首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fault plane solution using theoretical P seismograms   总被引:1,自引:0,他引:1  
We use the method of Hudson and Douglas, Hudson & Blarney to compute seismograms which simulate the codas of 10 short period P -wave seismograms from a shallow earthquake. The polarities and relative amplitudes of P and pP measured from seven of the observed seismograms are used to compute a fault plane solution with confidence limits, assuming that the source radiates as a double couple. This solution is in approximate agreement with that given for the same earthquake by Sykes & Sbar, who used only the onset polarities of short-period P waves. The small difference between the two solutions can be explained by interference between the true first motion of P and microseismic noise at two stations.
The results show that, for some shallow earthquakes, the relative amplitude method has the following advantages over the first motions method. First, a P/pP amplitude ratio (with appropriate confidence limits) can always be measured, even in seismograms which are so noisy that the first motion of P is uncertain. Second, the fault plane solutions obtained from relative amplitudes have known confidence limits. Finally, by using more information from each seismogram, the relative amplitude method requires considerably fewer seismograms than the first motions method.  相似文献   

2.
A new method for computing synthetic seismograms   总被引:10,自引:0,他引:10  
Summary. The computation of theoretical seismograms for models in which the elastic parameters and density vary only with depth (in a plane, cylindrical or spherical geometry) reduces to the solution of an ordinary differential equation plus the evaluation of inverse transformations. In principle, the problem is straightforward. In practice, many techniques and approximations can be used at each stage and many combinations and variants are possible. In this paper, we discuss a new method of evaluating the inverse transforms. Any method can be used to solve the differential equation and we only discuss a few analytic approximations to illustrate the new method. The inverse transformations are a frequency and wavenumber integral. Essentially four techniques can be used to evaluate these depending on the order of integration and whether the wavenumber integral is distorted from the real axis. Three of these have been widely used, but the technique of evaluating the frequency integral first and keeping the wavenumber real is new. In this paper, we discuss some of the advantages of this combination.  相似文献   

3.
An iterative solution to the non-linear 3-D electromagnetic inverse problem is obtained by successive linearized model updates using the method of conjugate gradients. Full wave equation modelling for controlled sources is employed to compute model sensitivities and predicted data in the frequency domain with an efficient 3-D finite-difference algorithm. Necessity dictates that the inverse be underdetermined, since realistic reconstructions require the solution for tens of thousands of parameters. In addition, large-scale 3-D forward modelling is required and this can easily involve the solution of over several million electric field unknowns per solve. A massively parallel computing platform has therefore been utilized to obtain reasonable execution times, and results are given for the 1840-node Intel Paragon. The solution is demonstrated with a synthetic example with added Gaussian noise, where the data were produced from an integral equation forward-modelling code, and is different from the finite difference code embedded in the inversion algorithm  相似文献   

4.
The radiative transfer theory (RTT) describes the energy transport through a random heterogeneous medium, neglecting phase information. It provides an adequate framework for modelling high-frequency seismogram envelopes. For isotropic scattering and sources, the radiative transfer equation (RTE) has been formulated analytically and numerically simulated using Monte Carlo methods for acoustic and elastic media. Here, we derive an exact analytical solution of the RTE in 2-D space for the acoustic case, including anisotropic scattering for a anisotropic point-like impulsive source. For this purpose, we generalize the path integral method, which has been used before in the isotropic case, to take into account the anisotropy of both the source radiation pattern and scattering processes, simultaneously. Then we obtain a general solution, which is written in a closed form in the Fourier space. To illustrate the theoretical results, we compute the full space and time evolution of the specific intensity for an arbitrary case. We also compare the time traces computed from our general solution with cases in which the source and/or the scattering process are isotropic. The importance of taking into account both anisotropies simultaneously becomes obvious in our examples. We also show that at long lapse time, our example approaches the solution of the diffusion equation.  相似文献   

5.
Summary. The one-dimensional acoustic wave equation has been transformed to two coupled first-order equations whose inverse solution is obtained through application of the Gopinath and Sondhi integral equation. A scattering solution of the Schrödinger wave equation for an explosive source leads us to express the kernel of the Gopinath–Sondhi integral equation in terms of a seismic reflection response. A numerical solution of the integral equation obtained by a trapezoidal rule yields a continuous impedance profile whose derivative has step-like discontinuities. The method is illustrated with computer model studies.  相似文献   

6.
Summary. The propagation of a pulsed elastic wave in the following geometry is considered. An elastic half-space has a surface layer of a different material and the layer furthermore contains a bounded 3-D inhomogeneity. The exciting source is an explosion, modelled as an isotropic pressure point source with Gaussian behaviour in time.
The time-harmonic problem is solved using the null field approach (the T matrix method), and a frequency integral then gives the time-domain response. The main tools of the null field approach are integral representations containing the free space Green's dyadic, expansions in plane and spherical vector wave functions, and transformations between plane and spherical vector wave functions. It should be noted that the null field approach gives the solution to the full elastodynamic equations with, in principle, an arbitrarily high accuracy. Thus no ray approximations or the like are used. The main numerical limitation is that only low and intermediate frequencies, in the sense that the diameter of the inhomogeneity can only be a few wavelengths, can be considered.
The numerical examples show synthetic seismograms consisting of data from 15 observation points at increasing distances from the source. The normal component of the velocity field is computed and the anomalous field due to the inhomogeneity is sometimes shown separately. The shape of the inhomogeneity, the location and depth of the source, and the material parameters are all varied to illustrate the relative importance of the various parameters. Several specific wave types can be identified in the seismograms: Rayleigh waves, direct and reflected P -waves, and head waves.  相似文献   

7.
The generalized ray method in a vertically inhomogeneous model is formulated without any approximation by homogeneous layers. The solution is obtained as an infinite series in multiply 'reflected' waves. Each term can be solved using the exact method or the plane-wave, first-motion or geometrical approximations. It is shown that the first-motion approximation of the series converges rapidly, the ratio of successive terms in the infinite series being-(2 l + 1)(2 l )(6/π)2.
In addition it is shown that the first-motion approximation, which reduces to the geometrical approximation when the latter is valid, is a useful alternative to geometrical ray theory, being more generally valid and being almost as simple to compute.  相似文献   

8.
Summary. The usual asymptotic methods used to correct the high-frequency solutions of the wave equation are unsatisfactory as they do not give the low-frequency, partial reflections expected from a region of high velocity gradient. A new iterative solution is obtained which uses the first term of the Langer asymptotic expansion as the zeroth iterate. This satisfactorily gives the partial reflections from a region of high velocity gradient, even when they are generated near the turning point of the ray. Although the results are somewhat complicated in the frequency domain, in the time domain all types of wave interaction are described by six universal time functions. For any problem, these functions are scaled in time according to the depth of the interaction, and in strength according to the magnitude of the coupling parameter. Numerical results and approximations are given for these functions. Coupling parameters are investigated for acoustic and elastic waves in a plane model, and acoustic and elastic-gravitational waves in a spherical model. The same universal time functions allow the excitation of elastic waves to be studied when the source is in a region of high velocity gradient or is near the wave's turning point. Results are given for a moment tensor, point source in plane and spherical models.  相似文献   

9.
The aim of the paper is to emphasize the importance of accounting for the Fresnel volume and for the Interface Fresnel zone (IFZ) for calculating the amplitude of the P wave emanating from a point source and recorded at a receiver after its specular reflection on a smooth homogeneous interface between elastic media. For this purpose, by considering the problem of interest as a problem of diffraction by the IFZ, that is, the physically relevant part of the interface which actually affects the reflected wavefield, we have developed a method which combines the Angular Spectrum Approach (ASA) with the IFZ concept to get the 3-D analytical solution. The variation in the reflected P -wave amplitude evaluated with the ASA, as a function of the incidence angle, is compared with the plane wave (PW) reflection coefficient and with the exact solution provided by the 3-D code OASES, for one solid/solid configuration and two dominant frequencies of the source. For subcritical incidence angles the geometrical spreading compensation is mostly quite sufficient to reduce the point-source amplitudes to the PW amplitudes. On the contrary, for specific regions of incidence angles for which the geometrical spreading compensation is not sufficient anymore, that is, near the critical region and in the post-critical domain, the ASA combined with the IFZ concept yields better results than the PW theory whatever the dominant frequency of the source, which suggests that the additional application of the IFZ concept is necessary to obtain the reflected P -wave amplitude. Nevertheless, as the ASA combined with the IFZ has been used only for evaluating the contribution of the reflected wavefield at the receiver, its predictions fail when the interference between the reflected wave and the head wave becomes predominant.  相似文献   

10.
Summary. A new method for solving problems in three-dimensional electromagnetic induction in which the Earth is represented by a uniformly conducting half-space overlain by a surface layer of variable conductance is presented. Unlike previous treatments of this type of problem the method does not require the fields to be separated into their normal and anomalous parts, nor is it necessary to assume that the anomalous region is surrounded by a uniform structure; the model may approach either an E- or a B -polarization configuration at infinity. The solution is expressed as a vector integral equation in the horizontal electric field at the surface. The kernel of the integral is a Green's tensor which is expressed in terms of elementary functions that are independent of the conductance. The method is applied to an illustrative model representing an island near a bent coastline which extends to infinity in perpendicular directions.  相似文献   

11.
Summary. Amplitude spectra of Rayleigh and Love waves in a layered non-gravitating spherical earth have been obtained using as a source, displacement and stress discontinuities. In each layer elastic parameters and density follow specified functions of radial distance and the solutions of the equations of motion are obtained in terms of exponential functions. The Thomson—Haskell method is extended to this case. The problem reduces to simple calculations as in a plane-layered medium. Numerical results of phase and group velocities up to periods of 300 s in various earth models when compared with earlier results (obtained by numerical integration) show that the present method can be used with sufficient accuracy. The differences in phase velocity, group velocity and amplitude (also surface ellipticity in the case of Rayleigh waves) between spherical- and flat-earth models have been investigated in the range 20–300–s period and expressed in polynomials in the period.  相似文献   

12.
For studying the auroral electrojet and for examining the effects it can produce in power systems on the ground, it is useful to be able to calculate the magnetic and electric fields that the electrojet produces at the surface of the Earth. Including the effects of currents induced in the Earth leads to a set of integral expressions, the numerical computation of which is complicated and demanding of computer resources. An approximate solution can be achieved by representing the induced currents by an image current at a complex depth. We present a simple derivation of the complex-image expressions and use them to calculate the fields produced by the auroral electrojet at the surface of an earth represented by layered conductivity models. Comparison of these results with ones obtained using the exact integral solution show that the errors introduced are insignificant compared to the uncertainties in the parameters used. The complex-image method thus provides a simple, fast and accurate means of calculating the magnetic and electric fields.  相似文献   

13.
Summary. A solution is found for the seismic radiation from an arbitrarily growing spherical source in an inhomogeneously prestressed elastic medium. The general problem of the growing seismic source in a prestressed medium is formulated as a boundary value problem. For the special case of the growing spherical source, an expansion in vector spherical harmonics reduces the problem to a set of one-dimensional Volterra integral equations. The equations can be easily formed through the use of Bessel function recursion relations. The integral equations for a growing spherical cavity are solved numerically. Waveforms are then computed for homogeneous and inhomogeneous stress fields for several growth histories. The resulting waveforms are similar to the waveforms of the corresponding instantaneous problem, but stretched out in time and reduced in amplitude. The effects of diffraction and the overshoot of equilibrium are reduced with a reduction in growth rate. The effects caused by inhomogeneity of the stress field are quite strong for the growing as well as for the instantaneous seismic source.  相似文献   

14.
A variety of methods exist for interpolating Cartesian or spherical surface data onto an equidistant lattice in a procedure known as gridding. Methods based on Green's functions are particularly simple to implement. In such methods, the Green's function for the gridding operator is determined and the resulting gridding solution is composed of the superposition of contributions from each data constraint, weighted by the Green's function evaluated for all output–input point separations. The Green's function method allows for considerable flexibility, such as complete freedom in specifying where the solution will be evaluated (it does not have to be on a lattice) and the ability to include both surface heights and surface gradients as data constraints. Green's function solutions for Cartesian data in 1-, 2- and 3-D spaces are well known, as is the dilogarithm solution for minimum curvature spline on a spherical surface. Here, the spherical surface case is extended to include tension and the new generalized Green's function is derived. It is shown that the new function reduces to the dilogarithm solution in the limit of zero tension. Properties of the new function are examined and the new gridding method is implemented in Matlab® and demonstrated on three geophysical data sets.  相似文献   

15.
An introduction to Maslov's asymptotic method   总被引:3,自引:0,他引:3  
Summary. Familiar concepts such as asymptotic ray theory and geometrical spreading are now recognized as an asymptotic form of a more general asymptotic solution to the non-separable wave equation. In seismology, the name Maslov asymptotic theory has been attached to this solution. In its simplest form, it may be thought of as a justification of disc-ray theory and it can be reduced to the WKBJ seismogram. It is a uniformly valid asymptotic solution, though. The method involves properties of the wavefronts and ray paths of the wave equation which have been established for over a century. The integral operators which build on these properties have been investigated only comparatively recently. These operators are introduced very simply by appealing to the asymptotic Fourier transform of Ziolkowski & Deschamps. This leads quite naturally to the result that phase functions in different domains of the spatial Fourier transform are related by a Legendre transformation. The amplitude transformation can also be inferred by this method. Liouville's theorem (the incompressibility of a phase space of position and slowness) ensures that it is always possible to obtain a uniformly asymptotic solution. This theorem can be derived by methods familiar to seismologists and which do not rely on the traditional formalism of classical mechanics. It can also be derived from the sympletic property of the equations of geometrical spreading and canonical transformations in general. The symplectic property plays a central role in the theory of high-frequency beams in inhomogeneous media.  相似文献   

16.
When interpreting electromagnetic fields observed at the Earth's surface in a realistic geophysical environment it is often necessary to pay special attention to the effects caused by inhomogeneities of the subsurface sedimentary and/or water layer and by inhomogeneities of the Earth's crust. The inhomogeneities of the Earth's crust are expected to be especially important when the electromagnetic field is generated by a source located in a magma chamber of a volcano. The simulation of such effects can be carried out using generalized thin-sheet models, which were independently introduced by Dmitriev (1969 ) and Ranganayaki & Madden (1980 ). In the first part of the paper, a system of integral equations is derived for the horizontal current that flows in the subsurface inhomogeneous conductive layer and for the vertical current crossing the inhomogeneous resistive layer representing the Earth's mantle. The terms relating to the finite thickness of the laterally inhomogeneous part of the model are retained in the equations. This only marginally complicates the equations, whilst allowing for a significant expansion of the approximation limits.
  The system of integral equations is solved using the iterative dissipative method developed by the authors in the period from 1978 to 1988. The method can be applied to the simulation of the electromagnetic field in an arbitrary inhomogeneous medium that dissipates the electromagnetic energy. When considered on a finite numerical grid, the integral equations are reduced to a system of linear equations that possess the same contraction properties as the original equations. As a result, the rate at which the iterative-perturbation sequence converges to the solution remains independent of the numerical grid used for the calculations. In contrast to previous publications on the method, aspects of the algorithm implementation that guarantee its effectiveness and robustness are discussed here.  相似文献   

17.
We present a new approach of the Indirect Boundary Element Method (IBEM) for 3-D topographic problems which can be used to deal with an infinitely spread free surface owing to the introduction of a reference solution, that is the analytical solution for the half-space with a flat free surface. This approach is an efficient countermeasure for the non-physical waves owing to the domain truncation which contaminates the computed results in the ordinary approach. Theoretical consideration shows that this newly proposed approach is a higher-grade approximation than some existing ones and achieves a higher efficacy and accuracy than those of existing ones. The discretization of the resulting boundary integral equation for this formulation is carried out with triangular elements. Their contributions to the solution are calculated by Gaussian numerical integration except in the case where the wavefield is evaluated on the source element itself. For this case, we present an analytical formula based on the reasonable assumption that the elements are much smaller than the wavelengths appearing in the calculation. Several numerical examples used for validation show acceptably precise results.  相似文献   

18.
We present simulations of large-scale landscape evolution on tectonic time scales obtained from a new numerical model which allows for arbitrary spatial discretization. The new method makes use of efficient algorithms from the field of computational geometry to compute the set of natural neighbours of any irregular distribution of points in a plane. The natural neighbours are used to solve geomorphic equations that include erosion/deposition by channelled flow and diffusion. The algorithm has great geometrical flexibility, which makes it possible to solve problems involving complex boundaries, radially symmetrical uplift functions and horizontal tectonic transport across strike-slip faults. The algorithm is also ideally suited for problems which require large variations in spatial discretization and/or self-adaptive meshing. We present a number of examples to illustrate the power of the new approach and its advantages over more 'classical' models based on regular (rectangular) discretization. We also demonstrate that the synthetic river networks and landscapes generated by the model obey the laws of network composition and have scaling properties similar to those of natural landscapes. Finally we explain how orographically controlled precipitation and flexural isostasy may be easily incorporated in the model without sacrificing efficiency.
  相似文献   

19.
Summary. Body wave synthetic siesmograms for laterally varying media are computed by means of a slowness implementation of the extended WKBJ (EWKBJ) theory of Frazer & Phinney. An EWKBJ seismogram is computed by first tracing rays through a particular model to obtain conventional ray information (travel time, ray end point, ray slowness) and then using these data in the finite frequency integral expression for the EWKBJ seismogram. The EWKBJ seismograms compare favourably to geometrical ray theory (GRT) seismograms but are significantly better because of the finite frequency nature of the EWKBJ calculation. More realistic behaviour is obtained with EWKBJ seismograms at normal seismic frequencies near caustics, where the GRT amplitude is infinite, and within geometrical shadow zones where GRT predicts zero amplitudes. In addition the EWKBJ calculation is more sensitive than GRT to focuses and defocuses in the ray field. The major disadvantage of the EWKBJ calculation is the additional computer time over that of GRT, necessary to calculate one seismogram although an EWKBJ seismogram costs much less to compute than a reflectivity seismogram. Another disadvantage of EWKBJ theory is the generation of spurious, non-geometrical phases that are associated with rapidly varying lateral inhomogeneities. Fortunately the amplitudes of these spurious phases are usually much lower than that of neighbouring geometrical phases so that the spurious phases can usually be ignored. When this observation is combined with the moderately increased computational time of the EWKBJ calculation then the gain in finite frequency character significantly outweighs any disadvantages.  相似文献   

20.
X. Yao  L.G. Tham  F.C. Dai 《Geomorphology》2008,101(4):572-582
The Support Vector Machine (SVM) is an increasingly popular learning procedure based on statistical learning theory, and involves a training phase in which the model is trained by a training dataset of associated input and target output values. The trained model is then used to evaluate a separate set of testing data. There are two main ideas underlying the SVM for discriminant-type problems. The first is an optimum linear separating hyperplane that separates the data patterns. The second is the use of kernel functions to convert the original non-linear data patterns into the format that is linearly separable in a high-dimensional feature space. In this paper, an overview of the SVM, both one-class and two-class SVM methods, is first presented followed by its use in landslide susceptibility mapping. A study area was selected from the natural terrain of Hong Kong, and slope angle, slope aspect, elevation, profile curvature of slope, lithology, vegetation cover and topographic wetness index (TWI) were used as environmental parameters which influence the occurrence of landslides. One-class and two-class SVM models were trained and then used to map landslide susceptibility respectively. The resulting susceptibility maps obtained by the methods were compared to that obtained by the logistic regression (LR) method. It is concluded that two-class SVM possesses better prediction efficiency than logistic regression and one-class SVM. However, one-class SVM, which only requires failed cases, has an advantage over the other two methods as only “failed” case information is usually available in landslide susceptibility mapping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号