首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
In the Urals, a wide range of well-preserved chimneys are found in VMS deposits, which are associated with ultramafic (Atlantic type: Dergamysh), mafic (Cyprus type: Buribay), bimodal mafic (Uralian type: Yubileynoye, Sultanovskoye, Yaman-Kasy, Molodezhnoye, Uzelga-4, Valentorskoye) and bimodal felsic (Kuroko or Baymak type: Oktyabrskoye, Tash-Tau, Uselga-1, Talgan, Alexandrinskoye) sequences. Chimneys have also been found in the Safyanovskoye deposit (Altay type) that is hosted by intercalated felsic lavas and carbonaceous shales. A combination of geological, mineralogical and trace element data provide a general outline for comparison between chimneys from the Urals deposits and modern vent sites. The chimneys from the Dergamysh deposit show a broad affinity with those from the Rainbow and other vent sites associated with serpentinites of the Mid-Atlantic Ridge. The chimneys from the Buribay deposit are similar to the black smokers of the EPR vent sites including the scarcity of rare minerals. The chimneys from the Urals type of the VMS deposits show some similarities with grey smokers from the Brother Volcano and PACMANUS sites. The chimneys from the Baymak type of the VMS deposits resemble grey and white smokers of the PACMANUS and grey smokers of the Suiyo vent sites. The chimneys from the Safyanovskoye deposit are similar to the black and clear smokers from the Okinawa Trough. Mineral assemblages are controlled by the combination of host rock composition and physico-chemical conditions of the ore-forming processes. Amount of colloform pyrite, isocubanite and pseudomorphic pyrite and marcasite after pyrrhotite decreases in the chimneys across the range from ultramafic and mafic to felsic-hosted deposits and is concomitant with increase in the contents of sphalerite, galena, bornite, fahlores, native gold and barite across this range. The chimneys from the Urals type contain abundant tellurides and sulfoarsenides, while these minerals are rare (except for hessite) in the Baymak type deposits. In the same range, the buffering capacity of host rocks decreases in contrast to the increase in ƒS2 and ƒO2. With the exception of the Safyanovskoye deposit, trace element assemblages in chalcopyrite vary to reflect the host rock: ultramafic (high Se, Sn, Co, Ni, Ag and Au)  mafic (high Co, Se, Mo and low Bi, Au and Pb)  bimodal mafic (high Te, Au, Ag, Bi, Pb, Co, moderate Se, and variable As and Sb)  bimodal felsic (high As, Sb, Mo, Pb, moderate Bi, and low Co, Te and Se). In sphalerite of the same range, the contents of Bi, Pb, Ag, Au and Sb increase versus Fe, Se and Сo. The variations in trace elements in colloform pyrite coincide with these changes. The specific mineral changes in the local ranges from Cu- to Zn-rich chimneys in each VMS deposit are similar to the general changes in the range of host rock classes of the deposits. However, the local T, ƒS2 and ƒO2 changes can broadly be interpreted in terms of contribution of variable oxygenated cold seawater to the subseafloor and seafloor hydrothermal processes.  相似文献   

2.
The Dagushan BIF-hosted iron deposit in the Anshan–Benxi area of the North China Craton (NCC) has two types of iron ore: quartz–magnetite BIF (Fe2O3T < 57 wt.%) and high-grade iron ore (Fe2O3T > 90 wt.%). Chlorite-quartz schist and amphogneiss border the iron orebodies and are locally present as interlayers with BIFs; chlorite-quartz schist and BIFs are enclosed by amphogneiss in some locations. The quartz–magnetite BIFs are enriched in HREEs (heavy rare earth elements) with positive La, Eu and Y anomalies, indicating their precipitation from marine seawater with a high-temperature hydrothermal component. Moreover, these BIFs have low concentrations of Al2O3, TiO2 and HFSEs (high field strength elements, e.g., Zr, Hf and Ta), suggesting that terrigenous detrital materials contributed insignificantly to the chemical precipitation. The high-grade iron ores exhibit similar geochemical signatures to the quartz–magnetite BIFs (e.g., REE patterns and Y/Ho ratios), implying that they have identical sources of iron. However, these ores have different REE (rare earth element) contents and Eu/Eu* values, and the magnetites contained within them exhibit diverse REE contents and trace element concentrations, indicating that the ores underwent differing formation conditions, and the high-grade ores are most likely the reformed product of the original BIFs.The chlorite-quartz schist and amphogneiss are characterized by high SiO2 and Al2O3 contents and exhibit variable abundances of REEs, enrichment in LREEs (light rare earth elements), negative anomalies in HFSEs (e.g., Nb, Ta, P and Ti) and positive anomalies in LILEs (large ion lithophile elements, e.g., Rb, Ba, U and K). A protolith reconstruction indicates that the protoliths of the chlorite-quartz schist are felsic volcanic rocks. SIMS and LA-ICP-MS zircon U–Pb dating indicate that this schist formed at approximately 3110 to 3101 Ma, which could represent the maximum deposition age of the Dagushan BIF. However, two groups of zircons from the amphogneiss are identified: 3104 to 3089 Ma zircons that are most likely derived from the chlorite-quartz schist and 2997 to 2995 Ma zircons, which are interpreted to represent the time of protolith crystallization. Thus, the Dagushan BIF most likely formed before 2997 to 2995 Ma. The ~ 3.1 Ga zircons yield εHf(t) values of − 8.07 to 5.46, whereas the ~ 3.0 Ga zircons yield εHf(t) values of − 3.96 to 2.09. These geochemical features suggest that the primitive magmas were derived from the depleted mantle with significant contributions of ancient crust.  相似文献   

3.
This study investigated Holocene and fossil hydrothermal manganese deposits in the Izu-Ogasawara arc. Mineralogically, these deposits comprise 10 Å and 7 Å manganate minerals, and the fossil samples showed higher 10 Å stabilities. Chemical compositions of the Holocene samples are typical of other hydrothermal manganese deposits, including low Fe/Mn ratios, low trace metals, and low rare earth elements. Although the fossil samples generally have similar chemical characteristics, they exhibit significant enrichment in Ni, Cu, Zn, Cd, Ba, REE, Tl, and Pb contents. Furthermore, the chondrite-normalized REE patterns showed more light REE enrichment trends. These chemical characteristics suggest post-depositional uptake of these metals from seawater. U-Th dating of a Holocene hydrothermal manganese deposit from the Kaikata Seamount indicated 8.8 ± 0.94 ka for the uppermost layer and downward growth beneath the seafloor with a growth rate of ca. 2 mm/kyr. This is approximately three orders of magnitude faster than that of hydrogenetic ferromanganese crusts. U-Pb age of a fossil hydrothermal manganese deposit from the Nishi-Jokyo Seamount showed 4.4 ± 1.6 Ma, which was contemporary with basaltic volcanism (5.8 ± 0.3 Ma). Hydrothermal manganese deposits contain high concentrations of high value Mn, but only small amounts of valuable minor metals; their ages constrain the periods of past hydrothermal activity and provide a vector to explore for polymetallic sulfide deposits.  相似文献   

4.
The fresh and weathered garnet amphibolites, from the Akom II area in the Archaean Congo Craton, were investigated to determine the S, Cu, Ni, Cr, and Au-PGE values. The garnet amphibolites are composed of amphibole, plagioclase, garnet, quartz, and accessory apatite, spinel, sericite, pyrite, chalcopyrite and non-identified opaque minerals. The presence of apatite, sericite, and two generations of opaque minerals suggests that they might be affected by hydrothermal alteration. They are characterized by moderate Al2O3, Fe2O3, CaO, V, Zn, and Co contents with negative Eu- and Ce-anomalies. The sulfur concentrations are variable (380–1710 ppm). According to the sulfur contents, amphibolites can be grouped into two: amphibolites with low contents, ranging between 380 and 520 ppm (av. = 457 ppm); and amphibolites with elevated contents, varying from 1140 to 1710 ppm (av. = 1370 ppm). Amphibolites contain contrast amounts of Cu (∼ 1800 to 5350 ppm) while nickel contents attain 121 ppm. Chromium contents vary from 43 to 194 ppm. Sulfur correlates positively with Cu and Cr, but negatively with Ni and Ni/Cr ratio. The total Au-PGE contents attain 59 ppb.The presence of amphibole and feldspars confirms the low degree of amphibolite weathering. The secondary minerals are constituted of kaolinite, gibbsite, goethite and hematite. Despite the accumulation of some elements, the major and trace element distribution is quite similar to that of fresh amphibolites. Nevertheless, the weathering processes lead to the depletion of several elements such as S (239–902 ppm), Cu (520–2082 ppm), and Ni (20–114 ppm). Chromium and Au-PGE show an opposite trend marked by a slight enrichment in the weathered amphibolites. Amidst the Au-PGE, Pd (60 ppb) and Pt (23 ppb) have elevated contents in the fresh rocks as well as in the weathered materials. The PPGE contents are much higher than IPGE contents in both types of materials. The Pd/Pt, Pd/Rh, Pd/Ru, Pd/Ir, Pd/Os, and Pd/Au values indicate that Pt, Rh, Ru, Ir, Os and Au are more mobile than Pd. Chondrite-normalized base metal patterns confirm the abundance of Pd and the slight enrichment of Au-PGE in weathered rocks. Palladium, Rh and Ir are positively correlated with S. Conversely Pt and Ru are negatively correlated with S and Au is not correlated with S. Despite the high and variable S and Cu contents, the garnet amphibolites possess low Au-PGE and other base metals contents.  相似文献   

5.
We report carbonate- and silicate-rich globules and andradite from the Wajilitage kimberlitic rocks in the northwestern Tarim large igneous province, NW China. The carbonate-rich globules vary in size from 1 to 3 mm, and most have ellipsoidal or round shape, and are composed of nearly pure calcite. The silicate-rich globules are elliptical to round in shape and are typically larger than the carbonate-rich globules ranging from 2 to several centimeters in diameter. They are characterized by clear reaction rims and contain several silicate minerals such as garnet, diopside and phlogopite. The silicate-rich globules, reported here for the first time, are suggested to be related to the origin of andradite within the kimberlitic rocks. Our results show that calcite in the carbonate-rich globules has a high XCa (>0.97) and is characterized by extremely high concentrations of the total rare earth elements (up to 1500 ppm), enrichment in Sr (8521–10,645 ppm) and LREE, and remarkable depletion in Nd, Ta, Zr, Hf and Ti. The calcite in the silicate-rich globules is geochemically similar to those in the carbonate-rich globules except the lower trace element contents. Garnet is dominantly andradite (And59.56–92.32Grs5.67–36.03Pyr0.36–4.61Spe0–0.33) and is enriched in light rare earth elements (LREEs) and relatively depleted in Rb, Ba, Th, Pb, Sr, Zr and Hf. Phlogopite in the silicate-rich globules has a high Mg# ranging from 0.93 to 0.97. The composition of the diopside is Wo45.82–51.39En39.81–49.09Fs0.88–0.95 with a high Mg# ranging from 0.88 to 0.95. Diopside in the silicate-rich globules has low total rare earth element (REE) contents (14–31 ppm) and shows middle REE- (Eu to Gd), slight light REE- and heavy REE-enrichment with elevated Zr, Hf and Sr contents and a negative Nb anomaly in the normalized diagram. The matrix of the kimberlitic rocks are silica undersaturated (27.92–29.31 wt.% SiO2) with low Al2O3 (4.51–5.15 wt.%) and high CaO (17.29–17.77 wt.%) contents. The samples are characterized by incompatible element enrichment with high (La/Yb)N values (41–58) and remarkable negative anomalies in HFSEs (e.g. Ta, Zr, Hf). Our new data suggest that the carbonate-rich globule most likely crystallized at high-temperature and does not represent immiscible liquids, whereas the silicate-rich globules are related to carbonate-rich deuteric hydrothermal fluids during the later-stage of melt evolution. The fluids reacted with the surrounding silicate melts resulting in the formation of skarn minerals such as phlogopite, diopside and andradite. The presence of the carbonate-bearing globules indicates that the Wajilitage kimberlitic rocks are carbonate-rich and most likely derived from an enriched mantle with abundant carbonate. We correlate the carbonated mantle to metasomatism by the migration of deep-seated fluids (carbonate-rich) in response to the impingement of the early Permian mantle plume.  相似文献   

6.
Banded iron formations (BIFs) within the Lvliang region of Shanxi Province, China, are hosted by sediments of the Yuanjiacun Formation, part of the Paleoproterozoic Lvliang Group. These BIFs are located in a zone where sedimentation changed from clastic to chemical deposition, indicating that these are Superior-type BIFs. Here, we present new major, trace, and rare earth element (REE) data, along with Fe, Si, and O isotope data for the BIFs in the Yuanjiacun within the Fe deposits at Yuanjiacun, Jianshan, and Hugushan. When compared with Post Archean Australian Shale (PAAS), these BIFs are dominated by iron oxides and quartz, contain low concentrations of Al2O3, TiO2, trace elements, and the REE, and are light rare earth element (LREE) depleted and heavy rare earth element (HREE) enriched. The BIFs also display positive La, Y, and Eu anomalies, high Y/Ho ratios, and contain 30Si depleted quartz, with high δ18O values that are similar to quartz within siliceous units formed during hydrothermal activity. These data indicate that the BIFs within the Yuanjiacun Formation were precipitated from submarine hydrothermal fluids, with only negligible detrital contribution. None of the BIF samples analyzed during this study have negative Ce anomalies, although a few have a positive Ce anomaly that may indicate that the BIFs within the Yuanjiacun Formation formed during the Great Oxidation Event (GOE) within a redox stratified ocean. The positive Ce anomalies associated with some of these BIFs are a consequence of oxidization and the formation of surficial manganese oxide that have preferentially adsorbed Ho, LREE, and Ce4 +; these deposits formed during reductive dissolution at the oxidation–reduction transition zone or in deeper-level reducing seawater. The loss of Ce, LREE, and Ho to seawater and the deposition of these elements with iron hydroxides caused the positive Ce anomalies observed in some of the BIF samples, although the limited oxidizing ability of surface seawater at this time meant that Y/Ho and LREE/HREE ratios were not substantially modified, unlike similar situations within stratified ocean water during the Late Paleoproterozoic. Magnetite and hematite within the BIFs in the study area contain heavy Fe isotopes (56Fe values of 0.24–1.27‰) resulting from the partial oxidation and precipitation of Fe2 + to Fe3 + in seawater. In addition, mass-independent fractionation of sulfur isotopes within pyrite indicates that these BIFs were deposited within an oxygen-deficient ocean associated with a similarly oxygen-deficient atmosphere, even though the BIFs within the Yuanjiacun Formation formed after initiation of the GOE.  相似文献   

7.
The Eocene and Miocene volcanic rocks between the cities of Trabzon and Giresun in the Eastern Pontides (NE Turkey) erupted as mildly and moderately alkaline magmas ranging from silica-saturated to silica-undersaturated types. 40Ar-39Ar dating and petrochemical data reveal that the studied volcanic rocks are discriminated in two: Lutetian (Middle Eocene) mildly alkaline, (basaltic rocks: 45.31 ± 0.18 to 43.86 ± 0.19 Ma; trachytic rocks: 44.87 ± 0.22 to 41.32 ± 0.12 Ma), and Messinian (Late Miocene) moderately alkaline volcanic rocks (tephrytic rocks: 6.05 ± 0.06 and 5.65 ± 0.06 Ma). The trace and the rare earth element systematic, characterised by moderate light earth element (LREE)/heavy rare earth element (HREE) ratios in the Eocene basaltic and trachytic rocks, high LREE/HREE ratios in the Miocene tephrytic rocks, and different degrees of depletion in Nb, Ta, Ti coupled with high Th/Yb ratios, show that the parental magmas of the volcanic rocks were derived from mantle sources previously enriched by slab-derived fluids and subducted sediments. The Sr, Nd and Pb isotopic composition of the Eocene and Miocene volcanic rocks support the presence of subduction-modified subcontinental lithospheric mantle. During the magma ascent in the crust, parental magmas of both the Eocene and Miocene volcanic rocks were mostly affected by fractional crystallisation rather than assimilation coupled with fractional crystallisation and mixing. The silica-undersaturated character of the Miocene tephrytic rocks could be attributed to assimilation of carbonate rocks within shallow-level magma chambers. The parental magmas of the Eocene volcanic rocks resulted from a relatively high melting degree of a net veined mantle and surrounding peridotites in the spinel stability field due to an increase in temperature, resulting from asthenospheric upwelling related to the extension of lithosphere subsequent to delamination. The parental magmas for the Miocene volcanic rocks resulted from a relatively low melting degree of a net veined mantle domain previously modified by metasomatic melts derived from a garnet peridotite source after decompression due to extensional tectonics, combined with strike-slip movement at a regional scale related to ongoing delamination.  相似文献   

8.
The Weibao copper–lead–zinc deposit, located in the eastern part of the Qimantagh area, East Kunlun Orogenic Belt (EKOB), consists of three skarn ore blocks known as Weixi, Main and Weidong from west to east. The mineralization within the Weibao Cu–Pb–Zn deposit is hosted by the Mesoproterozoic Langyashan Formation. In this study, we describe for the first time basaltic lavas that intruded into this host sequence and chronological, isotopic, major and trace element data of these volcanic rocks are presented here to constrain their eruption age as well as the tectonic setting. Two basaltic lava samples yield sensitive, high-resolution ion-microprobe (SHRIMP) U–Pb zircon ages of 393.0 ± 5.5 Ma–392.0 ± 5.0 Ma, indicating that volcanic rocks in the Weibao deposit erupted in Middle Devonian. The majority of the volcanic rocks have compositions characterized by high potassium, light rare earth element (LREE)-enriched patterns in chondrite-normalized rare earth elements (REE) diagrams, and evident enrichment of Rb, Ba and K and depletion of Th, U, Nb and Ta contents in primitive mantle-normalized patterns, although the degrees of enrichment and depletion are variable. These characteristics of major and trace element data highlight a hornblende-dominated fractionation during ascent of magmas. The εHf(T) values of zircons are relatively scattered and slightly enriched, ranging from −2.6 to +7.5. Modelling the features of the major, trace and isotopic element data indicates a hybrid origin involving combined depleted mantle (and hence asthenospheric mantle) and melts and/or fluids inherited from an early subduction event. Besides, these geochronological and geochemical data, together with previously published data in the EKOB, suggest that the Weibao basaltic lavas formed in a post-collisional setting, and that the Qimantagh area underwent strong interactions between mantle and crust in Early Paleozoic–Middle Devonian.  相似文献   

9.
The Nanhuan manganese deposits in the southeastern Yangtze Platform occur in the black shale series in the lower part of the Datangpo Formation. In order to constrain the genesis of the deposits, a detailed study was undertaken that involved field observations, major and trace element analyses, organic carbon analyses, and isotope analyses (C, O, S). The major findings are as follows. (1) The ore-bearing rock series, morphology of the ore bodies, and characteristics of ores in several deposits are similar. The ore minerals are rhodochrosite and manganocalcite. The gangue minerals are mainly quartz, feldspar, dolomite, and illite. Minor apatite and bastnaesite occur in the manganese ores. (2) The ores are enriched in Ca and Mg, whereas they are depleted in Si, Al, K, and Ti compared to wall rocks. The ores normalized to average Post-Archean Australian shale (PAAS) are enriched in Co, Mo, and Sr. The chondrite-normalized rare earth element (REE) patterns for ores and wall rocks are between those of typical hydrogenous and hydrothermal type manganese deposits. Additionally, the ores have positive Ce anomalies with an average Ce/Ce* of 1.23 and positive Eu anomalies with an average Eu/Eu* of 1.18 (normalized to PAAS). (3) The average content of organic carbon is 2.21% in the samples, and the average organic carbon isotopic value (δ13CV-PDB) is − 33.44‰. The average inorganic carbon isotopic value (δ13CV-PDB) of carbonates in Gucheng is − 3.07‰, while the values are similar in the other deposits with an average of − 8.36‰. The oxygen isotopic compositions (δ18OV-PDB) are similar in different deposits with an average of − 7.72‰. (4) The sulfur isotopic values (δ34SV-CDT) of pyrite are very high and range from + 37.9‰ to + 62.6‰ (average of 52.7‰), which suggests that the pyrite was formed in restricted basins where sulfate replenishment was limited. The sulfate concentrations in the restricted basins were extremely low and enriched in δ34S, which resulted in the very high δ34S values for the pyrite that formed in the manganese deposits. Therefore, a terrigenous weathering origin for manganese can be excluded; otherwise, the sulfate would have been introduced into the basins together with terrigenous manganese, which would have decreased the δ34S values of pyrites. The manganese, which originated from hydrothermal processes, was enriched in the restricted and anoxic basins, and then, it was oxidized to manganese oxyhydroxide in the overlying oxic waters whereby the products precipitated into the sediments. The manganese oxyhydroxide in the sediment was then reduced to Mn2 + and released to the pore waters during the process of diagenesis. Some organic carbon was oxidized to CO32 , which made the depletion of 13C in manganese carbonates. Therefore, we suggest that the Nanhuan manganese deposits are hydrothermal–sedimentary/diagenetic type deposits.  相似文献   

10.
The basalt-hosted Wocan Hydrothermal Field (WHF), located on the NW slope of an axial volcanic ridge at a depth of ∼3000 m at 6°22′N on the slow-spreading Carlsberg Ridge, northwest Indian Ocean, was discovered in 2013 during Chinese DY28th cruise. Preliminary investigations show that the field consists of two hydrothermal sites: Wocan-1, which shows indications for recent high-temperature hydrothermal activity, is located near the peak of the axial volcanic ridge at a water depth of 2970–2990 m, and Wocan-2 site, located at a water depth of 3100 m, ∼1.7 km to the northwest of Wocan-1. The recovered hydrothermal precipitates can be classified into four groups: (i) Cu-rich chimneys; (ii) Cu-rich massive sulfides; (iii) Fe-rich massive sulfides; and (iv) silicified massive sulfides. We conducted mineral texture and assemblage observation and Laser-ablation ICP-MS analyses of the hydrothermal precipitates to study the mineralization processes. Our results show that there are distinct systematic trace element distributions throughout the different minerals in the four sample groups. In general, chalcopyrite from the group (i) is enriched in Pb, As, Mo, Ga, Ge, V, and Sb, metals that are commonly referred to as medium- to low-temperature elements. In contrast these elements are present in low contents in the chalcopyrite grains from other sample groups. Selenium, a typical high-temperature metal, is enriched in chalcopyrite from groups (ii) and (iv), whereas Ag and Sn are enriched only in some silicified massive sulfides. As with chalcopyrite, pyrite also shows distinct trace element associations in grains with different habitus. The low-temperature association of elements (Pb, Mo, Mn, U, Mg, Ag, and Tl) is typically present in colloform/framboidal pyrite, whereas the high-temperature association (Se, Co, and Bi) is enriched in euhedral pyrite. Sphalerite in the groups (i) and (iii) at Wocan-1 is characterized by high concentrations of Ga, Ge, Pb, Cd, As, and Sb, indicating that sphalerite in these sample groups likely precipitated at intermediate temperatures. Early bornite, which mainly occurs in the central part of the Cu-rich chimney, is typically enriched in Sn and In compared to the other minerals. In contrast, late bornite that likely formed during increasing interaction of hydrothermal fluids with cold, oxygenated seawater has low Sn and In, but significantly higher concentrations of Ag, Au, Mo and U. Digenite, also forming in the exterior parts of the samples during the late stages of hydrothermal fluid venting, is poor in most trace elements, except Ag and U. The notable Ag enrichment in the late-stage mineral assemblages at both Wocan-1 and Wocan-2 may therefore be related to lower temperatures and elevated pH. Our results indicate that Wocan-1 has experienced a cycle of heating with Cu-rich chimney growth and subsequent cooling, followed by late seafloor weathering, while Wocan-2 has seen intermediate- to high-temperature mineralization followed by intense silicification of sulfides. Seafloor weathering processes or mixing of hydrothermal fluids with seawater during the waning stages of hydrothermal fluid flow result in significant redistributions of trace elements in sulfide minerals.  相似文献   

11.
Primary ore-forming minerals retain geochemical signatures of magmatic crystallization information and can reveal the petrochemical conditions prevalent at the time of their formation. The Baogutu deposit is a typical reduced porphyry Cu deposit. Amphibole and biotite Fe3+/ΣFe ratios, minerals (feldspar, biotite, amphibole, zircon and apatite), in situ elemental and apatite Nd isotopic compositions were determined by Mössbauer spectroscopy, electron probe microanalysis, and laser ablation multiple-collection inductively coupled plasma mass spectrometry, respectively, to investigate the magma oxidation state, petrogenesis, source features, and to constrain the carbon species at magmatic stages for the intrusive phases. The results show that the primary plagioclase and amphibole in the mineralized diorite to granodiorite porphyry and post ore hornblende diorite porphyry are distinct (An26-55 versus An60-69; Mg-hornblende versus tschermakite). In particular, the amphibole shows distinct major and trace element compositions with light rare earth element enrichments and negative Eu anomalies in Mg-hornblende and light rare earth element depletions and no Eu anomalies in tschermakite. All the analyzed biotites are primary igneous phases with a biotite phenocryst profile showing significant variations of Zn, Cr, Sc and Sr from core to rim. These results may indicate the occurrence of mixing between two distinct magmas during mineral formation. Titanium in zircon and Si1 in amphibole thermometries indicate that magma crystallized at >900 °C and continued to ∼650 °C. In situ apatite Nd isotope (εNd(t) = 5.6–7.6, TDM2 = 620–460 Ma), indicate absence of significant reduced sedimentary contamination and the source of juvenile lower crust. Slightly decreasing Fe3+/ΣFe ratios from biotite and amphibole to whole rock indicate decreasing oxygen fugacity during magma crystallization. Recalculated biotite compositions according to Fe3+/ΣFe ratios indicate fO2 values of less than Ni-NiO buffer (NNO) which show slightly lower values than that estimated according to zircon/melt distribution coefficients Ce anomalies (∼ΔNNO + 0.6). These values are consistent with the features of reduced porphyry Cu deposits. Crystallization of other mineral phases significantly affects the reliability of oxybarometer of zircon/melt distribution coefficients Eu anomalies and Mn contents in apatite. This oxidation state suggests that only CO2 was present at the magmatic stage, and implies that CH4 formed during CO2 reduction occurring later hydrothermal alteration. The alteration of primary amphibole to actinolite released Ti, Al, Fe, Mn, Na and K to the fluid with later precipitation of titanite, albite and minor ilmenite and magnetite during actinolite alteration.  相似文献   

12.
In this paper, we present U–Pb ages and trace element compositions of titanite from the Ruanjiawan W–Cu–Mo skarn deposit in the Daye district, eastern China to constrain the magmatic and hydrothermal history in this deposit and provide a better understanding of the U–Pb geochronology and trace element geochemistry of titanite that have been subjected to post-crystallization hydrothermal alteration. Titanite from the mineralized skarn, the ore-related quartz diorite stock, and a diabase dike intruding this stock were analyzed using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Titanite grains from the quartz diorite and diabase dike typically coexist with hydrothermal minerals such as epidote, sericite, chlorite, pyrite, and calcite, and display irregular or patchy zoning. These grains have low LREE/HREE and high Th/U and Lu/Hf ratios, coupled with negative Eu and positive Ce anomalies. The textural and compositional data indicate that titanite from the quartz diorite has been overprinted by hydrothermal fluids after being crystallized from magmas. Titanite grains from the mineralized skarn are texturally equilibrated with retrograde skarn minerals including actinolite, quartz, calcite, and epidote, demonstrating that these grains were formed directly from hydrothermal fluids responsible for the mineralization. Compared to the varieties from the quartz diorite stock and diabase dike, titanite grains from the mineralized skarn have much lower REE contents and LREE/HREE, Th/U, and Lu/Hf ratios. They have a weighted mean 206Pb/238U age of 142 ± 2 Ma (MSWD = 0.7, 2σ), in agreement with a zircon U–Pb age of 144 ± 1 Ma (MSWD = 0.3, 2σ) of the quartz diorite and thus interpreted as formation age of the Ruanjiawan W–Cu–Mo deposit. Titanite grains from the ore-related quartz diorite have a concordant U–Pb age of 132 ± 2 Ma (MSWD = 0.5, 2σ), which is 10–12 Ma younger than the zircon U–Pb age of the same sample and thus interpreted as the time of a hydrothermal overprint after their crystallization. This hydrothermal overprint was most likely related to the emplacement of the diabase dike that has a zircon U–Pb age of 133 ± 1 Ma and a titanite U–Pb age of 131 ± 2 Ma. The geochronological results thus reveal two hydrothermal events in the Ruanjiawan deposit: an early one forming the Wu–Cu–Mo ores related to the emplacement of the quartz diorite stock and a later one causing alteration of the quartz diorite and its titanite due to emplacement of diabase dike. It is suggested that titanite is much more susceptible to hydrothermal alteration than zircon. Results from this study also highlight the utilization of trace element compositions in discriminating titanite of magmatic and hydrothermal origins, facilitating a more reasonable interpretation of the titanite U–Pb ages.  相似文献   

13.
The Palinuro volcanic complex and the Panarea hydrothermal field, both located in the Tyrrhenian Sea (Italy), are associated with island arc magmatism and characterized by polymetallic sulfide mineralization. Dissolved sulfide concentrations, pH, and Eh measured in porewaters at both sites reveal a variable hydrothermal influence on porewater chemistry.Multiple sulfur isotopic measurements for disseminated sulfides (CRS: chromium reducible sulfur) extracted from sediments at Palinuro yielded a broad range in δ34S range between ?29.8 and + 10.2‰ and Δ33S values between + 0.015 and + 0.134‰. In contrast, sediments at Panarea exhibit a much smaller range in δ34SCRS with less negative values between ?11.3 and ?1.8‰. The sulfur isotope signatures are interpreted to reflect a mixture between hydrothermal and biogenic sulfide, with a more substantial biogenic contribution at Panarea.Multiple sulfur isotope measurements were performed on sulfides and elemental sulfur from drill core material from the Palinuro massive sulfide complex. δ34S and Δ33S values for pyrite between ?32.8 and ?1.1‰ and between ?0.012 to + 0.042‰, respectively, as well as for elemental sulfur with δ34S and Δ33S values between ?26.7 and ?2.1‰ and between + 0.035 and + 0.109‰, respectively, point to a microbial origin for much of the sulfide and elemental sulfur studied. Moreover, data suggest a coupling of bacterial sulfate reduction, sulfide oxidation and sulfur disproportionation. In addition, δ34S values for barite between + 25.0 and + 63.6‰ are also in agreement with high microbial turnover of sulfate at Palinuro.Although a magmatic SO2 contribution towards the formation of the Palinuro massive sulfide complex is very likely, the activity of different sulfur utilizing microorganisms played a fundamental role during its formation. Thus, porewater and multiple sulfur isotope data reveal differences in the hydrothermal activity at Palinuro and Panarea drill sites and underline the importance of microbial communities for the origin of massive sulfide mineralizations in the hydrothermal subsurface.  相似文献   

14.
In situ zircon U–Pb ages and Hf isotope data, major and trace elements and Sr–Nd–Pb isotopic compositions are reported for coeval syenite–granodiorites–dacite association in South China. The shoshonitic syenites are characterized by high K2O contents (5.9–6.1 wt.%) and K2O/Na2O ratios (1.1–1.2), negative Eu anomalies (Eu/Eu* = 0.65 to 0.77), enrichments of Rb, K, Nb, Ta, Zr and Hf, but depletion of Sr, P and Ti. The adakitic granodiorite and granodiorite porphyry intrusions are characterized by high Al2O3 contents (15.0–16.8 wt.%), enrichment in light rare earth elements (LREEs), strongly fractionated LREEs (light rare earth elements) to HREEs (heavy rare earth elements), high Sr (438–629 ppm), Sr/Y (29.2–53.6), and low Y (11.7–16.8 ppm) and HREE contents (e.g., Yb = 1.29–1.64 ppm). The calc-alkaline dacites are characterized by LREE enrichment, absence of negative Eu anomalies, and enrichment of LILEs such as Rb, Ba, Th, U and Pb, and depletion of HFSEs such as Nb, Ta, P and Ti.Geochemical and Sr–Nd–Hf isotopic compositions of the syenites suggest that the shoshonitic magmas were differentiated from parental shoshonitic melts by fractional crystallization of olivine, clinopyroxene and feldspar. The parent magmas may have originated from partial melting of the lithospheric mantle with small amount contribution from crustal materials. The adakitic granodiorite and granodiorite porphyry have Sr–Nd–Pb isotopic compositions that are comparable to that of the mafic lower crust. They have low Mg# and MgO, Ni and Cr contents, abundant inherited zircons, low εNd(t) and εHf(t) values as well as old whole-rock Nd and zircon Hf model ages. These granodiorites were likely generated by partial melting of Triassic underplated mafic lower crust. The Hf isotopic compositions of the dacites are relatively more depleted than the Cathaysia enriched mantle, suggesting those magmas were derived from the partial melting of subduction-modified mantle sources. The coeval shoshonitic, high-K calc-alkaline and calc-alkaline rocks in Middle to Late Jurassic appear to be associated with an Andean-type subduction. This subduction could have resulted in the upwelling of the asthenosphere beneath the Cathaysia Block, which induced partial melting of the mantle as well as the mafic lower crust, and formed an arc regime in the coastal South China during Middle to Late Jurassic.  相似文献   

15.
A different approach to investigate the origin of fluids, temperature conditions, age of hydrothermal activity of mineralization in the Biga Peninsula, (Koru, Tesbihdere and Kumarlar) employed mineralogical (illite Kübler Index, b cell dimension, polytype) and geochemical (major, trace/REE, O–H stable isotope and Rb/Sr dating) methods. The Kübler Index (KI) values of illites indicate different temperature conditions, such as low temperature (high-grade diagenesis) for Koru deposit, and high temperature (anchizone) for the Tesbihdere and Kumarlar deposits. The textural, mineralogical and geochemical data from illites show that these have potential for estimating the age of hydrothermal activity and fluid characteristics. Both mineralogical (high grade diagenetic to anchizonal KI, 1M polytype, low d060 values) and geochemical (similar major and trace element composition to host-rocks, low octahedral Mg + Fe contents, oxygen and hydrogen isotope composition) data are compatible with commonly known hydrothermal illites. Stable isotope data of illites are well matched to similar data from fluid inclusions, which indicate mainly magmatic fluids. The Rb/Sr age (22.4 ± 2.3 Ma: latest Oligocene and lowest Miocene) of the illites coincides with plutonic intrusions that are the main instigators of hydrothermal activities related to the extensional tectonic regime in the Biga Peninsula. The mineralogical and geochemical data of illites have some important advantages with respect to the use of fluid inclusions in determining δD of hydrothermal fluids thereby leading to better understanding ore-forming hydrothermal conditions.  相似文献   

16.
Magnetite is a common mineral in many ore deposits and their host rocks, and contains a wide range of trace elements (e.g., Ti, V, Mg, Cr, Mn, Ca, Al, Ni, Ga, Sn) that can be used for deposit type fingerprinting. In this study, we present new magnetite geochemical data for the Longqiao Fe deposit (Luzong ore district) and Tieshan Fe–(Cu) deposit (Edong ore district), which are important magmatic-hydrothermal deposits in eastern China.Textural features, mineral assemblages and paragenesis of the Longqiao and Tieshan ore samples have suggested the presence of two main mineralization periods (sedimentary and hydrothermal) at Longqiao, among which the hydrothermal period comprises four stages (skarn, magnetite, sulfide and carbonate); whilst the Tieshan Fe–(Cu) deposit comprises four mineralization stages (skarn, magnetite, quartz-sulfide and carbonate).Magnetite from the Longqiao and Tieshan deposits has different geochemistry, and can be clearly discriminated by the Sn vs. Ga, Ni vs. Cr, Ga vs. Al, Ni vs. Al, V vs. Ti, and Al vs. Mg diagrams. Such difference may be applied to distinguish other typical skarn (Tieshan) and multi-origin hydrothermal (Longqiao) deposits in the MLYRB. The fluid–rock interactions, influence of the co-crystallizing minerals and other physicochemical parameters, such as temperature and fO2, may have altogether controlled the magnetite trace element contents of both deposits. The Tieshan deposit may have had higher degree of fO2, but lower fluid–rock interactions and ore-forming temperature than the Longqiao deposit. The TiO2–Al2O3–(MgO + MnO) and (Ca + Al + Mn) vs. (Ti + V) magnetite discrimination diagrams show that the Longqiao Fe deposit has both sedimentary and hydrothermal features, whereas the Tieshan Fe–(Cu) deposit is skarn-type and was likely formed via hydrothermal metasomatism, consistent with the ore characteristics observed.  相似文献   

17.
A combined study of petrography, whole-rock major and trace elements as well as Rb?Sr and Sm?Nd isotopes, and mineral oxygen isotopes was carried out for two groups of low-T/UHP granitic gneiss in the Dabie orogen. The results demonstrate that metamorphic dehydration and partial melting occurred during exhumation of deeply subducted continent. Zircon δ18O values of ? 2.8 to + 4.7‰ for the gneiss are all lower than normal mantle values of 5.3 ± 0.3‰, consistent with 18O depletion of protolith due to high-T meteoric-hydrothermal alteration at mid-Neoproterozoic. Most samples have extremely low 87Sr/86Sr ratios at t1 = 780 Ma, but very high 87Sr/86Sr ratios at t2 = 230 Ma. This suggests intensive fluid disturbance due to the hydrothermal alteration of protoliths during Neoproterozoic magma emplacement and the metamorphic dehydration during Triassic continental collision. Rb–Sr isotopes, Th/Ta vs. La/Ta and Th/Hf vs. La/Nb relationships suggest that Group I gneiss experienced lower degrees of hydrothermal alteration, but higher degrees of dehydration, than Group II gneiss. The two groups of gneiss have similar patterns of REE and trace element partition. Group I gneiss displays good correlations between Nb and LREEs but no correlations between Nb and LILEs (Rb, Ba, Pb, Th and U), indicating differential mobilities of LILEs during the dehydration. Thus the correlation between Nb and LREEs is inherited from protolith rather than caused by metamorphic modification. Relative to Group I gneiss, Group II gneiss has stronger negative Eu anomaly, lower contents of Sr and Ba but higher contents of Rb, Th and U. In particular, Nb correlates with LILEs (e.g., Rb, Sr, Ba, Th and U), but not with LREEs (La and Ce). This may indicate decoupling between the dehydration and LILEs transport during continental collision. Furthermore, dehydration melting may have occurred due to breakdown of muscovite during “hot” exhumation. Group II gneiss has extremely low contents of FeO + MgO + TiO2 (1.04 to 2.08 wt.%), high SiO2 contents of 75.33 to 78.23 wt%, and high total alkali (Na2O + K2O) contents (7.52 to 8.92 wt.%), comparable with compositions predicted from partial melting of felsic rocks by experimental studies. Almost no UHP metamorphic minerals survived; felsic veins of fine-grain minerals occurs locally between coarse-grain minerals, resulting in a kind of metatexite migmatites due to dehydration melting without considerable escape of felsic melts from the host gneiss. In contrast, Group I gneiss only shows metamorphic dehydration. Therefore, the two groups of gneiss show contrasting behaviors of fluid–rock interaction during the continental collision.  相似文献   

18.
The Neoproterozoic (593–532 Ma) Dahongliutan banded iron formation (BIF), located in the Tianshuihai terrane (Western Kunlun orogenic belt), is hosted in the Tianshuihai Group, a dominantly submarine siliciclastic and carbonate sedimentary succession that generally has been metamorphosed to greenschist facies. Iron oxide (hematite), carbonate (siderite, ankerite, dolomite and calcite) and silicate (muscovite) facies are all present within the iron-rich layers. There are three distinctive sedimentary facies BIFs, the oxide, silicate–carbonate–oxide and carbonate (being subdivided into ankerite and siderite facies BIFs) in the Dahongliutan BIF. They demonstrate lateral and vertical zonation from south to north and from bottom to top: the carbonate facies BIF through a majority of the oxide facies BIF into the silicate–carbonate–oxide facies BIF and a small proportion of the oxide facies BIF.The positive correlations between Al2O3 and TiO2, Sc, V, Cr, Rb, Cs, Th and ∑REE (total rare earth element) for various facies of BIFs indicate these chemical sediments incorporate terrigenous detrital components. Low contents of Al2O3 (<3 wt%), TiO2 (<0.15 wt%), ∑REE (5.06–39.6 ppm) and incompatible HFSEs (high field strength elements, e.g., Zr, Hf, Th and Sc) (<10 ppm), and high Fe/Ti ratios (254–4115) for a majority of the oxide and carbonate facies BIFs suggest a small clastic input (<20% clastic materials) admixtured with their original chemical precipitates. The higher abundances of Al2O3 (>3 wt%), TiO2, Zr, Th, Cs, Sc, Cr and ∑REE (31.2–62.9 ppm), and low Fe/Ti ratios (95.2–236) of the silicate–carbonate–oxide facies BIF are consistent with incorporation of higher amounts of clastic components (20%–40% clastic materials). The HREE (heavy rare earth element) enrichment pattern in PAAS-normalized REE diagrams exhibited by a majority of the oxide and carbonate facies BIFs shows a modern seawater REE signature overprinted by high-T (temperature) hydrothermal fluids marked by strong positive Eu anomalies (Eu/Eu1PAAS = 2.37–5.23). The low Eu/Sm ratios, small positive Eu anomaly (Eu/Eu1PAAS = 1.10–1.58) and slightly MREE (middle rare earth element) enrichment relative to HREE in the silicate–carbonate–oxide facies BIF and some oxide and carbonate facies BIFs indicate higher contributions from low-T hydrothermal sources. The absence of negative Ce anomalies and the high Fe3+/(Fe3+/Fe2+) ratios (0.98–1.00) for the oxide and silicate–carbonate–oxide BIFs do not support ocean anoxia. The δ13CV-PDB (−4.0‰ to −6.6‰) and δ18OV-PDB (−14.0‰ to −11.5‰) values for siderite and ankerite in the carbonate facies BIF are, on average, ∼6‰ and ∼5‰ lower than those (δ13CV-PDB = −0.8‰ to + 3.1‰ and δ18OV-PDB = −8.2‰ to −6.3‰) of Ca–Mg carbonates from the silicate–carbonate–oxide facies BIF. This feature, coupled with the negative correlations between FeO, Eu/Eu1PAAS and δ13CV-PDB, imply that a water column stratified with regard to the isotopic omposition of total dissolved CO2, with the deeper water, from which the carbonate facies BIF formed, depleted in δ13C that may have been derive from hydrothermal activity.Integration of petrographic, geochemical, and isotopic data indicates that the silicate–carbonate–oxide facies BIF and part of the oxide facies BIF precipitated in a near-shore, oxic and shallow water environment, whereas a majority of the oxide and carbonate facies BIFs deposited in anoxic but Fe2+-rich deeper waters, closer to submarine hydrothermal vents. High-T hydrothermal solutions, with infusions of some low-T hydrothermal fluids, brought Fe and Si onto a shallow marine, variably mixed with detrital components from seawaters and fresh waters carrying continental landmass and finally led to the alternating deposition of the Dahongliutan BIF during regression–transgression cycles.The Dahongliutan BIF is more akin to Superior-type rather than Algoma-type and Rapitan-type BIF, and constitutes an additional line of evidence for the widespread return of BIFs in the Cryogenian and Ediacaran reflecting the recurrence of anoxic ferruginous deep sea and anoxia/reoxygenation cycles in the Neoproterozoic. In combination with previous studies on other Fe deposits in the Tianshuihai terrane, we propose that a Fe2+-rich anoxic basin or deep sea probably existed from the Neoproterozoic to the Early Cambrian in this area.  相似文献   

19.
《Precambrian Research》2006,144(1-2):140-165
Rocks exposed in the MacQuoid-Gibson Lakes region, northwest Hearne subdomain, western Churchill Province, Canada comprise three major lithotectonic assemblages: the Principal volcanic belt; the metasedimentary MacQuoid homocline and; the Cross Bay plutonic complex. Neoarchaean supracrustal rocks of the belt range in age from <2745 to <2672 Ma and were intruded during the interval <2689 to 2655 Ma by diverse plutonic units ranging from gabbro through syenogranite, but greatly dominated by tonalite. Volcanic rocks occur only in the Principal volcanic belt and the MacQuoid homocline, are metamorphosed to amphibolite facies and vary from rare pillowed to common massive basalt and andesite, intercalated with less abundant, thin, dacitic to rhyolitic tuffs, lavas and volcaniclastic rocks. Basalt and andesite are dominated by subalkaline, FeOT-rich tholeiites with less common calc-alkaline rocks with higher SiO2 contents and variable trace element contents. Felsic volcanic rocks exhibit calc-alkaline affinities and similarly diverse trace element abundances. The diverse trace element chemistry of the basalt and andesite supports their derivation from a heterogeneous mantle source(s) capable of generating MORB-, Arc-, BABB- and boninite-like rocks. Two geochemically distinct, arc-like suites were generated through contamination of the primary mantle-derived magmas either via assimilation of lower or middle tonalitic crust, or through contamination of their mantle source through subduction. Geochemical features of the felsic volcanic rocks indicate that these formed via both anatexis of crust in the amphibolite ± garnet stability field and via fractionation of more primitive progenitors in mid-upper crustal magma chambers. ɛNdt = 2680 Ma isotopic compositions cluster near depleted mantle, indicating that significant incorporation of older, >2700 Ma crust likely did not occur. ɛNdt = 2680 Ma values for three specimens, one from each of the Arc-like suites and one BABB-like basalt are slightly lower than the remainder, suggesting very minor incorporation of slightly older crust.These features imply that the processes that generated the MacQuoid supracrustal belt required simultaneous tapping of geochemically distinct mantle reservoirs with concomitant anatexis of sialic crust (garnet stability field) and fractionation of felsic magmas in upper crustal magma chambers. Shallow water deposition of abundant volcaniclastic rocks and semipelite along with minor conglomerate and quartzite was broadly contemporaneous with this magmatism. We envisage a geodynamic setting characterized by tectonomagmatic processes similar to those of modern supra-subduction zone back-arc marginal basins such as the Sea of Japan. Therein, an extensional, back-arc setting, likely proximal to continental crust, provides an explanation for a broad swath of diverse mantle-derived rocks intercalated with less common felsic rocks as well as an abundance of immature clastic metasedimentary rocks.  相似文献   

20.
Zeta-potential measurements were made to determine the electric state of phosphor materials on the basis of which a feasibility study could be performed for the use of flotation in the recovery of fine (d50 < 13 μm) rare earth phosphors from waste fluorescent lamps. Tests were carried out with pure specimens of white (calcium halo-phosphate), red, green and blue (rare earth) phosphors, with a 17 : 1 : 1 : 1 ratio of their mixture, and with actual waste phosphor materials. The effects of a cationic (dodecyl ammonium acetate, DAA) and two anionic (sodium dodecyl sulfate (SDS) and sodium oleate (NaOl)) collectors on the floatability of materials, as well as that of Na2SiO3 dispersant on the separation characteristics, were investigated at different pH ranges. The process, applied to actual discarded waste phosphors gave, in a two-stage separation scheme, sink products assaying 17.7–23.8% and 21.5–25.9% rare earth phosphors for DAA and SDS flotation, respectively. The recovery and Newton's efficiency were about 70–90% and 0.26–0.37, 66–82% and 0.18–0.20, respectively for DAA and SDS flotation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号