首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 151 毫秒
1.
This work, which was done within the Swedish nuclear waste management program, was carried out in order to increase the understanding of the mobility and fate of rare earth elements (REEs) in natural boreal waters in granitoidic terrain. Two areas were studied, Forsmark and Simpevarp, one of which will be selected as a site for spent nuclear fuel. The highest REE concentrations were found in the overburden groundwaters, in Simpevarp in particular (median ∑REE 52 μg/L), but also in Forsmark (median ∑REE 6.7 μg/L). The fractionation patterns in these waters were characterised by light REE (LREE) enrichment and negative Ce and Eu anomalies. In contrast, the surface waters had relatively low REE concentrations. They were characterised either by an increase in relative concentrations throughout the lanthanide series (Forsmark which has a carbonate-rich till) or flat patterns (Simpevarp with carbonate-poor till), and had negative Ce and Eu anomalies. In the bedrock groundwaters, the concentrations and fractionation patterns of REEs were entirely different from those in the overburden groundwaters. The median La concentrations were low (just above 0.1 μg/L in both areas), only in a few samples were the concentrations of several REEs (and in a couple of rare cases all REEs) above the detection limit, and there was an increase in the relative concentrations throughout the lanthanide series. In contrast to these large spatial variations, the temporal trends were characterised by small (or non existent) variations in REE-fractionation patterns but rather large variations in concentrations. The Visual MINTEQ speciation calculations predicted that all REEs in all waters were closely associated with dissolved organic matter, and not with carbonate. In the hydrochemical data for the overburden groundwater in particular, there was however a strong indication of association with inorganic colloids, which were not included in the speciation model. Overall the results showed that within a typical boreal granitoidic setting, overburden groundwaters are enriched in REEs, organic complexes are much more important than carbonate complexes, there is little evidence of significant mixing of REEs between different water types (surface, overburden, bedrock) and spatial variations are more extensive than temporal ones.  相似文献   

2.
The chemical analysis of 19 water wells in Ferdows area, Northeastern Iran, has been evaluated to determine the hydrogeochemical processes and ion concentration background in the region. In the study area, the order of cation and anion abundance is Na+ > Ca2+ > Mg2+ > K+ and Cl? > SO 4 ?2  > HCO3 ? > NO3 ?, respectively, and the dominating hydrochemical types are Na–Cl. Most metal concentrations in water depend on the mineral solubility, and pH, Eh, and salinity of the solution. Their ΣREE concentrations showed excellent correlations with parameters such as TDS and pH. North American Shale Composite (NASC)-normalized REE patterns are enriched in the HREEs relative to the LREEs for all groundwaters. They all have positive Eu anomalies (Eu/Eu* = 0.752–3.934) and slightly negative Ce anomalies (Ce/Ce* = 0.019–1.057). Reduction–oxidation, complexation, desorption, and re-adsorption alter groundwater REE concentrations and fractionation patterns. The positive Eu anomalies in groundwaters are probably due to preferential mobilization of Eu2+ relative to the trivalent REEs in the reducing condition.  相似文献   

3.
《Chemical Geology》2006,225(1-2):156-171
Groundwater samples were collected along a groundwater flow path in the Carrizo Sand aquifer in south Texas, USA. Field measurements that included pH, specific conductivity, temperature, dissolved oxygen (DO), oxidation–reduction potentials (Eh in mV), alkalinity, iron speciation, and H2S concentrations were also conducted on site. The geochemistry (i.e., concentrations, shale-normalized patterns, and speciation) of dissolved rare element elements (REEs) in the Carrizo groundwaters are described as a function of distance along a flow path. Eh and other redox indicators (i.e., DO, Fe speciation, H2S, U, and Re) indicate that redox conditions change along the flow path in the Carrizo Sand aquifer. Within the region of the aquifer proximal to the recharge zone, groundwaters exhibit both highly oxidizing and localized mildly reducing conditions. However, from roughly 10 km to the discharge zone, groundwaters are reducing and exhibit a progressive decrease in redox conditions. Dissolved REE geochemical behavior exhibits regular variations along the groundwater flow path in the Carrizo Sand aquifer. The changes in REE concentrations, shale-normalized patterns, and speciation indicate that REEs are not conservative tracers. With flow down-gradient, redox conditions, pH and solution composite, and adsorption modify groundwater REE concentrations, fractionation patterns, and speciation.  相似文献   

4.
In order to address the problem of realistic assessment of groundwater potential and its sustainability, it is vital to study the recharge processes and mechanism of groundwater flow in fractured hard rocks, where inhomogeneties and discontinuities have a dominant role to play. Wide variations in chloride, δ18O and 14C concentrations of the studied groundwaters observed in space and time could only reflect the heterogeneous hydrogeological setting in the fractured granites of Hyderabad (India). This paper, based on the observed isotopic and environmental chloride variations of the groundwater system, puts forth two broad types of groundwaters involving various recharge processes and flow mechanisms in the studied granitic hard rock aquifers. Relatively high 14C ages (1300 to ~6000 yr B.P.), δ18O content (?3.2 to ?1.5‰) and chloride concentration (<100 mg/l) are the signatures that identified one broad set of groundwaters resulting from recharge through weathered zone and subsequent movement through extensive sheet joints. The second set of groundwaters possessed an age range Modern to ~1000 yr B.P., chloride in the range 100 to ~350 mg/l and δ18O from ?3.2 to +1.7‰. The δ18O enrichment and chloride concentration, further helped in the segregation of the second set of groundwaters into three sub-sets characterized by different recharge processes and sources. Based on these processes and mechanisms, a conceptual hydrogeologic model has evolved suggesting that the fracture network is connected either to a distant recharge source or to a surface reservoir (evaporating water bodies) apart from overlying weathered zone, explaining various resultant groundwaters having varying 14C ages, chloride and δ18O concentrations. The surface reservoir contribution to groundwater is evaluated to be significant (40 to 70%) in one subset of groundwaters. The conceptual hydrogeologic model, thus evolved, can aid in understanding the mechanism of groundwater flow as well as migration of contaminants to deep groundwater in other fractured granitic areas.  相似文献   

5.
Because of the risk of diminishing supplies of rare earth elements (REEs) worldwide due to China’s dominance over REE supply, the necessity of developing domestic resources of REE has been realized in other countries. To explore new ore bodies, a geochemical survey was conducted at one existing carbonatite REE deposit in the Hongcheon area of Korea. Proper sampling strategies and baseline data for the interpretation of the results were determined through a pilot study conducted in the area. Enrichment in the concentration of light REE (LREE) over that of heavy REE, which is typical in carbonatite-type deposits, was observed in stream sediments and heavy mineral samples collected during the geochemical survey. Maximum concentrations of LREE were 2,299 and 27,798 mg/kg for stream sediments and heavy minerals, respectively. Among LREEs, La and Ce are the dominant components of all REEs, comprising approximately 68 % of mean concentrations. Considering the distribution pattern of La + Ce contents and the associations with the existing outcropping ore bodies, the zone of prospective REE mineralization was determined to be in the south-western part of the area. A detailed follow-up soil survey of the zone found even higher concentrations of La and Ce (2,450 and 3,100 mg/kg, respectively), and suggested the possible extension of the existing ore bodies. Likewise, a systematic geochemical survey for REE is feasible for locating concealed ore bodies in the area, where the mineralization is mostly covered with soil, and rock outcrops are scarce.  相似文献   

6.
Rare earth element (REE) adsorption onto sand from a well characterized aquifer, the Carrizo Sand aquifer of Texas, has been investigated in the laboratory using a batch method. The aim was to improve our understanding of REE adsorption behavior across the REE series and to develop a surface complexation model for the REEs, which can be applied to real aquifer-groundwater systems. Our batch experiments show that REE adsorption onto Carrizo sand increases with increasing atomic number across the REE series. For each REE, adsorption increases with increasing pH, such that when pH >6.0, >98% of each REE is adsorbed onto Carrizo sand for all experimental solutions, including when actual groundwaters from the Carrizo Sand aquifer are used in the experiments. Rare earth element adsorption was not sensitive to ionic strength and total initial REE concentrations in our batch experiments. It is possible that the differences in experimental ionic strength conditions (i.e., 0.002-0.01 M NaCl) chosen were insufficient to affect REE adsorption behavior. However, cation competition (e.g., Ca, Mg, and Zn) did affect REE adsorption onto Carrizo sand, especially for light rare earth elements (LREEs) at low pH. Rare earth element adsorption onto Carrizo sand can be successfully modeled using a generalized two-layer surface complexation model. Our model calculations suggest that REE complexation with strong surface sites of Carrizo sand exceeds the stability of the aqueous complexes LnOH2+, LnSO4+, and LnCO3+, but not that of Ln(CO3)2- or LnPO4o in Carrizo groundwaters. Thus, at low pH (<7.3), where major inorganic ligands did not effectively compete with surface sites for dissolved REEs, free metal ion (Ln3+) adsorption was sufficient to describe REE adsorption behavior. However, at higher pH (>7.3) where solution complexation of the dissolved REEs was strong, REEs were adsorbed not only as free metal ion (Ln3+) but also as aqueous complexes (e.g., as Ln(CO3)2- in Carrizo groundwaters). Because heavy rare earth elements (HREEs) were preferentially adsorbed onto Carrizo sand compared to LREEs, original HREE-enriched fractionation patterns in Carrizo groundwaters from the recharge area flattened along the groundwater flow path in the Carrizo Sand aquifer due to adsorption of free- and solution-complexed REEs.  相似文献   

7.
A 7-year monitoring period of rare earth element (REE) concentrations and REE pattern shapes was carried out in well water samples from a 450 m long transect setup in the Kervidy/Coët-Dan experimental catchment, France. The new dataset confirms systematic, topography-related REE signatures and REE concentrations variability but challenges the validity of a groundwater mixing hypothesis. Most likely, this is due to REE preferential adsorption upon mixing. However, the coupled mixing–adsorption mechanism still fails to explain the strong spatial variation in negative Ce anomaly amplitude. A third mechanism—namely, the input into the aquifer of REE-rich, Ce anomaly free, organic colloids—is required to account for this variation. Ultrafiltration results and speciation calculations made using Model VI agree with this interpretation. Indeed, the data reveal that Ce anomaly amplitude downslope decrease corresponds to REE speciation change, downhill groundwaters REE being mainly bound to organic colloids. Water table depth monitoring shows that the colloid source is located in the uppermost, organic-rich soil horizons, and that the colloid input occurs mainly when water table rises in response to rainfall events. It appears that the colloids amount that reaches groundwater increases downhill as the distance between soil organic-rich horizons and water table decreases. Topography is, therefore, the ultimate key factor that controls Ce anomaly spatial variability in these shallow groundwaters. Finally, the <0.2 μm REE fraction ultimately comes from two solid sources in these groundwaters: one located in the deep basement schist; another located in the upper, organic-rich soil horizon.  相似文献   

8.
《Applied Geochemistry》1999,14(1):27-39
One hundred and fifty Norwegian bedrock groundwater samples, from Bergen and from Vestfold (Oslofjord), have been analysed by ICP-MS techniques at two laboratories for a large suite of trace elements including rare earth elements (REEs) and Y. The bedrock lithologies include granites (dominated by the Permian Drammen Granite) and Permian latites/rhomb porphyries from Oslofjord, and Caledonian/Precambrian granitic and gneissic lithologies in the Bergen area. The REEs show good correlation with each other, with the exception of Eu. REEs generally show a weak negative correlation with pH. REE concentrations are highest in waters in acidic lithologies and generally decrease with increasing atomic weight. Yttrium, La, Ce and Nd are the most abundant REEs in the waters, with median concentrations exceeding 0.1 μg/l. On crustal (PAAS)-normalised plots, distinct geochemical signatures are observed for the different lithologies. Most groundwaters exhibit negative Eu anomalies on such plots, except for latitic waters from the Oslo area which show a positive Eu anomaly. Aquifer host-rock-normalised plots for groundwaters from Vestfold indicate minor enrichment in heavier REEs and depletion in Ce during water–rock interaction.  相似文献   

9.
Groundwater samples from six wells and various species of plants from soils developed on ophiolites were collected from an arid area (AlKhod area, Oman) and analyzed for trace elements including rare earth elements (REEs). The distribution patterns of REEs in plants indicated an enrichment in middle REEs (MREEs?=?Sm to Dy) and heavy REEs (HREEs?=?Ho to Lu), when they are normalized to the REE composition of the Post Archean Australian Shale (PAAS), with a significant negative anomaly in Ce and a positive anomaly in Eu. Compared to Oman ophiolites, the REEs in different species of plants are depleted in Ce and enriched in MREEs and slightly enriched in light REE (LREE?=?from La to Nd). Relative to PAAS, the distribution of REEs in groundwaters revealed similar patterns to the REE distribution in plants. The distribution patterns of REEs in plants relative to those in waters are nearly flat. These patterns suggest that the transfer of REEs from soil solutions to the groundwaters in Oman occurs without any significant fractionation.  相似文献   

10.
Soil secondary minerals are important scavengers of rare earth elements (REEs) in soils and thus affect geochemical behavior and occurrence of REEs. The fractionation of REEs is a common geochemical phenomenon in soils but has received little attention, especially fractionation induced by secondary minerals. In this study, REEs (La to Lu and Y) associated with soil-abundant secondary minerals Fe-, Al-, and Mn-oxides in 196 soil samples were investigated to explore the fractionation and anomalies of REEs related to the minerals. The results show right-inclined chondrite-normalized REE patterns for La–Lu in soils subjected to total soil digestion and partial soil extraction. Light REEs (LREEs) enrichment features were negatively correlated with a Eu anomaly and positively correlated with a Ce anomaly. The fractionation between LREEs and heavy REEs (HREEs) was attributed to the high adsorption affinity of LREEs to secondary minerals and the preferred activation/leaching of HREEs. The substantial fractions of REEs in soils extracted by oxalate and Dithionite-Citrate-Bicarbonate buffer solutions were labile (10 %–30 %), which were similar to the mass fraction of Fe (10 %–20 %). Furthermore, Eu was found to be more mobile than the other REEs in the soils, whereas Ce was less mobile. These results add to our understanding of the distribution and geochemical behavior of REEs in soils, and also help to deduce the conditions of soil formation from REE fractionation.  相似文献   

11.
Rare earth element (REE) concentrations in alkaline lakes, circumneutral pH groundwaters, and an acidic freshwater lake were determined along with the free carbonate, free phosphate, and free sulfate ion concentrations. These parameters were used to evaluate the saturation state of these waters with respect to REE phosphate and carbonate precipitates. Our activity product estimates indicate that the alkaline lake waters and groundwaters are approximately saturated with respect to the REE phosphate precipitates but are significantly undersaturated with respect to REE carbonate and sulfate precipitates. On the other hand, the acidic lake waters are undersaturated with respect to REE sulfate, carbonate, and phosphate precipitates. Although carbonate complexes tend to dominate the speciation of the REEs in neutral and alkaline waters, our results indicate that REE phosphate precipitates are also important in controlling REE behavior. More specifically, elevated carbonate ion concentrations in neutral to alkaline natural waters tend to enhance dissolved REE concentrations through the formation of stable REE-carbonate complexes whereas phosphate ions tend to lead to the removal of the REEs from solution in these waters by the formation of REE-phosphate salts. Removal of REEs by precipitation as phosphate phases in the acid lake (pH=3.6) is inconsequential, however, due to extremely low [PO 4 3– ] F concentrations (i.e., 10–23 mol/kg).  相似文献   

12.
This paper aims at determining of inorganic leachate contamination for a capped unsanitary landfill in the absence of hydrogeological data. The 2D geoelectrical resistivity imaging, soil physicochemical characterization, and surface water analysis were used to determine contamination load and extent of selective heavy metal contamination underneath the landfill. The positions of the contaminated subsoil and groundwater were successfully delineated in terms of low resistivity leachate plumes of <10 Ωm. Leachate migration towards the reach of Kelang River could be clearly identified from the resistivity results and elevated concentrations of Fe in the river downslope toe of the site. Concentration of Fe, Mn, Ca, Na, K, Mg, Cu, Cr, Co, Ni, Zn, and Pb was measured for the subsoil samples collected at the downslope (BKD), upslope (BKU), and the soil-waste interface (BKI), of the landfill. The concentration levels obtained for most of the analyzed heavy metals significantly exceed the normal range in typical municipal solid waste landfill sites. The measured heavy metal contamination load in the subsoil is in the following order Fe ? Mn > Zn > Pb > Cr > Cu. Taking into consideration poor physical and chemical characteristics of the local soil, these metals first seem to be attenuated naturally at near surface then remobilize unavoidably due to the soil acidic environment (pH 4.2-6.18) which in turn, may allow an easy washing of these metals in contact with the shallow groundwater table during the periodic fluctuation of the Kelang River. These heavy metals are believed to have originated from hazardous industrial waste that might have been illegally dumped at the site.  相似文献   

13.
The Airekan and Cheshmeh Shotori areas are located about 60 km northeast of Khour, in Isfahan province from Central Iran. Research on characteristics and rare earth elements (REE) pattern in hydrogeochemical environments of these areas suggests the same origin for the elements dissolved in groundwater in these areas. Investigation of migration pattern of REE in hydrogeochemical environments shows that the migration and transportation of REE has occurred through chloride complexes. REEs, leached by water/rock interaction from the Airekan granite, are transported by groundwater and then precipitated in the Cheshmeh Shotori area. Study of the Cheshmeh Shotori sediments shows the presence of a sequence of red oxidized and dark layers. Geochemical characteristics of these sediments reveal that their REE characteristics are mainly inherited from the Airekan granite. Changes in the REE pattern of these sediments with depth show that changes in oxidation and reduction process have not played a significant role in controlling their behavior. It is crucial to note that adsorption of REEs dissolved in water by hydrosilicate increases these elements in depth. The REE behavior shows water/rock interaction between the granitic rocks and groundwater as the main factor of solution, migration and precipitation of REEs in the Cheshmeh Shotori area.  相似文献   

14.
The groundwater in Wadi Queh exists in two main hydrogeological units; fractured Precambrian basement and sedimentary rocks with high contribution for groundwater recharge. To study the impacts of phosphate mining activities on the groundwater quality in the area, three groundwater samples that represent all water wells in the area were collected and analysed for major ions and some heavy metals. In addition, three bulk samples representing the phosphatic sediments collected from upstream and downstream of the drainage basin were collected and analysed to understand the source of groundwater contamination. The total concentrations of dissolved solids suggest that the groundwater in the area grades from fresh to brackish water (961–1,580 mg/l), and is characterized by sodium–calcium–sulphate–chloride and sodium–magnesium–sulphate–chloride chemical types. The results showed high concentrations of the heavy metals in well nos. 1 and 2 in downstream parts compared to well no. 3 in upstream part reflecting their influence by the mining activities.  相似文献   

15.
Twenty-eight soil samples collected from the Nam Co Basin, Tibetan Plateau, have been analyzed for heavy metals (Cd, Cr, Ni, Cu, Zn, Pb and Mn), arsenic (As) and rare earth elements (REEs). In addition, for establishing the basic physio-chemical characteristics of the soil, pH, total organic concentration, electrical conductivity, and effective cation exchange capacity were measured. The results indicate that soil in the Nam Co Basin is still at an early alkaline weathering stage (pH = 7.94). Mean concentrations of heavy metals and As decreased as follows: Mn > Cr > Zn > Pb > Ni > Cu > As > Cd. The values of Cd, Cr, As, Pb and REEs in soil from the Nam Co Basin are higher relative to averaged background values over China. The chondrite-normalized diagrams of REEs suggest high REE(ΣLa → Eu)—enrichment, HREE(ΣGd → Lu)—depletion and Eu—depletion. Vertical profiles indicate that both heavy metals (except As) and REEs primarily exist in the surface soil. However, heavy metals and REEs vary in the surface soil between the southern and the northern bank of Nam Co. These differences are controlled mainly by parent materials.  相似文献   

16.
Acid mine drainage is a major source of water pollution in the Sarcheshmeh porphyry copper mine area. The concentrations of heavy metals and rare earth elements (REEs) in the host rocks, natural waters and acid mine drainage (AMD) associated with mining and tailing impoundments are determined. Contrary to the solid samples, AMDs and impacted stream waters are enriched in middle rare earth elements (MREEs) and heavy rare earth elements (HREEs) relative to light rare earth elements (LREEs). This behavior suggests that REE probably fractionate during sulfide oxidation and acid generation and subsequent transport, so that MREE and HREE are preferentially enriched. Speciation modeling predict that the dominant dissolved REE inorganic species are Ln3+, Ln(SO4)2, LnSO4+, LnHCO32+, Ln(CO3)2 and LnCO3+. Compared to natural waters, Sarcheshmeh AMD is enriched in REEs and SO42−. High concentrations of SO42− lead to the formation of stable LnSO4+, thereby resulting in higher concentrations of REEs in AMD samples. The model indicates that LnSO4+ is the dissolved form of REE in acid waters, while carbonate and dicarbonate complexes are the most abundant dissolved REE species in alkaline waters. The speciation calculations indicate that other factors besides complexation of the REE's, such as release of MREE from dissolution and/or desorption processes in soluble salts and poorly crystalline iron oxyhydroxy sulfates as well as dissolution of host rock MREE-bearing minerals control the dissolved REE concentrations and, hence, the MREE-enriched patterns of acid mine waters.  相似文献   

17.
Environmental geochemical studies were carried out to find out the extent of contamination in sediments due to heavy metals in Balanagar industrial area, Hyderabad, Andhra Pradesh, India. The industrial area consisting of 350 small and large industries manufacturing battery, steel planting, pharmaceutical chemicals, metal plating, etc. The present study was undertaken on sediment contamination in Balanagar industrial area, to determine extent and distribution of heavy metals (Cu, Cr, Ni, Pb, Zn, As) and to delineate the source. There is no treatment plant in the industrial area, and many industries release the effluents into nearby nalas and lakes. Solid waste from the industries is also being dumped along the roads and near the open grounds due to which heavy metals migrate from solid waste to the groundwater. The sediments samples were collected from the study area in clean polythene covers and were analyzed for their heavy metals by X-ray fluorescence spectrometry. The concentration ranges of different heavy metals were Cr, 96.2–439.6 mg/kg; Cu, 95.7–810 mg/kg; Ni, 32.3–13,068.2 mg/kg; Pb, 59.2–512 mg/kg; Zn, 157.1–4,630.5 mg/kg; Co, 1.8–48.3 mg/kg; and V, 35.2–308.5 mg/kg. High concentration of heavy metals in sediments can be attributed to some pharmaceutical and metal industries in the study area. Based on the results obtained, suitable remedial measures can be adopted such as phytoremediation and bio-remediation for reduction of heavy metals in sediments.  相似文献   

18.
Redox buffering is one important factor to be considered when assessing the barrier function of potential host rocks for a deep geological repository for long-lived radioactive waste. If such a repository is to be sited in fractured crystalline host rock it must be demonstrated that waste will be emplaced deeper than the maximum depth to which oxidizing waters can penetrate from the earth’s surface via fractures, during the assessment timeframe (typically 1 Ma). An analogue for penetration of such oxidizing water occurs in the Cretaceous Toki Granite of central Japan. Here, a deep redox front is developed along water-conducting fractures at a depth of 210 m below the ground surface. Detailed petrographical studies and geochemical analyses were carried out on drill core specimens of this redox front. The aim was to determine the buffering processes and behavior of major and minor elements, including rare earth elements (REEs), during redox front development. The results are compared with analytical data from an oxidized zone found along shallow fractures (up to 20 m from the surface) in the same granitic rock, in order to understand differences in elemental migration according to the depth below the ground surface of redox-front formation. Geochemical analyses by XRF and ICP-MS of the oxidized zone at 210 m depth reveal clear changes in Fe(III)/Fe(II) ratios and Ca depletion across the front, while Fe concentrations vary little. In contrast, the redox front identified along shallow fractures shows strong enrichments of Fe, Mn and trace elements in the oxidized zone compared with the fresh rock matrix. The difference can be ascribed to the changing Eh and pH of groundwater as it flows downwards in the granite, due to reactions with rock forming minerals, in particular feldspar dissolution. These observations give important insights into the processes that control the rates of redox front penetration in fractured crystalline rock. The findings of the study can be used to help build confidence among stakeholders that radioactive waste would be emplaced in such rocks at greater depth than that to which oxidizing water is likely to penetrate in future.  相似文献   

19.
The hydrogeochemical and isotopic evolution of groundwaters in the Mio–Pliocene sands of the Complexe Terminal (CT) aquifer in central Algeria are described. The CT aquifer is located in the large sedimentary basin of the Great Oriental Erg. Down-gradient groundwater evolution is considered along the main representative aquifer cross section (south–north), from the southern recharge area (Tinrhert Plateau and Great Oriental Erg) over about 700 km. Groundwater mineralisation increases along the flow line, from 1.5 to 8 g l?1, primarily as a result of dissolution of evaporite minerals, as shown by Br/Cl and strontium isotope ratios. Trends in both major and trace elements demonstrate a progressive evolution along the flow path. Redox reactions are important and the persistence of oxidising conditions favours the increase in some trace elements (e.g. Cr) and also NO3 ?, which reaches concentrations of 16.8 mg l?1 NO3-N. The range in 14C, 0–8.4 pmc in the deeper groundwaters, corresponds with late Pleistocene recharge, although there then follows a hiatus in the data with no results in the range 10–20 pmc, interpreted as a gap in recharge coincident with hyper-arid but cool conditions across the Sahara; groundwater in the range 24.7–38.9 pmc signifies a distinct period of Holocene recharge. All δ18O compositions are enriched relative to deuterium and are considered to be derived by evaporative enrichment from a parent rainfall around ?11‰ δ18O, signifying cooler conditions in the late Pleistocene and possibly heavy monsoon rains during the Holocene.  相似文献   

20.
Forsmark in Sweden has been proposed as the site of a geological repository for spent high-level nuclear fuel, to be located at a depth of approximately 470 m in fractured crystalline rock. The safety assessment for the repository has required a multi-disciplinary approach to evaluate the impact of hydrogeological and hydrogeochemical conditions close to the repository and in a wider regional context. Assessing the consequences of potential radionuclide releases requires quantitative site-specific information concerning the details of groundwater flow on the scale of individual waste canister locations (1–10 m) as well as details of groundwater flow and composition on the scale of groundwater pathways between the facility and the surface (500 m to 5 km). The purpose of this article is to provide an illustration of multi-scale modeling techniques and the results obtained when combining aspects of local-scale flows in fractures around a potential contaminant source with regional-scale groundwater flow and transport subject to natural evolution of the system. The approach set out is novel, as it incorporates both different scales of model and different levels of detail, combining discrete fracture network and equivalent continuous porous medium representations of fractured bedrock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号