首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
日冕物质抛射(Coronal Mass Ejection,简称CME)和共转相互作用区(Corotating Interaction Region,简称CIR)是造成日地空间行星际扰动和地磁扰动的两个主要原因,提供了地球磁暴的主要驱动力,进而显著影响地球空间环境.为深入研究太阳风活动及受其主导影响的地磁活动的时间分布特征,本文对大量太阳风参数及地磁活动指数的数据进行了详细分析.首先,采用由NASA OMNIWeb提供的太阳风参数及地磁活动指数的公开数据,通过自主编写matlab程序对第23太阳活动周期(1996-01-01—2008-12-31)的数据包括行星际磁场Bz分量、太阳风速度、太阳风质子密度、太阳风动压等重要太阳风参数及Dst指数、AE指数、Kp指数等主要的地磁指数进行统计分析,建立了包括269个CME事件和456个CIR事件列表的数据库.采用事例分析法和时间序列叠加法分别对两类太阳活动的四个重要太阳风参数(IMF Bz、太阳风速度、太阳风质子密度、太阳风动压)和三个主要地磁指数(Dst、AE、Kp)进行统计分析,并研究了其统计特征.其次,根据Dst指数最小值确定了第23太阳活动周期内的355个孤立地磁暴事件,并以Dst指数最小值为标准将这些磁暴进一步分类为145个弱磁暴、123个中等磁暴、70个强磁暴、12个剧烈磁暴和5个巨大磁暴.最后,采用时间序列叠加法对不同强度磁暴的太阳风参数和地磁指数进行统计分析.统计分析表明,对于CME事件,Nsw/Pdyn(Nsw表示太阳风质子密度,Pdyn表示太阳风动压)线性拟合斜率一般为正;对于CIR事件,Nsw/Pdyn线性拟合斜率一般为负,这可作为辨别CME和CIR事件的一种有效方法.从平均意义上讲,相较于CIR事件,CME事件有更大的南向IMF Bz分量、太阳风动压Pdyn、AE指数、Kp指数以及更小的Dstmin.一般情况下,CME事件有更大的可能性驱动极强地磁暴.总体而言,对于不同强度的地磁暴,Dst指数的变化呈现出一定的相似性,但随着地磁暴强度的增强,Dst指数衰减的速度变快.CME和CIR事件以及其各自驱动的地磁暴事件有着很多不同,因此,需要将CME事件驱动的磁暴及CIR事件驱动的磁暴分开研究.建立CME、CIR事件及地磁暴的数据库以及获取的统计分析结果,将为深入研究地球磁层等离子体片、辐射带及环电流对太阳活动的响应特征提供有利的帮助.  相似文献   

2.
This paper is a continuation of (Nikolaeva et al., 2011, 2012) and it analyzes the development of the main phase of 190 magnetic storms with Dst ≤ −50 nT depending on the type of source in the solar wind (magnetic clouds, MC; corotating interaction regions, CIR; Ejecta; Sheath before them, ShE; Sheath before MC, ShMC; all Sheath regions before ICME, ShE + ShMC; all ICME, MC + Ejecta; and an indeterminate type of solar wind stream, IND).  相似文献   

3.
The paper analyses the development of the main phase of magnetic storms with Dst ≤ −50 nT, the interplanetary source of which consists of eight types of solar wind streams: magnetic clouds (MC, 17 storms); corotating interaction regions (CIR, 49 storms); Ejecta (50 storms); compressed region (Sheath) before Ejecta ShE (34 storms); the Sheath before a magnetic cloud ShMC (6 storms); all Sheath before all ICME, ShE + ShMC (40 storms); all ICME, MC + Ejecta (67 storms); and an indeterminate type of stream IND (34 storms).  相似文献   

4.
5.
不同起源地磁扰动期间极光沉降能量的统计研究   总被引:2,自引:1,他引:1       下载免费PDF全文
尽管对极光沉降能量(HP)的研究已经开展很久,但是关于不同行星际扰动源对HP影响的研究仍然很少.本文基于2001—2008年NOAA极轨卫星数据,对三类不同扰动源,即盔状冕流共转相互作用区(CIRs)、伪冕流CIRs和行星际日冕物质抛射(ICMEs)驱动的中等磁暴期间HP的变化进行时序叠加统计分析,讨论了相关太阳风背景参数、地磁活动强度以及耦合函数的有效性;研究了三类磁暴事件期间HP的南北半球不对称性.结果表明,在磁暴之前盔状冕流CIR磁暴的HP明显低于伪冕流CIR磁暴和ICME磁暴,盔状冕流"磁暴前的平静期"与Newell耦合函数关系密切,而与Russell-McPherron效应关系较小.盔状冕流CIR磁暴主相HP高于伪冕流CIR磁暴和ICME磁暴,可能与盔状冕流相应行星际|Bz|和太阳风数密度均较高有关.此外,在Kp≤4时,冬夏季半球HP的差别随着Kp增加而增加,相应的变化规律符合电导率反馈机制的预测;在Kp>4时,盔状冕流磁暴和ICME磁暴冬季半球的HP大于夏季半球的,伪冕流磁暴事件夏季半球的HP大于冬季半球的或与冬季半球的相近.  相似文献   

6.
地磁暴的行星际源研究是了解及预报地磁暴的关键因素之一.本文研究了2007-2012年间的所有Dstmin ≤-50 nT的中等以上地磁暴,建立了这些地磁暴及其行星际源的列表.在这6年中,共发生了51次Dstmin≤-50 nT的中等以上地磁暴,其中9次为Dstmin≤-100 nT的强地磁暴事件.对比上一活动周相同时间段发现,在这段太阳活动极低的时间,地磁暴的数目显著减少.对这些地磁暴行星际源的分析表明,65%的中等以上地磁暴由与日冕物质抛射相关的行星际结构引起,31%的地磁暴由共转相互作用区引起,这与以前的结果一致.特别的,在这个太阳活动极低时期内,共转相互作用区没有引起Dstmin≤-100 nT的强地磁暴,同时,日冕物质抛射相关结构也没有引起Dstmin≤-200 nT的超强地磁暴.以上结果表明极低太阳活动同时导致了共转相互作用区和日冕物质抛射地磁效应的减弱.进一步,分析不同太阳活动期间地磁暴的行星际源发现:在太阳活动低年(2007-2009年),共转相互作用区是引起地磁暴的主要原因; 而在太阳活动上升期和高年(2010-2013年),大部分(75%,30/40)的中等以上地磁暴均由日冕物质抛射相关结构引起.  相似文献   

7.
We consider five different solar wind structures to study their relative geo-effectiveness in producing major geomagnetic perturbations. Geomagnetic indices and solar wind parameters during major storms have been utilized to understand the physical mechanism(s) during the passage of structures with distinct structural and dynamical properties. Attempt has been made to find distinct features of the structures responsible for large-intensity and/or long-duration geomagnetic storms. We search for precursors of major storms that may be useful for space-weather predictions. Average recovery characteristics of storms and the influence of solar wind speed on the recovery have been discussed.  相似文献   

8.
中低纬地区电离层对CIR和CME响应的统计分析   总被引:1,自引:1,他引:0       下载免费PDF全文
本文利用中低纬日本地区(131°E,35°N)GPS-TEC格点化数据,分析了2001—2009年间109个共转相互作用区(CIR)事件、45个日冕物质抛射(CME)事件引起的地磁扰动期间电离层的响应.结果表明,电离层暴的类型随太阳活动的变化而有不同的变化,CIR事件引发的电离层正相暴、正负双相暴多发生在太阳活动下降年,负相暴多发生在高年,负正双相暴多发生在低年;CME事件引发的电离层正相暴和负相暴多发生在高年.CIR和CME引发的不同类型的电离层暴的季节性差异不大,在夏季多发生正负双相暴.电离层暴发生时间相对地磁暴的时延大部分在-6~6h之间,但CIR引发的电离层暴时延范围更广,在-12~24h之间,而CME引发的电离层暴时延主要在-6~6h之间.中低纬的电离层暴多发生在主相阶段,其中CIR引发的双相暴也会发生在初相阶段.电离层负暴多发生在AE最大值为800~1200nT之间.CIR引起的电离层扰动持续时间较长,一般在1~6天左右,而CME引起的电离层扰动持续时间一般在1~4天左右.  相似文献   

9.
Research to the identification of plasma flows in the Solar wind by spectral characteristics of solar plasma flows in the range of magnetohydrodynamics is devoted. To do this, the wavelet skeleton pattern of Solar wind parameters recorded on Earth orbit by patrol spacecraft and then executed their neural network classification differentiated by bandwidths is carry out. This analysis of spectral features of Solar plasma flows in the form of magnetic clouds (MC), corotating interaction regions (CIR), shock waves (Shocks) and highspeed streams from coronal holes (HSS) was made. The proposed data processing and the original correlation-spectral method for processing information about the Solar wind flows for further classification as online monitoring of near space can be used. This approach will allow on early stages in the Solar wind flow detect geoeffective structure to predict global geomagnetic disturbances.  相似文献   

10.
The losses of radiation belt electrons to the atmosphere due to wave–particle interactions with electromagnetic ion-cyclotron (EMIC) waves during corotating interaction region (CIR) storms compared to coronal mass ejections (CME) storms is investigated. Geomagnetic storms with extended ‘recovery’ phases due to large-amplitude Alfvén waves in the solar wind are associated with relativistic electron flux enhancements in the outer radiation belt. The corotating solar wind streams following a CIR in the solar wind contain large-amplitude Alfvén waves, but also some CME storms with high-speed solar wind can have large-amplitude Alfvén waves and extended ‘recovery’ phases. During both CIR and CME storms the ring current protons are enhanced. In the anisotropic proton zone the protons are unstable for EMIC wave growth. Atmospheric losses of relativistic electrons due to weak to moderate pitch angle scattering by EMIC waves is observed inside the whole anisotropic proton zone. During storms with extended ‘recovery’ phases we observe higher atmospheric loss of relativistic electrons than in storms with fast recovery phases. As the EMIC waves exist in storms with both extended and short recovery phases, the increased loss of relativistic electrons reflects the enhanced source of relativistic electrons in the radiation belt during extended recovery phase storms. The region with the most unstable protons and intense EMIC wave generation, seen as a narrow spike in the proton precipitation, is spatially coincident with the largest loss of relativistic electrons. This region can be observed at all MLTs and is closely connected with the spatial shape of the plasmapause as revealed by simultaneous observations by the IMAGE and the NOAA spacecraft. The observations in and near the atmospheric loss cone show that the CIR and CME storms with extended ‘recovery’ phases produce high atmospheric losses of relativistic electrons, as these storms accelerate electrons to relativistic energies. The CME storm with short recovery phase gives low losses of relativistic electrons due to a reduced level of relativistic electrons in the radiation belt.  相似文献   

11.
The dependence of the maximal values of the |Dst| and AE geomagnetic indices observed during magnetic storms on the value of the interplanetary electric field (E y ) was studied based on the catalog of the large-scale solar wind types created using the OMNI database for 1976–2000 [Yermolaev et al., 2009]. An analysis was performed for eight categories of magnetic storms caused by different types of solar wind streams: corotating interaction regions (CIR, 86 storms); magnetic clouds (MC, 43); Sheath before MCs (ShMC, 8); Ejecta (95); Sheath (ShE, 56); all ICME events (MC + Ejecta, 138); all compression regions Sheaths before MCs and Ejecta (ShMC + ShE, 64); and an indeterminate type of storm (IND, 75). It was shown that the |Dst| index value increases with increasing electric field E y for all eight types of streams. When electric fields are strong (E y > 11 mV m−1), the |Dst| index value becomes saturated within magnetic clouds MCs and possibly within all ICMEs (MC + Ejecta). The AE index value during magnetic storms is independent of the electric field value E y for almost all streams except magnetic clouds MCs and possibly the compressed (Sheath) region before them (ShMC). The AE index linearly increases within MC at small values of the electric field (E y < 11 mV m−1) and decrease when these fields are strong (E y > 11 mV m−1). Since the dynamic pressure (Pd) and IMF fluctuations (σB) correlate with the E y value in all solar wind types, both geomagnetic indices (|Dst| and AE) do not show an additional dependence on Pd and IMF δB. The nonlinear relationship between the intensities of the |Dst| and AE indices and the electric field E y component, observed within MCs and possibly all ICMEs during strong electric fields E y , agrees with modeling the magnetospheric-ionospheric current system of zone 1 under the conditions of the polar cap potential saturation.  相似文献   

12.
A new index of wave activity (ULF index) is applied to analyze daytime magnetic pulsations in the Pc5 range (f = 2–7 mHz) during ten successive recurrent magnetic storms (CIR (corotating interaction region) storms) of 2006. The most intense daytime geomagnetic Pc5 pulsations on the Earth’s surface in all phases of CIR storms are predominantly observed in the pre-noon sector at latitudes higher than 70°, while those in CME storms (storms initiated by coronal mass ejection (CME)) are observed at latitudes lower than 70°. A comparison of wave activity during CIR and CME storms has shown that the amplitude of Pc5 pulsations in CIR storms is much smaller than that in CME storms and the spectrum maximum is observed at lower frequencies and higher latitudes. At the same time, the mechanism of ULF wave generation during both types of magnetic storms seems to be similar, namely, resonance of magnetic field lines due to the development of the Kelvin-Helmholtz instability caused by an approach of a high-velocity solar wind stream to the Earth’s magnetosphere. Since resonance oscillations are excited only in the closed magnetosphere, the higher-latitude position of the Pc5 pulsation intensity maximum in CIR storms points to larger dimensions of the daytime magnetosphere during CIR storms as compared to CME storms.  相似文献   

13.
用1978年和1982年36个磁暴期间的太阳风、行星际磁场(IMF)和地磁资料,分析和检验已有的两类太阳风-磁层能量耦合函数.结果表明:Akasofu提出的耦合函数ε能大致地预报亚暴和磁暴的发生。ε开始起重要作用时即出现亚暴;电离层能耗达到饱和值是发生磁暴的标志。ε与磁层体系能耗之间有接近于对数量的线性关系.用1978-1986年的资料,分析环电流和极光区电离层能耗在121个太阳自转周内的分布表明,日面上可能存在相对持久的活动区域  相似文献   

14.
Geomagnetic disturbances in the Canadian region are compared with their solar and heliospheric sources during the decline phase of solar activity, when recurrent solar wind streams from low-latitude coronal holes were clearly defined. A linear correlation analysis has been performed using the following data: the daily and hourly indices of geomagnetic activity, solar wind velocity, and coronal hole area. The obtained correlation coefficients were rather low between the coronal hole areas and geomagnetic activity (0.17–0.48), intermediate between the coronal hole areas and the solar wind velocity (0.40–0.65), and rather high between the solar wind velocity and geomagnetic activity (0.50–0.70). It has been indicated that the correlation coefficient values can be considerably increased (by tens of percent in the first case and about twice in the second case) if variations in the studied parameters related to changes in the ionosphere (different illumination during a year) and variations in the heliolatitudinal shift of the coordinate system between the Earth, the Sun, and a spacecraft are more accurately taken into account.  相似文献   

15.
In contrast to our previous work (Yermolaev et al., 2015), in which we used the magnetic storm recovery phase duration, the exponential time of the recovery phase of magnetic storms generated by three interplanetary driver types (CIR, Sheath, and ICME) is introduced in the present work. The dependence of these times on the storm development rate |Dstmin|/ΔT (where ΔT is the storm main phase duration) is studied. A similar physical result has been achieved despite the different data analysis method used: the times of the storm recovery and development rates correlate for storms induced by CIR and Sheath compression regions, and any relation between these parameters is absent for storms induced by ICME.  相似文献   

16.
极光卵极光强度的空间分布是太阳风-磁层-电离层能量耦合过程的重要表现,并且随着空间环境参数和地磁指数的变化而变化,是空间天气的重要指示器.建立合适的极光强度模型对亚暴的预测以及磁层动力学的研究具有重要意义.本文基于Polar卫星的紫外极光成像仪(Ultraviolet Imager,UVI)数据,采用两种不同的极光强度表征方法,即曲线拟合方法(从UVI图像数据中提取极光强度沿磁余纬方向上的曲线特征,Curve Feature along the Magnetic Co-latitude Direction of the Auroral Intensity,CFMCD_AI)和网格化方法(从UVI图像数据中提取极光强度的网格化特征,Gridding Feature of the Auroral Intensity,GF_AI),来构造极区极光强度特征数据库.然后,利用该数据库,采用广义回归神经网络(Generalized Regression Neural Network,GRNN)构建了以行星际/太阳风参数(行星际磁场三分量、太阳风速度和密度)和地磁指数(AE指数)为输入参数的两种极光强度预测模型(GRNN_CFMCD_AI模型和GRNN_GF_AI模型).利用图像质量评价指数结构相似度(structure similarity,SSIM)作为极光强度模型预测结果和对应的UVI图像的相似性评价标准(完全相似为1,不相似为0,一般认为SSIM大于0.5是具有较好的相似性),对两种极光强度模型进行了性能评价.结果显示,GRNN_GF_AI模型预测结果对应的SSIM值范围为0.36~0.77,均值为0.54,性能优于GRNN_CFMCD_AI模型的.  相似文献   

17.
特大地磁暴的一种行星际源:多重磁云   总被引:1,自引:0,他引:1       下载免费PDF全文
2001年3月31日观测到的大的多重磁云(Multi MC)事件造成了第23周太阳峰年(2000~2001)最大的地磁暴(Dst=-387nT). 通过分析ACE飞船的观测数据, 描述了这个多重磁云在1AU处的磁场和等离子体特征. 并且根据SOHO和GOES卫星的观测资料, 认证了它的太阳源. 在这次事件中, 由于多重磁云内部异常增强的南向磁场, 使之地磁效应变得更强, 它大大的延长了地磁暴的持续时间. 观测结果与理论分析表明, 多重磁云中子磁云的相互挤压使磁云内的磁场强度及其南向分量增强数倍, 从而加强了地磁效应. 因此, 研究认为多重磁云中子磁云之间的相互压缩是造成特大地磁暴的一种机制. 此外, 研究发现形成多重磁云的日冕物质抛射(CMEs)并不一定要来自同一太阳活动区.  相似文献   

18.
极光卵的尺度大小与太阳风-磁层-电离层能量耦合过程紧密相关,准确预测其大小对空间天气研究和预报具有非常重要的意义.本文基于模糊c均值聚类算法,从Polar卫星紫外极光图像中自动提取极光卵边界数据(~1215000个赤道向边界点和~3805000极向边界点),统计分析其与太阳风等离子体、行星际磁场、地磁指数等之间的相关特性,并构建了以行星际、太阳风为模型参数(模型1)和以行星际、太阳风及地磁指数为模型参数(模型2)的2种极光卵边界多元回归模型.以模型预测的极光卵边界与实际极光卵边界之间的平均绝对误差作为模型评价标准,将本文预测模型与Carbary(2005)模型和Milan(2009)模型进行了对比.结果表明,模型2对极光卵极向、赤道向边界预测的平均绝对误差为1.55和1.66地磁纬度,优于Carbary和Milan模型(Carbary模型极向、赤道向边界的平均绝对误差为2.18和5.47地磁纬度,Milan模型极向、赤道向边界的平均绝对误差为1.71地磁纬度和1.90地磁纬度).  相似文献   

19.
The Polar Ionospheric X-ray Imaging Experiment (PIXIE) on board the NASA/GGS POLAR spacecraft has been making observations of ionospheric X-ray emissions from the vantage of space for more than 3 years. A wide variety of observations have been made by PIXIE, which are detailed in this work. These include the local time distribution of the auroral X-ray intensity as well as the dependence of auroral X-rays on geomagnetic activity and solar wind magnetic field conditions. The auroral X-rays are produced as energetic electrons within the magnetosphere precipitate and are stopped in the ionosphere. Comparisons of the X-ray auroral intensity with other instrument observations have been made, which enables us to distinguish between temporal and spatial processes. In addition, several other X-ray features (not of an auroral nature) have been observed by PIXIE, and are described.  相似文献   

20.
The geomagnetic observations, performed at the global network of ground-based observatories during the recovery phase of the superstrong magnetic storm of July 15–17, 2000 (Bastille Day Event, Dst = ?301 nT), have been analyzed. It has been indicated that magnetic activity did not cease at the beginning of the storm recovery phase but abruptly shifted to polar latitudes. Polar cap substorms were accompanied by the development of intense geomagnetic pulsations in the morning sector of auroral latitudes. In this case oscillations at frequencies of 1–2 and 3–4 mHz were observed at geomagnetic latitudes higher and lower than ~62°, respectively. It has been detected that the spectra of variations in the solar wind dynamic pressure and the amplitude spectra of geomagnetic pulsations on the Earth’s surface were similar. Wave activity unexpectedly appeared in the evening sector of auroral latitudes after the development of near-midnight polar substorms. It has been established that the generation of Pc5 pulsations (in this case at frequencies of 3–4 mHz) was spatially asymmetric about noon during the late stage of the recovery phase of the discussed storm as took place during the recovery phase of the superstrong storms of October and November 2003. Intense oscillations were generated in the morning sector at the auroral latitudes and in the postnoon sector at the subauroral and middle latitudes. The cause of such an asymmetry, typical of the recovery phase of superstrong magnetic storms, remains unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号