microelements, increased concentrations of aluminum, up to almost 500 μg L?1, are present in the lakes’ water. Water isotopic composition ranges for δ18O and δ2H, from ?10.6 to ?10.9‰ and from ?70.8 to ?72.3‰, respectively. The vertical zonality of lake waters is manifested in a decrease in the temperature and increase in EC and chemical elements concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号