首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Pollen diagrams from Joe and Niliq Lakes date to ca. 28,000 and 14,000 yr B.P., respectively. Mesic shurb tundra grew near Joe Lake ca. 28,000 to 26,000 yr B.P. with local Populus populations prior to ca. 27,000 yr B.P. Shrub communities decreased as climate changed with the onset of Itkillik II glaciation (25,000 to 11,500 yr B.P.), and graminoid-dominated tundra characterized vegetation ca. 18,500 to 13,500 yr B.P. Herb tundra was replaced by shrub Betula tundra near both sites ca. 13,500 yr B.P. with local expansion of Populus ca. 11,000 to 10,000 yr B.P. and Alnus ca. 9000 yr B.P. Mixed Picea glauca/P. mariana woodland was established near Joe Lake ca. 6000 yr B.P. These pollen records when combined with others from northern Alaska and northwestern Canada indicate (1) mesic tundra was more common in northwestern Alaska than in northeastern Alaska or northwestern Canada during the Duvanny Yar glacial interval (25,000 to 14,000 yr B.P.); (2) with deglaciation, shrub Betula expanded rapidly in northwestern Alaska but slowly in areas farther east; (3) an early postglacial thermal maximum occurred in northwestern Alaska but had only limited effect on vegetation; and (4) pollen patterns in northern Alaska and northwestern Canada suggest regional differences in late Quaternary climates.  相似文献   

2.
Five pollen diagrams reveal late Wisconsin and Holocene vegetation changes in the Walker Lake/Alatna Valley region of the central Brooks Range, approximately 100 km west of the area studied by D. A. Livingstone (1955, Ecology36, 587–600). New insights into the vegetation history of this region are provided by calculations of pollen influx and by the use of linear discriminant analysis to separate Picea glauca and P. mariana pollen. Three major pollen zones are identified: (1) a basal herb zone, characterized by high percentages of Cyperaceae, Gramineae, Salix, and Artemisia, and low total pollen influx; (2) a shrub Betula zone with increased total pollen influx and very high percentages of Betula pollen, predominantly in the size range of B. nana and B. glandulosa; and (3) and Alnus zone dominated by Alnus pollen. Lakes currently within the boreal forest or near tree line show relatively high percentages of Picea pollen in the Alnus zone. Several striking vegetation changes occurred between ca. 10,000 and 7000 yr B.P. Between ca. 11,000 and 10,000 yr B.P., Populus balsamifera pollen percentages as great as 30% indicate that this species was present at low-elevation sites near Walker Lake. These populations declined abruptly ca. 10,000 yr ago and have never regained prominence. About 8500 yr B.P., Picea glauca pollen reached 10–15%, indicating the arrival of P. glauca in or near the study area. P. glauca populations evidently decreased ca. 8000 yr ago, when Picea pollen percentages and influx fell to low values. About 7000 yr B.P., Alnus pollen percentages and influx rose sharply as alder shrubs became established widely. Picea once more expanded ca. 5000 yr ago, but these populations were dominated by P. mariana rather than P. glauca, which increased slowly at this time and may still be advancing northward. Some vegetation changes have been remarkably synchronous over wide areas of interior Alaska, and probably reflect responses of in situ vegetation to environmental changes, but others may reflect the lagged responses of species migrating into new areas.  相似文献   

3.
Pollen and macrofossil analyses of a core spanning 26,000 yr from Davis Lake reveal late Pleistocene and Holocene vegetational patterns in the Puget Lowland. The core ranges lithologically from a basal inorganic clay to a detritus gyttja to an upper fibrous peat and includes eight tephra units. The late Pleistocene pollen sequence records two intervals of tundra-parkland vegetation. The earlier of these has high percentages of Picea, Gramineae, and Artemisia pollen and represents the vegetation during the Evans Creek Stade (Fraser Glaciation) (ca. 25,000–17,000 yr B.P.). The later parkland interval is dominated by Picea, Tsuga mertensiana, and Gramineae. It corresponds to the maximum ice advance in the Puget Lowland during the Vashon Stade (Fraser Glaciation) (ca. 14,000 yr B.P.). An increase in Pinus ontorta pollen between the two tundra-parkland intervals suggests a temporary rise in treeline during an unnamed interstade. After 13,500 yr B.P., a mixed woodland of subalpine and lowland conifers grew at Davis Lake during a period of rapid climatic amelioration. In the early Holocene, the prolonged expansion of Pseudotsuga and Alnus woodland suggests dry, temperate conditions similar to those of present rainshadow sites in the Puget Lowland. More-mesic forests of Tsuga eterophylla, Thuja plicata, and Pseudotsuga, similar to present lowland vegetation, appeared in the late Holocene (ca. 5500 yr B.P.).  相似文献   

4.
Pollen and macrofossil analyses of a sediment core from Beaver Pond (60° 37′ 14″ N, 154° 19′ W, 579 m a.s.l.) reveal a record of regional and local postglacial vegetation change in south‐western Alaska. The chronology is based on five AMS (accelerator mass spectrometry) 14C ages obtained from terrestrial plant macrofossils. Pollen and macrofossil records suggest that open herb and shrub tundra with e.g. Poaceae, Cyperaceae, Artemisia, Vaccinium and Salix prevailed on the landscape before ca. 14 000 cal a BP. The shift from herb‐ to shrub‐dominated tundra (Salix, subsequent Betula expansion) possibly reflects climatic warming at the beginning of the Bølling period at ca. 14 700–14 500 and around 13 500 cal a BP. Vegetation (Betula shrub tundra) remained relatively stable until the early Holocene. Macrofossil influx estimates provide evidence for greater biomass in Betula shrub tundra during the early postglacial period than today. Charcoal accumulation rates suggest tundra fire activity was probably greater from ca. 12 500 to 10 500 cal a BP, similar to results from elsewhere in Alaska. The pollen and macrofossil records of Beaver Pond suggest the prevalence of low shrub tundra (shrub Betula, Betula nana, Vaccinium, Ledum palustre, Ericaceae) and tall shrub tundra (Alnus viridis ssp. crispa, Salix) between 10 000 and 4000 cal a BP. This Holocene vegetation type is comparable with that of the modern treeless wet and moist tundra in south‐western Alaska. The expansion of Picea glauca occurred ~4000 cal a BP, much later than that of A. viridis (ssp. crispa), whereas in central and eastern Alaska Picea glauca expanded prior to or coincident with Alnus (viridis). At sites located only 200–400 km north‐east of Beaver Pond (Farewell and Wien lakes), Picea glauca and Betula forests expanded 8000–6000 cal a BP. Unfavourable climatic conditions and soil properties may have inhibited the expansion and establishment of Picea across south‐west Alaska during the mid and late Holocene. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Climate models suggest that the global warming during the early to mid‐Holocene may have partly resulted from the northward advance of the northern treeline and subsequent reduction of the planetary albedo. We investigated the Holocene vegetation history of low arctic continental Nunavut, Canada, from a radiocarbon‐dated sediment core from TK‐2 Lake, a small‐lake ca. 200 km north of the limit of the forest‐tundra. The pollen and loss‐on‐ignition data indicate the presence of dwarf shrub tundra in the region since the beginning of organic sedimentation at ca. 9000 cal. yr BP with dominance of Betula, especially since 8700 cal. yr BP. At 8100–7900 cal. yr BP the dominance of the shrub tundra was punctuated by a transient decline of Betula and coincident increases of Ericaceae undiff., Vaccinium‐type, and Gramineae. This suggests an abrupt disturbance of the Betula glandulosa population, approximately simultaneously with the sudden 8200 cal. yr BP event in the North Atlantic. However, in the absence of other sites studied in the area, linkage to the 8200 cal. yr BP event remains tentative. The lack of any evidence of forest‐tundra in the region constrains the northern limit of the mid‐Holocene advance of the forest‐tundra boundary in central northern Canada. Consequently, our results show that the climate models imposing a mid‐Holocene advance of the limit of the forest‐tundra to the arctic coast of Canada may have overestimated the positive climatic feedback effects that can result from the replacement of tundra by the boreal forest. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
Sediments from Rapid Lake document glacial and vegetation history in the Temple Lake valley of the Wind River Range, Wyoming over the past 11,000 to 12,000 yr. Radiocarbon age determinations on basal detrital organic matter from Rapid Lake (11,770 ± 710 yr B.P.) and Temple Lake (11,400 ± 630 yr B.P.) bracket the age of the Temple Lake moraine, suggesting that the moraine formed in the late Pleistocene. This terminal Pleistocene readvance may be represented at lower elevations by the expansion of forest into intermontane basins 12,000 to 10,000 yr B.P. Vegetation in the Wind River Range responded to changing environmental conditions at the end of the Pleistocene. Following deglaciation, alpine tundra in the Temple Lake valley was replaced by a Pinus albicaulis parkland by about 11,300 14C yr B.P. Picea and Abies, established by 10,600 14C yr B.P., grew with Pinus albicaulis in a mixed conifer forest at and up to 100 m above Rapid Lake for most of the Holocene. Middle Holocene summer temperatures were about 1.5°C warmer than today. By about 5400 14C yr B.P. Pinus albicaulis and Abies became less prominent at upper treeline because of decreased winter snowpack and higher maximum summer temperatures. The position of the modern treeline was established by 3000 14 C yr B.P. when Picea retreated downslope in response to Neoglacial cooling.  相似文献   

7.
Pollen analysis of a sediment core from Zagoskin Lake on St. Michael Island, northeast Bering Sea, provides a history of vegetation and climate for the central Bering land bridge and adjacent western Alaska for the past ≥30,000 14C yr B.P. During the late middle Wisconsin interstadial (≥30,000-26,000 14C yr B.P.) vegetation was dominated by graminoid-herb tundra with willows (Salix) and minor dwarf birch (Betula nana) and Ericales. During the late Wisconsin glacial interval (26,000-15,000 14C yr B.P.) vegetation was graminoid-herb tundra with willows, but with fewer dwarf birch and Ericales, and more herb types associated with dry habitats and disturbed soils. Grasses (Poaceae) dominated during the peak of this glacial interval. Graminoid-herb tundra suggests that central Beringia had a cold, arid climate from ≥30,000 to 15,000 14C yr B.P. Between 15,000 and 13,000 14C yr B.P., birch shrub-Ericales-sedge-moss tundra began to spread rapidly across the land bridge and Alaska. This major vegetation change suggests moister, warmer summer climates and deeper winter snows. A brief invasion of Populus (poplar, aspen) occurred ca.11,000-9500 14C yr B.P., overlapping with the Younger Dryas interval of dry, cooler(?) climate. During the latest Wisconsin to middle Holocene the Bering land bridge was flooded by rising seas. Alder shrubs (Alnus crispa) colonized the St. Michael Island area ca. 8000 14C yr B.P. Boreal forests dominated by spruce (Picea) spread from interior Alaska into the eastern Norton Sound area in middle Holocene time, but have not spread as far west as St. Michael Island.  相似文献   

8.
High-resolution lithostratigraphy, mineral magnetic, carbon, pollen, and macrofossil analyses, and accelerator mass spectrometry 14C measurements were performed in the study of a sediment sequence from Lake Tambichozero, southeastern Russian Karelia, to reconstruct late-glacial and early Holocene aquatic and terrestrial environmental changes. The lake formed ca. 14,000 cal yr B.P. and the area around the lake was subsequently colonized by arctic plants, forming patches of pioneer communities surrounded by areas of exposed soil. A minor rise in lake productivity and the immigration of Betula pubescens occurred ca. 11,500 cal yr B.P. The rise in summer temperatures probably led to increased melting of remnant ice and enhanced erosion. The distinct increase in lake productivity and the development of open Betula-Populus forests, which are reconstructed based on plant macrofossil remains, indicate stable soils from 10,600 cal yr B.P. onward. Pinus and Picea probably became established ca. 9900 cal yr B.P.  相似文献   

9.
Charcoal analysis for paleoenvironmental interpretation: A chemical assay   总被引:1,自引:0,他引:1  
Pollen and charcoal analysis of radiocarbon-dated sediment cores from Duck Pond in the Cape Cod National Seashore provide a continuous 12,000-yr vegetation and climate history of outer Cape Cod. A Picea-Hudsonia parkland and then a Picea-Pinus banksiana-Alnus crispa boreal forest association grew near the site between 12,000 and 10,000 yr B.P. This vegetation was replaced by a northern conifer forest of Pinus strobus-P. banksiana, and, subsequently, by a more mesophytic forest (Pinus strobus, Tsuga, Quercus, Fagus, Acer, Ulmus, Fraxinus, Ostrya) as the climate became warmer and wetter by 9500 yr B.P. By 9000 yr B.P. a Pinus rigida-Quercus association dominated the landscape. High charcoal frequencies from this and subsequent levels suggest that the pine barrens association developed during a warmer and drier climate that lasted from 9000 to about 5000 yr B.P. Increased percentages of Pinus strobus pollen indicate a return to moister and cooler conditions by about 3500 yr B.P. A doubled sedimentation rate, increased charcoal, and increased herb pollen suggest land disturbance near the pond before European settlement. These results suggest a rapid warming in the northeast in the early Holocene and support a hypothesis of a rapid sea level rise at that time. Comparison of the pollen results from Duck Pond with those from Rogers Lake, Connecticut, illustrates the importance of edaphic factors in determining the disturbance frequency and vegetation history of an area.  相似文献   

10.
To investigate the Holocene climate and treeline dynamics in the European Russian Arctic, we analysed sediment pollen, conifer stomata, and plant macrofossils from Lake Kharinei, a tundra lake near the treeline in the Pechora area. We present quantitative summer temperature reconstructions from Lake Kharinei and Lake Tumbulovaty, a previously studied lake in the same region, using a pollen–climate transfer function based on a new calibration set from northern European Russia. Our records suggest that the early-Holocene summer temperatures from 11,500 cal yr BP onwards were already slightly higher than at present, followed by a stable Holocene Thermal Maximum (HTM) at 8000–3500 cal yr BP when summer temperatures in the tundra were ca. 3°C above present-day values. A Picea forest surrounded Lake Kharinei during the HTM, reaching 150 km north of the present taiga limit. The HTM ended with a temperature drop at 3500–2500 cal yr BP associated with permafrost initiation in the region. Mixed spruce forest began to disappear around Lake Kharinei at ca. 3500 cal yr BP, with the last tree macrofossils recorded at ca. 2500 cal yr BP, suggesting that the present wide tundra zone in the Pechora region formed during the last ca. 3500 yr.  相似文献   

11.
Pollen analysis of the 1973 ice core from Devon Island glacier,Canada   总被引:1,自引:0,他引:1  
Meltwater from a 299-m-long ice core was filtered and analyzed for fossil pollen and spores. Pollen concentration was higher in the late Holocene and interglacial intervals (ca. 7 liter?1) than in the early Holocene and Wisconsinan (ca. 1–2 liter?1) ones. The late Holocene and interglacial assemblages were dominated by Alnus (alder), whereas the early Holocene and Wisconsinan ones were dominated by Betula (birch) and Artemisia (sage). During the Holocene and probably the last interglaciation, most of the pollen and spores were blown a minimum of 1000 km from low arctic shrub tundra and adjacent subarctic Picea (spruce) forest; these areas were dominated by the arctic air mass during the summer pollinating season. During the Wisconsinan-early Holocene, glacier ice and arctic air were more widespread and pollen sources were more distant; thus, at this time relatively little pollen was incorporated into the ice.The Devon ice-core data suggest that there should have been pollen in the continental ice sheet of Wisconsin time. When the ice sheet retreated this pollen would be carried by meltwater and redeposited with silt and clay together with contemporary pollen, producing an ecologically anomalous assemblage.  相似文献   

12.
Wisconsinan full-glacial silts filling a swale exposed in Conklin Quarry, Johnson Co., Iowa, contain a large and diverse biota that includes pollen, bryophytes, vascular-plant macrofossils, small mammals, molluscs, and insects. Radiocarbon dates on wood from the top, middle and bottom of the swale fill respectively were 16710 ± 270, 17 170 ± 205, and 18090 ± 190 yr BP. The pollen diagram is dominated by Picea (spruce), Pinus (pine), and Cyperaceae (sedge), and it records low pollen accumulation rates. Plant macrofossils include a number of tundra species along with Picea and Larix (larch) needles and small pieces of wood. The insect fauna contains many species now confined to the forest-tundra transition zone of northwestern Yukon and Alaska. Small mammals include the tundra indicators Dicrostonyx (collared lemming), and probably Microtus miurus (singing vole) together with boreal forest taxa. The molluscs include extinct and relict species and show the widest range in present geographic distribution, but Rocky Mountain and especially northern elements predominate in the swale fill. All these lines of evidence lead to consistent palaeoclimato-logical interpretation and palaeoecological reconstruction. The dominant habitats represented by the biota and sedimentary environment collectively included open calcareous silty to sandy or gravelly upland sites, minerotrophic fens (wetlands), pond- or stream-side clayey to sandy shores, and shallow (possibly ephemeral), cold, clear-water ponds. Mean July temperatures were probably 11° to 13°C cooler than at present. The biota indicates that a Picea-Larix krummholz with extensive tundra openings was present in southeastern Iowa between 18090 and 16710 yr BP.  相似文献   

13.
Given the difficulty of separating the three Picea species—P. glauca, P. mariana, and P. rubens (white, black, and red spruce)—in the pollen record, little is known about their unique histories in eastern North America following deglaciation. Here we report the first use of a classification tree analysis (CART) to distinguish pollen grains of these species. It was successfully applied to fossil pollen from eight sites in Maine and one in Massachusetts. We focused on the late glacial/early Holocene (14,000 to 8000 cal yr B.P.) and the late Holocene (1400 cal yr B.P. to present)—the two key periods since deglaciation when Picea has been abundant in the region. The result shows a shift from a Picea forest of P. glauca and P. mariana in the late glacial to a forest of P. rubens and P. mariana in the late Holocene. The small number of P. rubens grains identified from the late glacial/early Holocene samples (<5%) suggests that that species was either absent or rare at most of the sites. The occurrence and distribution of the three species do not reveal any geographic or temporal trend during late glacial time, but the data suggest that they were distributed in local patches on the landscape. The results of this study indicate that the recent population expansion of Picea (1000 to 500 cal yr B.P.) was likely the first time since deglaciation that P. rubens was abundant in the region.  相似文献   

14.
Continuous pollen and sediment records from two ∼8.5-m-long cores document late Pleistocene and Holocene sedimentation and vegetation change in the Ballston Lake basin, eastern New York State. Pebbles at the base of both cores and the geomorphology of the watershed reflect the presence of the Mohawk River in the basin prior to ∼12,900 ± 70 cal yr B.P. Ballston Lake formed at the onset of the Younger Dryas (YD) by an avulsion of the Mohawk River. The transition from clay to gyttja with low magnetic susceptibility (MS), low bulk density, and high organic carbon indicates rapid warming and increased lake productivity beginning 11,020 cal yr B.P. MS measurements reveal that the influx of magnetic particles, associated with pre-Holocene clastic sedimentation, ceased after ∼10,780 cal yr B.P. The pollen record is subdivided into six zones: BL1 (12,920 to 11,020 cal yr B.P.) is dominated by boreal forest pollen; BL2 (11,020 to 10,780 cal yr B.P.) by pine (Pinus) forest pollen; BL3 (10,780 to 5290 cal yr B.P.) by hemlock (Tsuga) and mixed hardwood pollen; BL4 (5290 to 2680 cal yr B.P.) by mixed hardwood pollen; BL5a (2680 cal yr B.P. to 1030 cal yr B.P.) by conifer and mixed hardwood pollen; and BL5b (1030 cal B.P. to present) by increasing ragweed (Ambrosia) pollen. A 62% decrease in spruce (Picea) pollen in <320 cal years during BL1 reflects rapid warming at the end of the YD. Holocene pollen zones record more subtle climatic shifts than occurred at the end of the YD. One of the largest changes in the Holocene pollen spectra began ∼5300 cal yr B.P., and is characterized by a marked decline in hemlock pollen. This has been noted in other pollen records from the region and may record preferential selection of hemlock by a pathogen or parasites.  相似文献   

15.
Quaternary deposits on the Pacific slope of Washington range in age from the earliest known interglaciation, the Alderton, through the Holocene. Pollen stratigraphy of these deposits is represented by 12 major pollen zones and is ostensibly continuous through Zone 8 over more than 47,000 radiocarbon yr. Before this, the stratigraphy is discontinuous and the chronology less certain. Environments over the time span of the deposits are reconstructed by the comparison of fossil and modern pollen assemblages and the use of relevant meteorological data. The Alderton Interglaciation is characterized by forests of Douglas fir (Pseudotsuga menziesii), alder (Alnus), and fir (Abies). During the next younger interglaciation, the Puyallup, forests were mostly of pine, apparently lodgepole (Pinus contorta), except midway in the interval when fir, western hemlock (Tsuga heterophylla), and Douglas fir temporarily replaced much of the pine. Vegetation outside the limits of Salmon Springs ice (>47,00034,000 yr BP) varied chiefly between park tundra and forests of western hemlock, spruce (Picea), and pine. The Salmon Springs nonglacial interval at the type locality records early park tundra followed by forests of pine and of fir. During the Olympia Interglaciation (34,00028,000 yr BP), pine invaded the Puget Lowland, whereas western hemlock and spruce became manifest on the Olympic Peninsula. Park tundra was widespread during the Fraser Glaciation (28,00010,000 yr BP) with pine becoming more important from about 15,000 to 10,000 yr BP. Holocene vegetation consisted first of open communities of Douglas fir and alder; later, closed forests succeeded, formed principally of western hemlock on the Olympic Peninsula and of western hemlock and Douglas fir in the Puget Lowland. Over the length of the reconstructed environmental record, climate shifted between cool and humid or relatively warm, semihumid forest types and cold, relatively dry tundra or park tundra types. During times of glaciation, average July temperatures are estimated to have been at least 7°C lower than today. Only during the Alderton Interglaciation and during the Holocene were temperatures higher for protracted periods that at present.  相似文献   

16.
Lake Emma, which no longer exists because of a mining accident, was a tarn in a south-facing cirque near the headwaters of the Animas River in the San Juan Mountains of southwestern Colorado. During the Pinedale glaciation, this area was covered by a large transection glacier centered over the Lake Emma region. Three radiocarbon dates on basal organic sediment from Lake Emma indicate that by ca. 15,000 yr B.P. this glacier, one of the largest in the southern Rocky Mountains, no longer existed. Twenty-two radiocarbon dates on Picea and Abies krummholz fragments in the Lake Emma deposits indicate that from ca. 9600 to 7800 yr B.P., from 6700 to 5600 yr B.P., and at 3100 yr B.P. the krummholz limit was at least 70 m higher than present. These data, in conjunction with Picea:Pinus pollen ratios from both the Lake Emma site and the Hurricane Basin site of J. T. Andrews, P. E. Carrara, F. B. King, and R. Struckenrath (1975, Quaternary Research 5, 173–197) suggest than from ca. 9600 to 3000 yr B.P. timberline in the San Juan Mountains was higher than present. Cooling apparently began ca. 3000 yr B.P. as indicated by decreases in both the percentage of Picea pollen and Picea:Pinus pollen ratios at the Hurricane Basin site (Andrews et al., 1975). Cooling is also suggested by the lack of Picea or Abies fragments younger than 3000 yr B.P. at either the Lake Emma or the Hurricane Basin site.  相似文献   

17.
A 1520-cm sediment core from Lake Patzcuaro, Michoacan, Mexico, is 44,000 yr old at the base. All parts of the core have abundant pollen of Pinus (pine), Alnus (alder), and Quercus (oak) with frequent Abies (fir). The interval dated from 44,000 to 11,000 yr ago has a homogeneous flora characterized by abundant Juniperus (juniper) pollen and frequent Artemisia (sagebrush). It is believed to represent an appreciably drier and colder climate than at present. The Holocene at Lake Patzcuaro is characterized by a moderate increase in Pinus pollen and the loss of Juniperus pollen, as the modern type of climate succeeded. Alnus was abundant until about 5000 yr ago; its abrupt decrease with the first appearance of herbaceous weed pollen may reflect the cutting of lake-shore and stream-course alder communities for agricultural purposes, or it may simply reflect a drying tendency in the climate. Pollen of Zea (corn) appears at Lake Patzcuaro along with low peaks of chenopod and grass pollen at 3500 yr B.P. apparently recording a human population large enough to modify the natural environment, as well as the beginning of agriculture. A rich aquatic flora in this phase suggests eutrophication of the lake by slope erosion. In the most recent period corn is absent from the sediments, perhaps reflecting a change in agricultural practices. The environment changes at Lake Patzcuaro are similar to and correlate with those in the Cuenca de Mexico, where diatom stratigraphy from the Chalco basin indicates fluctuations in lake levels and lake chemistry in response to variations in available moisture. Before 10,000 yr ago climates there were cool and dry, and the Chalco basin was occupied by a shallow freshwater marsh that drained north to Lake Texcoco, where saline water accumulated by evaporation. Increases in effective moisture and possible melting of glaciers during the Holocene caused lake levels to rise throughout the Cuenca de Mexico, and Lake Texcoco flooded the Chalco basin with brackish water. After 5000 yr ago such flooding decreased, and shallow freshwater ponds and marshes were restored in the Chalco basin. This environmental change coincides with the appearance of Zea pollen and suggests cultural control of lake levels and salinity.  相似文献   

18.
19.
Stratigraphic studies of pollen and macrofossils from six sites at different elevations in the White Mountains of New Hampshire demonstrate changes in the distributions of four coniferous tree species during the Holocene. Two species presently confined to low elevations extended farther up the mountain slopes during the early Holocene: white pine grew 350 m above its present limit beginning 9000 yr B.P., while hemlock grew 300–400 m above its present limit soon after the species immigrated to the region 7000 yr. B.P. Hemlock disappeared from the highest sites about 5000 yr B.P., but both species persisted at sites 50–350 m above their present limits until the Little Ice Age began a few centuries ago. The history of the two main high-elevation conifers is more difficult to interpret. Spruce and fir first occur near their present upper limits 9000 or 10,000 yr B.P. Fir persisted in abundance at elevations similar to those where it occurs today throughout the Holocene, while spruce became infrequent at all elevations from the beginning of the Holocene until 2000 yr B.P. These facts suggest a more complex series of changes than a mere upward shift of the modern environmental gradient. Nevertheless, we conclude that the minimum climatic change which would explain the upward extensions of hemlock and white pine is a rise in temperature, perhaps as much as 2°C. The interval of maximum warmth started 9000 yr B.P. and lasted at least until 5000 yr B.P., correlative with the Prairie Period in Minnesota.  相似文献   

20.
An ∼8000-cal-yr stratigraphic record of vegetation change from the Sierra de Apaneca, El Salvador, documents a mid-Holocene warm phase, followed by late Holocene cooling. Pollen evidence reveals that during the mid-Holocene (∼8000-5500 cal yr B.P.) lowland tropical plant taxa were growing at elevations ∼200-250 m higher than at present, suggesting conditions about 1.0°C warmer than those prevailing today. Cloud forest genera (Liquidambar, Juglans, Alnus, Ulmus) were also more abundant in the mid-Holocene, indicating greater cloud cover during the dry season. A gradual cooling and drying trend began by ∼5500 cal yr B.P., culminating in the modern forest composition by ∼3500 cal yr B.P. A rise in pollen from weedy plant taxa associated with agriculture occurred ∼5000 cal yr B.P., and pollen from Zea first appeared in the record at ∼4440 cal yr B.P. Human impacts on local vegetation remained high throughout the late Holocene, but decreased abruptly following the Tierra Blanca Joven (TBJ) eruption of Volcán Ilopango at ∼1520 cal yr B.P. The past 1500 years are marked by higher lake levels and periodic depositions of exogenous inorganic sediments, perhaps indicating increased climatic variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号