首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of Sea Research》2007,57(2-3):91-103
Factors contributing to population growth through strong year-class formation have driven a century of directed research in fisheries science. A central discovery of Hjort's paradigm was that multiple generations overlap and longevity is matched with frequency of strong recruitments. Here, I elaborate on this tenet by examining how intra-population modalities in spawning and early habitat use favour population resiliency. A modern theory that has application is the storage effect [Warner, R.R., Chesson, P.L., 1985. Coexistence mediated by recruitment fluctuations – a field guide to the storage effect. Am. Nat. 125, 769–787], whereby spawning stock biomass accumulates each year so that when early survival conditions are favourable, stored egg production can result in explosive population growth. I review two early life history behaviours that contribute to the storage effect: split cohorts (i.e., seasonal pulses of eggs and larvae) and contingent behaviour (i.e., dispersive and retentive patterns in early dispersal). Episodic and pulsed production of larvae is a common feature for marine fishes, well documented through otolith microstructure and hatch-date analyses. In temperate and boreal fishes, early and late spawned cohorts of larvae and juveniles may have differing fates dependent upon seasonal and inter-annual fluctuations in weather and climate. Often, a coastal fish may spawn for a protracted period, yet only a few days' egg production will result in successful recruitment. In these and other instances, it is clear that diversity in spawning behaviour can confer resilience against temporal variations in early survival conditions. Although many factors contribute to intra-population spawning modalities, size and age structure of adults play an important role. Contingent structure, an idea dating to Hjort (herring contingents) and Gilbert (salmon contingents), has been resurrected to describe the diversity of intra-population modalities observed through otolith microchemical and electronic tagging approaches. Retentive and dispersive behaviours confer resiliency against early survival conditions that vary spatially. Examples of contingent structure are increasingly numerous for diadromous fishes. Here, a nursery habitat associated with a contingent behaviour may make a small contribution in a given year, but over a decade contribute significantly to spawning stock biomass. For flatfish and other marine fishes, contingent structure is probable but not well documented. Proximate factors leading to contingent structure are poorly known, but for diadromous fishes, time of spawning and early life history energetic thresholds is hypothesized to lead to alternative life cycles. Here again time of spawning may lead to the storage effect by hedging against spatial variance in early vital rates. Managing for the storage effect will be promoted by conservation of adult age structure and early habitats upon which both strong and weak year-classes rely.  相似文献   

2.
Studies on the early life history of fish in New Zealand started during the 1950s off the Northland coast. Since then taxonomy, seasonality in abundance, and vertical and horizontal distribution patterns have been described as well as aspects at the level of individuals, such as age, growth, and condition. I discuss the findings and issues that have developed from these studies and illustrate three undescribed presettlement reef fish. Results indicate that different taxonomic groups typically have different vertical and horizontal distribution patterns as well as different temporal patterns of abundance. This implies that general models of how “larval fish” behave are unrealistic. As a result, the importance of physical and biological processes that may influence the distribution and survival of ichthyoplankton will vary among categories of fish (such as pelagic and reef fish) and taxonomic groups within these. Based on knowledge of the distribution pattern of some species, there is considerable scope for focusing future research on specific groups offish in terms of ontogenetic changes in morphology, sensory abilities, growth, diet, condition, interrelationships with other plankters, and, in the case of reef fish, onshore transport.  相似文献   

3.
The present study investigates ecological patterns and relationships to environmental variables among a time-series of larval fish species abundance from late spring surveys (1981–2003) in the northwest Gulf of Alaska (GOA). Links between interannual variation in species abundance and the physical environment were explored using generalized additive modeling (GAM). Trends in larval abundance and connections with physical variables displayed patterns that indicate unique and complex responses among species to environmental forcing during the larval period. In particular, the observed patterns suggest that ontogenetic-specific responses, representing sub-intervals of early life, are important. In addition, a notable degree of synchrony in larval abundance trends, and similarity in links with physical variables, were observed among species with common early life history patterns. The deepwater spawners, northern lampfish, arrowtooth flounder, and Pacific halibut, were most abundant in the study area during the 1990s, in association with enhanced wind-driven onshore and alongshore transport. Years of high abundance for Pacific cod, walleye pollock, and northern rock sole were associated with cooler winters and enhanced alongshore winds during spring. High larval abundance for spring–summer spawning rockfish species and southern rock sole seemed to be favored by warmer spring temperatures later in the time-series. This apparent exposure–response coupling seems to be connected to both local-scale and basin-scale environmental signals, to varying degrees depending on specific early life history characteristics. Understanding such ecological connections contributes to the evaluation of vulnerability and resilience among GOA species’ early life history patterns to fluctuating climate and oceanographic conditions. This investigation also provides crucial information for the identification of “environmental indicators” that may have a broad-spectrum effect on multiple species early life history stages, as well as those that may be more species-specific in exerting control on early life history survival. Of particular interest was the emergence of the EP–NP (East Pacific–North Pacific) teleconnection index as the top-ranked variable in the GAM models exploring the connections between late spring larval abundance and the physical environment. The EP–NP index represents an important and often primary mode of spring–summer atmospheric variability in the northeast Pacific, with a strong expression in the GOA, and its connection with species in this study implies that it may be a climate mode of significant ecological importance.  相似文献   

4.
Control of walleye pollock (Theragra chalcogramma) recruitment in the Eastern Bering Sea involves complex interactions between bottom-up and top-down processes, although the mechanisms are poorly understood. We used statistical models to test the leading hypotheses linking recruitment variability to biotic and abiotic factors. Consistent with a “cold-pool hypothesis”, recruitment of pollock was significantly stronger if winters preceding the larval (age-0) and juvenile stages (age-1) were mild. However, our results did not support the proposed top-down mechanism (cannibalism) underlying this hypothesis. Several empirical relationships support an “oscillating control hypothesis”. As predicted by it, the effect of ice conditions on survival during the larval and early juvenile stages was modified by the abundance of adult pollock, implying stronger bottom-up control when adult abundance (hence cannibalism) was low. The proposed bottom-up mechanism predicts that the survival of pelagic-feeding walleye pollock (benthic-feeding yellowfin sole), should be higher during years with an early (late) ice retreat, which was confirmed by our analysis. Our results also provide additional evidence for a “larval transport hypothesis”, which states that cannibalism of larval and juvenile pollock is reduced in years when strong northward advection separates juveniles from cannibalistic adults.In addition to testing existing hypotheses, we identified new relationships between spawner-to-recruit survival rates of walleye pollock and several indicators of mixed layer dynamics during the spring and summer. Survival rates and recruitment were significantly reduced when larval or early juvenile stages experienced a delay in the (non-ice-associated) spring bloom as a result of stormy spring conditions, suggesting that the timing of the spring bloom is critical to both first-feeding larvae and age-1 juveniles. Furthermore, a dome-shaped relationship between pollock survival and summer wind mixing at the early juvenile stage is consistent with modeling and laboratory studies showing an increase in survival at low to moderate levels of wind mixing, but a decrease in feeding success at high levels of wind mixing.Top-down controls also regulate recruitment of walleye pollock. At least one-third of the variability in spawner-to-recruit survival could be accounted for by predation mortality at the early juvenile stage (age-1). Predation of juvenile pollock can be attributed largely to cannibalism, which varies with the abundance of adult pollock and with the availability of juveniles to adult predators. A simple index reflecting the spatial overlap between juvenile and adult pollock explained 30–50% of the overall variability in recruitment, similar to the variability explained by the best environmental predictors. Although environmental effects are difficult to separate from the effects of predation, we conclude that bottom-up and top-down processes are equally important in controlling the survival of pollock from spawning to recruitment at age 2. However, the magnitude of top-down control is itself modified by environmental factors that control the availability of juvenile pollock to adults (through impacts on spatial distribution) and the abundance of adult predators (through effects on productivity and carrying capacity).  相似文献   

5.
We tested the hypothesis that increased growth of salmon during early marine life contributed to greater survival and abundance of salmon following the 1976/1977 climate regime shift and that this, in turn, led to density-dependent reductions in growth during late marine stages. Annual measurements of Bristol Bay (Bering Sea) and Chignik (Gulf of Alaska) sockeye salmon scale growth from 1955 to 2002 were used as indices of body growth. During the first and second years at sea, growth of both stocks tended to be higher after the 1976–1977 climate shift, whereas growth during the third year and homeward migration was often below average. Multiple regression models indicated that return per spawner of Bristol Bay sockeye salmon and adult abundance of western and central Alaska sockeye salmon were positively correlated with growth during the first 2 years at sea and negatively correlated with growth during later life stages. After accounting for competition between Bristol Bay sockeye and Asian pink salmon, age-specific adult length of Bristol Bay salmon increased after the 1976–1977 regime shift, then decreased after the 1989 climate shift. Late marine growth and age-specific adult length of Bristol Bay salmon was exceptionally low after 1989, possibly reducing their reproductive potential. These findings support the hypothesis that greater marine growth during the first 2 years at sea contributed to greater salmon survival and abundance, which in turn led to density-dependent growth during later life stages when size-related mortality was likely lower. Our findings provide new evidence supporting the importance of bottom-up control in marine ecosystems and highlight the complex dynamics of species interactions that continually change as salmon grow and mature in the ocean.  相似文献   

6.
Abstract. Populations of the thalassinidean shrimp Upogebia pusilla were studied on tidal flats in the Northern Adriatic Sea. Biometric analysis showed a sexual dimorphism, especially in propodus size. Size frequency distributions revealed the presence of large animals during all seasons; recruitment by juveniles occurred in autumn. Moult intervals and moult increments were determined in the laboratory and used to generate growth curves which were compared with those calculated from size frequency distributions. The life span of U, pusilla is over 5 years. Ovigerous females occurred between March and September. Egg numbers were high in spring, lower in summer and increased with body size. The incubation time of embryos was 35 days; a female produces an estimated number of three egg batches during the breeding season. A total annual production of 994 kJ was estimated for a theoretical population of 100 animals; 13.5 % is spent for somatic growth, 31 % for egg production of females, and 55.2% is lost as exuviae. The population structures, growth and breeding patterns, as well as embryonic and larval development within the Upogebiidae and Callianassidae are discussed.  相似文献   

7.
Coho salmon (Oncorhynchus kisutch) are a vital component in the southeast Alaska marine ecosystem and are an important regional fishery resource; consequently, understanding mechanisms affecting their year-class strength is necessary from both scientific and management perspectives. We examined correlations among juvenile coho salmon indices, associated biophysical variables, and adult coho salmon harvest data from southeast Alaska over the years 1997–2006. We found no relationship between summer indices of juvenile coho salmon growth, condition, or abundance with subsequent harvest of adult coho salmon in the region. However, using stepwise regression, we found that variation in adult coho salmon harvest was largely explained by indices of juvenile pink salmon (Oncorhynchus gorbuscha) abundance (67%) and zooplankton abundance (24%). To determine if high juvenile pink salmon abundance indicates favorable “bottom-up” lower trophic level environmental conditions for juvenile coho salmon, we plotted abundance of juvenile pink salmon against growth and condition of juvenile coho salmon. No change in growth or condition of juvenile coho salmon was observed in relation to the abundance index for juvenile pink salmon. Therefore, we hypothesize that coho salmon year-class strength in southeast Alaska is influenced by a “top-down” predator control mechanism that results from more abundant juvenile pink salmon, which serve as a predator buffer during early marine residency.  相似文献   

8.
中国近海主要鱼类种群变动与生活史型的演变   总被引:2,自引:0,他引:2  
物种为了种族的延续和繁衍,在历史的长河中,通过自然选择形成了适应其生存的一系列生态学特征,即生活史的选择型。具有不同生活史型鱼种的数量变动形式也不同,换言之,种群数量的变动方式是各个种生活史的反映,种群动态与其生活史选择型有着密切关系。 随着海洋渔业的发展,以及人类对海洋渔业资源开发与利用的增强,一些传统经济种类的资源受到严重威胁。有的资源潜力削弱,甚至有的生物种群的再生机制受到破坏,使其资源面临着枯竭的危险。在强大的捕捞压力下,海洋渔业资源的结构发生了很大变化。生命周期长的种类被生命周期短的种类所代替;传统的经济种类被低质的小型种类所代替。渔业组成处于不断变化和演替之中,水域生态系统的结构与功能将会发生变化,生态平衡将遭到破坏。 对各个生物种群来说,上述变化将不同程度地改变它们的生存条件。物种为了延续和生存,通过自然选择对其所处的环境进行适应性调节,因而,种群原有的生态学特征将产生一系列的变化,如生长速度提高、性成熟加快等。在渐变过程中,物种生活史选择方向也将发生变化。研究鱼类种群的变动及其生活史型的演变过程,对科学利用海洋渔业资源和保护物种的多样性,在实践和理论上都具有重要意义。  相似文献   

9.
Quantitative data are presented on the distribution of adult and larval stages of the euphausiid Nyctiphanes australis G. O. Sars, in western Cook Strait, New Zealand, an area influenced by an upwelling plume. The behaviour of N. australis in the Kahurangi Point region at different stages of its life history appears to ensure its maintenance, in general, over the continental shelf on an upwelling coast. Population structure at the source of the upwelling near Kahurangi Point differed from that in regions “down stream” from the plume. Nyctiphanes australis was most abundant at the “downstream” eastern end of the upwelling plume, and the evidence suggesting that the dense populations there may be resident is discussed. Possible reasons for low densities of furcilia II and III stages in the eastern plume region are considered.  相似文献   

10.
Besides variable egg survival, previous studies suggested that the larval stage may be the most critical phase in determining Baltic cod recruitment variability, and that larvae need to conduct an ontogenetic vertical migration from hatching depths (>50 m) to upper layers with increased food availability in order to initiate first feeding, improve their nutritional condition and growth, and avoid starvation. Recently, detailed information on the stage-resolved vertical distribution of main Baltic copepod species, including the preferred larval Baltic cod prey species Pseudocalanus acuspes, has become available. Therefore, the vertical distribution of Baltic cod larvae in August 2007 and their depth-dependent nutritional condition and growth were investigated. RNA–DNA based methods were used to estimate growth, including a novel approach to estimate growth performance by relating observed specific growth rates (SGR) of field caught larvae to temperature-dependent reference growth rates (Gref) for fast-growing laboratory reared fish from the literature. This standardization to Gref was found to have a great potential to improve investigations on the growth and ecology of larval fish. The need for early larvae to migrate to shallower layers was corroborated, while larger size classes were found at increasingly greater depths. This may reflect a continuation of the ontogenetic vertical migration in order to follow increasingly larger prey items at greater depths and to save energy in cooler waters below the thermocline. Larval growth generally declined with increasing depth, but the decline in growth became less pronounced in larger size classes. This indicates that larger larvae were better in coping with the ambient environment and the available prey field at greater depths. Generally, Baltic cod larvae grew poorly compared to larvae from other studies, which is discussed in relation to differences in predation and a possible food–temperature trade-off for larvae in the highly stratified Baltic Sea. Comparison with earlier results showed a higher frequency of starving larvae and lower frequencies of larger larvae after the first-feeding stage in 1994 and 1995. As this was a period of low Baltic cod recruitment despite favourable conditions for egg survival, it is concluded that larval starvation mortality has a high potential to contribute to recruitment variability in Baltic cod.  相似文献   

11.
We evaluate the time-course of deaths and evidence of periods of increased mortality (i.e., critical periods) in laboratory populations of larval flatfish. First, we make the distinction between age-at-death and abundance-at-time data for fish larvae, the latter being typical in studies of natural populations. Next, we describe an experimental investigation of age- and temperature-dependent mortality in larval winter flounder, Pseudopleuronectes americanus. The survivorship curves of these populations differed significantly in both the magnitude and time-course of mortality among the four water temperatures evaluated (7, 10, 13, and 16°C). Mortality was highest in the cooler temperatures and concentrated in the third quarter of larval life, largely concurrent with settlement of surviving members of the cohort. Among the statistical methods for analysing survival data, the proportional-hazards model with time-varying covariates proved best at capturing the patterns of age-specific mortalities. We conclude that fair appraisals of recruitment hypotheses which are predicated on periods of high, age-specific mortality that vary with environmental conditions (e.g., Hjort's critical period hypothesis) will require: (1) data that are based on age, not time; (2) data that are of higher temporal resolution than commonly available at present and (3) analytical methods that are sensitive to irregularities in survivorship curves. We suggest four research approaches for evaluating critical periods in nature.  相似文献   

12.
The use of geochemical tags in calcified structures of fish and invertebrates is an exciting tool for investigating larval population connectivity. Tag evaluation over relatively short intervals (weeks) may detect environmental and ecological variability at a temporal scale highly relevant to larval transport and settlement. We collected newly settled mussels (Mytilus californianus and M. galloprovincialis) weekly during winter/spring of 2002 along the coast of San Diego, CA, USA, at sites on the exposed coast (SIO) and in a protected coastal bay (HI), to investigate temporal patterns of geochemical tags in mussel shells. Analyses of post-settlement shell via LA-ICP-MS revealed statistically significant temporal variability for all elements we examined (Mg, Mn, Cu, Sr, Cd, Ba, Pb and U). Despite this, our ability to distinguish multielemental signatures between sites was largely conserved. Throughout our 13-week study, SIO and HI mussels could be chemically distinguished from one another in 78–87% of all cases. Settlement varied between 2 and 27 settlers gram-byssus?1 week?1 at SIO and HI, and both sites were characterized by 2–3 weeks with “high” settlement. Geochemical tags recorded in early larval shell of newly settled mussels differed between “high” and “low” settlement weeks at both sites (MANOVA), driven by Mg and Sr at SIO (p = 0.013) and Sr, Cd, Ba and Pb at HI (p < 0.001). These data imply that shifts in larval sources or transport corridors were responsible for observed settlement variation, rather than increased larval production. In particular, increased settlement at HI was observed concurrent with the appearance of geochemical tags (e.g., elevated Cd), suggesting that those larvae were retained in upwelled water near the mouth of the bay. Such shifts may reflect short-term changes in connectivity among sites due to altered transport corridors, and influence the demography of local populations.  相似文献   

13.
Reproductive patterns of an epifaunal amphipod,Pontogeneia rostrata, were studied on Dolsando sandy shore in Korea. The life history pattern was iteroparous, with recruitment mainly occurring from winter to spring. The sex ratio was male-biased, especially during breeding periods. The mean body length of females was significantly larger than that of males. Brood size and egg volume were positively related to the body length of ovigerous females. There was no significant difference in brood size between successive breeding periods, but egg volumes were significantly higher in early winter (December) than in late spring breeding (May and June), increasing the probability of survival to hatching. These traits contribute to more reproductive potential in early winter than in late spring breeding. The mean brood size of epifaunalP. rostrata was larger but the mean egg volume smaller than that of infaunal amphipods in this sampling area. We suggest that reproductive effort for epifaunal species may be proportionally greater than for infaunal species in risky environments.  相似文献   

14.
The stalked barnacle Pollicipes pollicipes is a cirriped crustacean that lives on very exposed rocky shores. This barnacle is the most important economical resource on intertidal rocky shores of continental Portugal. It is highly prized as food and heavily exploited (professional and recreational fishery), but fishery data are scarce and do not estimate the real pressure upon this resource.Despite its socio-economic interest, specific regulations on this fishery are recent and different along the Portuguese coast. Four regions with different regulation can be identified: the marine reserve “Reserva Natural das Berlengas” (RNB) and the marine park “Parque Marinho Prof. Luiz Saldanha” (PMLS) (both in central Portugal); the natural park located in SW Portugal (“Parque Natural do Sudoeste Alentejano e Costa Vicentina”, PNSACV); and the rest of the coast.The main objective of the present study was to study the spatial patterns of percentage cover, biomass, density and size structure of P. pollicipes in areas with different exploitation regimes, including harvested areas and no-take areas. Additionally, variability between mid shore and low shore barnacles was also analysed.Seven areas were sampled with a variable number of sites (a total of 24) randomly sampled in each area during 2011. Photographs and image analysis (percentage cover) and destructive sampling (density, biomass and size) were used.In general, percentage cover, biomass and density were higher in mid shore when compared to low shore, namely in harvested areas. Low shore barnacles had a higher proportion of adults with moderate and high commercial value, while juveniles were relatively more abundant at mid shore.There were no consistent differences in the patterns of distribution and abundance of P. pollicipes among areas subject to different exploitation regimes. The most different area was the harvested area by professional fishers in RNB, where the highest biomass within the study was registered (mid shore, 7.7 kg·m 2). Barnacles within this area presented a higher proportion of adults with commercial value, while recruits and juveniles were relatively more abundant in other areas.The hypothesis of a highest percentage cover, density and biomass in the low shore of no-take sites was not supported.  相似文献   

15.
The hypothesis that recruitment variation in flatfishes should be most variable at the northern edge of the species range, least near the centre of the range, and intermediate near the southern limit was tested using stock and recruitment data generated from sequential population analysis for several different flatfish stocks involving four species (plaice Pleuronectes platessa, sole Solea vulgaris from the eastern Atlantic, American plaice Hippoglossoides platessoides, and yellowtail flounder Limanda ferruginae from the western Atlantic). Several groundfish species have been found to conform to this so-called species range hypothesis with the suggestion that density-independent processes predominate at the edges of the distributional range and density-dependent processes dominate in the centre of the range. Our results were generally inconsistent with the hypothesis: the coefficient of variation (CV) of recruitment for plaice in the eastern Atlantic was independent of latitude, the CV of recruitment for sole exhibited a dome-shaped relationship with latitude with the highest CVs occurring at the mid-point of the range, and the CV of recruitment for the western Atlantic stocks exhibited a monotonic decrease with latitude. We extended our latitudinal analyses by assessing both the degree of dependency of recruitment on spawning stock biomass and the spatial and temporal scales of variability in recruitment and pre-recruit survival for the eastern Atlantic stocks. In general our analysis revealed no evidence of a strong stock and recruitment relationship for any of the stocks examined, and previously published analyses revealed no such patterns with latitude. Analysis of both de-trended recruitment and pre-recruit survival time series over the species ranges of sole and plaice revealed strong positive correlations among adjacent stocks and inverse correlations among stocks at the extremes of the range. Recruitment variation in the flatfish stocks examined appears to be dominated by density-independent factors, operating at a local scale, on the egg and larval stages.  相似文献   

16.
A model to assess the impact of oil spill on fisheries, consisting of an oil spill fates model, a continental shelf hydrodynamics model, an ichthyoplankton transport and fates model, and a fish population model, has been applied to the Georges Bank-Gulf of Maine region to estimate the impact of oil spills on several important commercial fisheries. The model addresses direct impacts of oil on a fishery through hydrocarbon-induced egg and larval mortality. This early life stage mortality is estimated by dynamically mapping the spatial intersection of the surface and subsurface oil concentrations resulting from the spill with the developing eggs and larvae. Ichthyoplankton entering an area with hydrocarbon concentrations in excess of a specified threshold are assumed lost. Model output is given in terms of differential catch, comparing the non-impacted and the hydrocarbon impacted fisheries. Difficulties in establishing stock-recruit relationships, and the inability to predict first year survival even one year ahead make the quantification of absolute catch losses impossible. Output of the model system discussed here is therefore limited to relative rather than absolute catch losses.The paper is organized to demonstrate first the importance of the recruitment question to impact estimation, second that a modeling methodology is necessary to evaluate impacts given the magnitude of unexplained observed recruitment variability, and third a stochastic solution to the problem which places impact estimates in the context of a probability distribution. Lastly, the model system is applied to the problem of attaining better early life history mortality estimates, to ultimately improve impact estimation capabilities.  相似文献   

17.
《Journal of Sea Research》2011,65(4):473-486
One of the present concerns of fish biologists involves defining and identifying nursery habitats in the context of conservation and resource management strategies. Fish nursery studies usually report upon nursery occupation during the latter juvenile stages, despite the fact that recruitment to nurseries can start early in life, during the larval phase. Here we investigated the use of a temperate estuarine nursery area, the Lima estuary (NW Portugal), by initial development stages of flatfish species before and after metamorphosis, integrating the larval and juvenile phases. The Lima estuarine flatfish community comprised twelve taxa, seven of which were present as pelagic larvae, six as juveniles and three as adults. There was a general trend of increasing spring–summer abundance of both larvae and juveniles, followed by a sharp winter decrease, mainly of larval flatfishes. The Lima estuary was used by Solea senegalensis, Platichthys flesus and Solea solea as a nursery area, with direct settlement for the two first species. In contrast, indirect settlement was suggested for S. solea, with metamorphosis occurring outside the estuarine area. Estuarine recruitment of S. senegalensis varied between years, with young larvae occurring in the estuary throughout a prolonged period that lasted 6–9 months, corroborating the protracted spawning season. P. flesus, the second most abundant species, exhibited a typical spring estuarine recruitment, without inter-annual variations. Developed larvae arrived in the estuary during spring, whereas the 0-group juveniles emerged in the following summer period. The present study contributes new insight to our understanding of the economically important S. senegalensis, and highlights the importance of integrating the planktonic larval phase into traditional flatfish nursery studies.  相似文献   

18.
Hydrocarbon and brine seeps in the deep regions of the northern and western Gulf of Mexico often support populations of the bathymodiolin mussel, “Bathymodioluschildressi. In this study, we use two mitochondrial and six nuclear DNA markers to investigate relationships within the metapopulation of “B.childressi in the Gulf of Mexico from Mississippi Canyon to Alaminos Canyon over a range of 527–2222 m in depth and approximately 550 km in distance. Restriction fragment length polymorphism (RFLP) and size polymorphism analysis of the markers suggest that populations are not genetically differentiated. FST values were not significantly different from zero. The presence of a panmictic population of “B.childressi over such a broad range of depth suggests that this species may be quite different from most members of the Gulf of Mexico seep chemosynthetic communities.  相似文献   

19.
Understanding variability in reproductive schedules is essential to the management of recruitment limited fisheries such as that of Pecten maximus. Small scale (<5 km) variation in gonad condition and the onset of spawning of P. maximus were found among commercial scallop grounds in Isle of Man waters. Environmental and fishing drivers of these spatial patterns were investigated using a generalised additive model. Rate of change in temperature over the month prior to sampling was identified as the short term driver of gonad weight associated with the autumn spawning event. Long term drivers were average annual chlorophyll a concentration, scallop density, stratification index and shell size. The model explained 42.8% of deviance in gonad weight. Within site variation in gonad condition was high, indicating a “bet hedging” reproductive strategy which may decrease the chance of fertilisation especially at low densities. Therefore, areas protected from fishing, where scallop densities can increase may help buffer against reproductive failure. An increase in shell length from 100 mm to 110 mm equated to an increase of approximately 20% in gonad weight. Protecting scallops from fishing mortality until 110 mm (age four) compared to 100 mm (age three) may lead to an overall increase in lifetime reproductive output by a factor of 3.4.  相似文献   

20.
We examine the microchemistry of otoliths of cohorts of a fished population of the large catadromous fish, barramundi Lates calcarifer from the estuary of a large tropical river. Barramundi from the estuary of the large, heavily regulated Fitzroy River, north-eastern Australia were analysed by making transects of 87Sr/86Sr isotope and trace metal/Ca ratios from the core to the outer edge. Firstly, we examined the Sr/Ca, Ba/Ca, Mg/Ca and Mn/Ca and 87Sr/86Sr isotope ratios in otoliths of barramundi tagged in either freshwater or estuarine habitats that were caught by the commercial fishery in the estuary. We used 87Sr/86Sr isotope ratios to identify periods of freshwater residency and assess whether trace metal/Ca ratios varied between habitats. Only Sr/Ca consistently varied between known periods of estuarine or freshwater residency. The relationships between trace metal/Ca and river flow, salinity, temperature were examined in fish tagged and recaptured in the estuary. We found weak and inconsistent patterns in relationships between these variables in the majority of fish. These results suggest that both individual movement history within the estuary and the scale of environmental monitoring were reducing our ability to detect any patterns. Finally, we examined fish in the estuary from two dominant age cohorts (4 and 7 year old) before and after a large flood in 2003 to ascertain if the flood had enabled fish from freshwater habitats to migrate to the estuary. There was no difference in the proportion of fish in the estuary that had accessed freshwater after the flood. Instead, we found that larger individuals with of each age cohort were more likely to have spent a period in freshwater. This highlights the need to maintain freshwater flows in rivers. About half the fish examined had accessed freshwater habitats before capture. Of these, all had spent at least their first two months in marine salinity waters before entering freshwater and some did not enter freshwater until four years of age. This contrasts with the results of several previous studies in other parts of the range that found that access to freshwater swamps by larval barramundi was important for enhanced population productivity and recruitment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号