首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Using the defined sensitivity index, the sensitivity of streamflow, evapotranspiration and soil moisture to climate change was investigated in four catchments in the Haihe River basin. Climate change contained three parts: annual precipitation and temperature change and the change of the percentage of precipitation in the flood season (Pf). With satisfying monthly streamflow simulation using the variable infiltration capacity model, the sensitivity was estimated by the change of simulated hydrological variables with hypothetical climatic scenarios and observed climatic data. The results indicated that (i) the sensitivity of streamflow would increase as precipitation or Pf increased but would decrease as temperature increased; (ii) the sensitivity of evapotranspiration and soil moisture would decrease as precipitation or temperature increased, but it to Pf varied in different catchments; and (iii) hydrological variables were more sensitive to precipitation, followed by Pf, and then temperature. The nonlinear response of streamflow, evapotranspiration and soil moisture to climate change could provide a reference for water resources planning and management under future climate change scenarios in the Haihe River basin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Due to the influence of climate change and human activities, more and more regions around the world are nowadays facing serious water shortages. This is particularly so with the Guangdong province, an economically prosperous region in China. This study aims at understanding the abrupt behavior of hydrological processes by analyzing monthly precipitation series from 257 rain gauging stations and monthly streamflow series from 25 hydrological stations using the likelihood ratio statistic and schwarz information criterion (SIC). The underlying causes of the changing properties of hydrological processes are investigated by analyzing precipitation changes and information of water reservoirs. It is found that (1) streamflow series in dry season seems to exhibit abrupt changes when compared to that in the flood season; (2) abrupt changes in the values of mean and variance of hydrological variables in the dry season are more common than those in the streamflow series in the flood season, which implies that streamflow in the dry season is more sensitive to human activities and climate change than that in the flood season; (3) no change points are identified in the annual precipitation and precipitation series in the flood season. Annual streamflow and streamflow in the flood season exhibit no abrupt changes, showing the influence of precipitation on streamflow changes in the flood season. However, streamflow changes in the dry season seem to be heavily influenced by hydrological regulations of water reservoirs. The results of this study are of practical importance for regional water resource management in the Guangdong province.  相似文献   

3.
Global climate change and diverse human activities have resulted in distinct temporal–spatial variability of watershed hydrological regimes, especially in water‐limited areas. This study presented a comprehensive investigation of streamflow and sediment load changes on multi‐temporal scales (annual, flood season, monthly and daily scales) during 1952–2011 in the Yanhe watershed, Loess Plateau. The results indicated that the decreasing trend of precipitation and increasing trend of potential evapotranspiration and aridity index were not significant. Significant decreasing trends (p < 0.01) were detected for both the annual and flood season streamflow, sediment load, sediment concentration and sediment coefficient. The runoff coefficient exhibited a significantly negative trend (p < 0.01) on the flood season scale, whereas the decreasing trend on the annual scale was not significant. The streamflow and sediment load during July–August contributed 46.7% and 86.2% to the annual total, respectively. The maximum daily streamflow and sediment load had the median occurrence date of July 31, and they accounted for 9.7% and 29.2% of the annual total, respectively. All of these monthly and daily hydrological characteristics exhibited remarkable decreasing trends (p < 0.01). However, the contribution of the maximum daily streamflow to the annual total progressively decreased (?0.07% year?1), while that of maximum daily sediment load increased over the last 60 years (0.08% year?1). The transfer of sloping cropland for afforestation and construction of check‐dams represented the dominant causes of streamflow and sediment load reductions, which also made the sediment grain finer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
ABSTRACT

The paper presents the observed effects on the streamflow of changing a tropical forest in the high rainfall belt of Zambia to agricultural use based on traditional farming methods. Hydrological observations were carried out on four small catchments under their natural conditions first, and later two of them under agricultural use with accompanying deforestation. Simple linear regression analysis of both monthly and annual runoff from the treated catchments on the monthly and annual runoff from undisturbed catchments showed that there was an increase in streamflow as a result of deforestation and subsistence agriculture. It is also shown that the shape of the flood hydrograph was changed as a result of changes in land use.  相似文献   

5.
Multiscale variability of streamflow changes in the Pearl River basin,China   总被引:1,自引:1,他引:0  
The Pearl River basin bears the heavy responsibility for the water supply for the neighboring cities such as Macau, Hong Kong and others. Therefore, effective water resource management is crucial for sustainable use of water resource. However, good knowledge of changing properties of streamflow changes is the first step into the effective water resource management. With this in mind, stability and variability of streamflow changes in the Pearl River basin is thoroughly analyzed based on monthly streamflow data covering last half century using Mann–Kendall trend test and scanning t- and F-test techniques. The results indicate: (1) significant increasing monthly streamflow is observed mainly in January–April, June and October–December. Monthly streamflow during May–September is in not significant changes. Besides, stations characterized by significant monthly streamflow changes are located in the middle and the lower Pearl River basin; (2) changing points of monthly streamflow series are detected mainly during mid-1960s, early 1970s, mid-1970s, early 1980s and early 1990s and these periods are roughly in good agreement with those of annual, winter and summer precipitation across the Pearl River basin, implying tremendous influences of precipitation changes on streamflow variations; (3) abrupt behaviors tend to be ambiguous from the upper to the lower Pearl River basin, which should be due to enhancing combined effects of abrupt changes of precipitation. The streamflow comes to be lower stability in recent decades. However, high stability of streamflow changes are observed at hydrological stations in the lower Pearl River basin. The results of this study will be of great scientific and practical merits in terms of effective water resource management in the Pearl River basin under the influences of climate changes and human activities.  相似文献   

6.
    
Based on the long period surface wave data recorded by the China Digital Seismograph Network (CDSN), theQ R of fundamental mode Rayleigh wave with periods from 10 s to 146 s is determined for the eastern Sino-Korean paraplatform in this paper. TheQ β models of the crust and upper mantle are respectively obtained for the 4 paths, with the aid of stochastic inverse method. It shows that in the eastern Sino-Korean paraplatform, the average crustalQ β is about 200, and that there exists a weak attenuation layer in the middle crust (about 10–20 km deep) which is possibly related to earthquake-prone layer. A strong attenuation layer (lowQ) of 70 km thick extensively exists in the uppermost mantle, with the buried depth about 80 km. The averageQ R of fundamental mode Rayleigh wave is between the value of stable tectonic region and that of active tectonic region, and much close to the latter. Contribution No. 96A0001, Institute of Geophysics, SSB, China. Funded by the Chinese Joint Seismological Science Foundation.  相似文献   

7.
ABSTRACT

Ten notable meteorological drought indices were compared on tracking the effect of drought on streamflow. A 730-month dataset of precipitation, temperature and evapotranspiration for 88 catchments in Oregon, USA, representing pristine conditions, was used to compute the drought indices. These indices were correlated with the monthly streamflow datasets of the minimum, maximum and mean discharge, and the discharge monthly fluctuation; it was revealed that the 3-month Z-score drought index (Z3) has the best association with the four streamflow variables. The Mann-Kendall trend detection test applied to the latter index time series mainly highlighted a downward trend in the autumn and winter drought magnitude (DM) and an upward trend in the spring and summer DM (p = 0.05). Finally, the Pettitt test indicated an abrupt decline in the annual and autumn DM, which began in 1984 and 1986, respectively.  相似文献   

8.
Regional climate models (RCMs) have emerged as the preferred tool in hydrological impact assessment at the catchment scale. The direct application of RCM precipitation output is still not recommended; instead, a number of alternative methods have been proposed. One method that has been used is the change factor methodology, which typically uses changes to monthly mean or seasonal precipitation totals to develop change scenarios. However, such simplistic approaches are subject to significant caveats. In this paper, 18 RCMs covering the UK from the ENSEMBLES and UKCP09 projects are analysed across different catchments. The ensembles' ability in capturing monthly total and extreme precipitation is outlined to explore how the ability to make confident statements about future flood risk varies between different catchments. The suitability of applying simplistic change factor approaches in flood impact studies is also explored. We found that RCM ensembles do have some skill in simulating observed monthly precipitation; however, seasonal patterns of bias were evident across each of the catchments. Moreover, even apparently good simulations of extreme rainfall can mis‐estimate the magnitude of flood‐generating rainfall events in ways that would significantly affect flood risk management. For future changes in monthly mean precipitation, we observe the clear ‘drier summers/wetter winters’ signal used to develop current UK policy, but when we look instead at flood‐generating rainfall, this seasonal signal is less clear and greater increases are projected. Furthermore, the confidence associated with future projections varies from catchment to catchment and season to season as a result of the varying ability of the RCM ensembles, and in some cases, future flood risk projections using RCM outputs may be highly problematic. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
On the basis of data of long period Rayleigh surface wave, we select 43 two-station paths which cover the eastern China thoroughly. By using the improved method of multi-filtration, we obtain the group velocity and amplitude spectrum, and then get attenuation factor for each paths. We employ Talentola inversion method to get local attenuation factor, and further invert the three-dimension Q β image under the crust and upper mantle in the eastern Chinese continent. The Q β image shows the following basic characters. There is correlation between the seismic activity and Q β structure under the crust and upper mantle in North China region. The Yangtze block begins to collide with and subduct to the North China block from the southern border of the Qinling in the southern Shaanxi. In the large part of Yangtze quasi-platform appear an obvious high Q β area at 88 km deep. In the east of Sichuan depression platform, the juncture of Sichun and Guizhou, and the Jiangnan block near the juncture of Guizhou and Hunan, the lateral variation of Q β in the crust is little, and there is a high-Q β layer no thinner than 40 km in the top mantle. In the Dian-Qian fold and fracture region between Yunnan and Guizhou, the vertical variation of Q β at the region of the crust and upper mantle is little, there is a low-Q β layer in the top mantle, about 40 km thick, low-Q β layer of the upper mantle begins to appear at about 95 km deep. In the east of Yangtze quasi-platform and the central and eastern part of the South China fold system, the Moho is smooth, the lateral variation of Q β in the crust is also little, low-Q β layer of the upper mantle begins to appear at about 85 km deep.  相似文献   

10.
In this study, we collected 1 156 broadband vertical components records at 22 digital seismic stations in Xinjiang region, ürümqi station, and 7 stations in the adjacent regions during the period of 1999–2003. The records were firstly processed by the stacked spectral ratio method to obtain Q 0 (Q at 1 Hz) and the frequency correlation factor η corresponding to each path. Based on the results, the distribution images of Q 0 and η in 1°×1° grids for Xinjiang region were gained by the back-projection technique. The results indicate that Q 0 is high (300–450) in the Tarim platform and marginal Siberian platform, while Q 0 is low (150–250) in the southern regions as west Kunlun fold system and Songpan-Ganzi fold system. In the northern regions as Junggar fold system and Tianshan fold system, Q 0 is also low (250–300) and η varies between 0.5 and 0.9. Foundation item: National Natural Science Foundation of China (49974012) and Joint Seismological Science Foundation of China (604004).  相似文献   

11.
Liqiao Liang  Qiang Liu 《水文研究》2014,28(4):1767-1774
Partitioning precipitation (P) between streamflow (Q) and actual evapotranspiration (Ea) on a basin scale is controlled by climate change in combination with catchment characteristics. Fu's formulation of the Budyko framework was used to estimate Q as a function of two meteorological variables, P and potential evaporation (Ep), and one adjustable parameter reflecting characteristics of catchment conditions (ω). Results show that ω reflects the impacts of catchment characteristics on the partitioning of P between Q and Ea for the different water yielding regions. As predicted, Q was more sensitive to P than to comparable changes in Ep for the whole of the Yellow River Basin (YRB), a water‐limited basin, while it was shown to be highly sensitive to changes in P, Ep, and ω in the low water yielding region (LWYR) of the basin, followed by YRB and the high water yielding region of the basin. The high sensitivity of Q to P, Ep, and ω in LWYR indicates that the management of catchments within these zones is critical to the management of overall basin flow, mitigating impacts of climate change on Q. The Budyko framework, incorporating the adjustable parameter ω, outlines interactions between Q, climate, and characteristics specific to different water yielding regions. It also provides a new approach in understanding hydrological process response to climate change. Due to the obscure physical attributes of ω, an explanation of the parameter using soil or vegetation characteristics will aid in the understanding of the eco‐hydrological behaviour of catchments and help to provide more detailed catchment management options for which to mitigate climate change with respect to concerns regarding agricultural water usage. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A hydrological conceptual model developed by the Royal Meteorological Institute of Belgium has been run to assess the potential hydrological impacts of an hypothetical doubling of the atmospheric CO2 concentration. The simulated scenarios were derived from the predictions of climatic change currently provided by General Circulation Models (GCMs). Three typical drainage basins in Belgium have been selected for assessing their common responses and bringing out possible specific behaviours attributable to catchment characteristics. The study dealt essentially with modifications of the streamflow and with alterations of the flood and low-flow regimes. In catchments with prevailing surface flow the considered change in climate could induce:
  • An increase in flood frequencies during the winter season together with a strengthening of the extreme river stages leading to greater flooding risks;
  • A decrease in streamflow during the summer season and, as a corollary, increased risks of water pollution;
  • Possible restraints, in summer and autumn, on water availability from local groundwater storages.
In catchments with high infiltration rate and with strong aquifer the impact could be:
  • An increase in groundwater storage, bringing about an increase in the base flow throughout the year, which in turn involves increased flood risks;
  • A reduction of the number of low-stage occurrences in summer, resulting in reduced river pollution;
  • A possible increase in water availability from the aquifers.
  相似文献   

13.
The estimation of hydrologic transit times in a catchment provides insights into the integrated effects of water storage, mixing dynamics, and runoff generation processes. There has been limited effort to estimate transit times in southern boreal Precambrian Shield landscapes, which are characteristically heterogeneous with surface cover including till, thin soils, bedrock outcrops, and depressional wetland features that play contrasting hydrologic roles. This study presents approximately 3.5 years of precipitation and streamflow water isotope data and estimates mean transit times (MTTs) and the young water fraction (py) across six small catchments in the Muskoka-Haliburton region of south-central Ontario. The main objectives were to define a typical range of MTTs for headwater catchments in this region and to identify landscape variables that best explain differences in MTTs/py using airborne light detection and ranging and digital terrain analysis. Of the transit time distributions, the two parallel linear reservoir and gamma distributions best describe the hydrology of these catchments, particularly because of their ability to capture more extreme changes related to events such as snowmelt. The estimated MTTs, regardless of the modelling approach or distribution used, are positively associated with the percent wetland area and negatively with mean slope in the catchments. In this landscape, low-gradient features such as wetlands increase catchment scale water storage when antecedent conditions are dryer and decrease transit times when there is a moisture surplus, which plausibly explains the increases in MTTs and mean annual runoff from catchments with significant coverage of these landscape features.  相似文献   

14.
Five aspects of the hydrology of one-day annual minimum flows QIM, have been studied using data from twelve catchments in Malawi. Results indicate that the log-normal distribution can be fitted to all twelve catchments. Four of the rivers studied are intermittent. Application of statistical methods developed in meterology to the dichotomous-transformed data of these catchments revealed that two are ‘flow-dominant’ and the other two are ‘dry-dominant’. Another catchment is entirely dominated by a hydraulic gradient towards the Shire River and Elphant Marsh and so dries up every dry season for considerable periods of time despite the relatively high rainfall in the catchment. QIM, t-days after the date of occurrence of QIM(May), can be better estimated from simple regression than from an empirically determined recession constant.  相似文献   

15.
The response of intermittent catchments to rainfall is complex and difficult to model. This study uses the spatially distributed CATchment HYdrology (CATHY) model to explore how the frequency of daily rainfall (λ) can affect the hydrologic regime of intermittent catchments. After a multi-objective calibration and validation of CATHY against experimental measurements of streamflow and groundwater levels in a catchment used as a pasture, the role of λ in affecting streamflow characteristics was explored using different scenarios. With different values of λ for the dry and wet periods of the year, CATHY showed that a series of frequent rainfall events was often associated with incipient streamflow, independent of the season. Activation of streamflow during the wet season was related to multiple factors and was not often associated with the shallow groundwater levels near the outlet of the catchment. The interplay between rainfall depth and intensity acted as the most important factor for the generation of streamflow. Using the difference between accumulated rainfall and evapotranspiration as a measure of wetness, saturated subsurface flow mechanism generated streamflow in simulations with wetness at least three times larger than mean wetness of other simulations. Although groundwater uprise near the outlet did not effectively contribute to streamflow in the initial days of flow, it strongly correlated with the magnitude of the runoff coefficient. Values of λ close or equal to the maximum value in the wet season can sustain the connectivity between groundwater and streamflow in the riparian zone. This connectivity increases the catchment wetness, which consequently results in an increase of the generated streamflow. Our study showed that rainfall regimes characterized by different λ were able to identify distinct flow regimes typical of either intermittent, ephemeral, or nonflowing catchments. Decrease of λ in the wet season is likely associated with a reduction of streamflow, with a shift of flow regime from intermittent to ephemeral or no-flow.  相似文献   

16.
《水文科学杂志》2013,58(4):613-625
Abstract

Estimates of rainfall elasticity of streamflow in 219 catchments across Australia are presented. The rainfall elasticity of streamflow is defined here as the proportional change in mean annual streamflow divided by the proportional change in mean annual rainfall. The elasticity is therefore a simple estimate of the sensitivity of long-term streamflow to changes in long-term rainfall, and is particularly useful as an initial estimate of climate change impact in land and water resources projects. The rainfall elasticity of streamflow is estimated here using a hydrological modelling approach and a nonparametric estimator. The results indicate that the rainfall elasticity of streamflow (? P ) in Australia is about 2.0–3.5 (observed in about 70% of the catchments), that is, a 1% change in mean annual rainfall results in a 2.0–3.5% change in mean annual streamflow. The rainfall elasticity of streamflow is strongly correlated to runoff coefficient and mean annual rainfall and streamflow, where streamflow is more sensitive to rainfall in drier catchments, and those with low runoff coefficients. There is a clear relation-ship between the ? P values estimated using the hydrological modelling approach and those estimated using the nonparametric estimator for the 219 catchments, although the values estimated by the hydrological modelling approach are, on average, slightly higher. The modelling approach is useful where a detailed study is required and where there are sufficient data to reliably develop and calibrate a hydrological model. The nonparametric estimator is useful where consistent estimates of the sensitivity of long-term streamflow to climate are required, because it is simple to use and estimates the elasticity directly from the historical data. The nonparametric method, being model independent, can also be easily applied in comparative studies to data sets from many catchments across large regions.  相似文献   

17.
Stable water isotope surveys have increasingly been integrated into river basins studies, but fewer have used them to evaluate impact of hydropower regulation. This study applies hydrologic and water isotope survey approaches to a Canadian Shield river basin with both regulated and natural flows. Historical streamflow records were used to evaluate the influence of three hydroelectric reservoirs and unregulated portions of the basin on downstream flows and changes in water level management implemented after an extreme flood year (1979). In 2013, water isotope surveys of surface and source waters (e.g., rainfall, groundwater, snowmelt) were conducted to examine spatial and temporal variation in contributions to river flow. Seasonal changes in relative groundwater contribution were assessed using a water‐isotope mass balance approach. Within the basin, two regulated reservoirs exhibited inverted hydrographs with augmented winter flows, whereas a third exhibited a hydrograph dominated by spring snowmelt. In 2013, spatial variation in rain‐on‐snow and air temperatures resulted in a critical lag in snowmelt initiation in the southern and northern portions of the basin resulting in a dispersed, double peak spring hydrograph, contrasting with 1979 when a combination of rain‐on‐snow and coincident snowmelt led to the highest flood on record. Although eastern basin reservoirs become seasonally enriched in δ18O and δ2H values, unregulated western basin flows remain less variable due to groundwater driven baseflow with increasing influence downstream. Combined analysis of historical streamflow (e.g., flood of 1979, drought of 2010) and the 2013 water isotope surveys illustrate extreme meteorological conditions that current management activities are unable to prevent. In this study, the influence of evaporative fractionation on large surface water reservoirs provides important evidence of streamflow partitioning, illustrating the value of stable water isotope tracers for study of larger catchments.  相似文献   

18.
Transformations of precipitation into groundwater and streamflow are fundamental hydrological processes, critical to irrigated agriculture, hydroelectric power generation, and ecosystem health. Our understanding of the timing of groundwater recharge and streamflow generation remains incomplete, limiting our ability to predict fresh water, nutrient, and contaminant fluxes, especially in large basins. Here, we analyze thousands of rain, snow, groundwater, and streamflow δ18O and δ2H values in the Nelson River basin, which covers 1.2 million km2 of central Canada. We show that the fraction of precipitation that recharges aquifers is ~1.3–5 times higher for precipitation falling during cold months with subzero mean monthly temperatures than for precipitation falling during warmer months. The near‐ubiquity of cold‐season‐biased groundwater recharge implies that changes to winter water balances may have disproportionate impacts on annual groundwater recharge rates. We also show that young streamflow—defined as precipitation that enters a river in less than ~2.3 months—comprises ~27% of annual streamflow but varies widely among tributaries in the Nelson River basin (1–59%). Young streamflow fractions are lower in steep catchments and higher in flatter catchments such as the transboundary Red River basin. Our findings imply that flat, lower permeability, heavily tiled landscapes favor more rapid transmission of precipitation into rivers, possibly mobilizing excess soluble fertilizers and exacerbating eutrophication events in Lake Winnipeg.  相似文献   

19.
The characteristic of seismic coda wave attenuation in Yunnan area in 7 frequency-bands range from 1 Hz to 20 Hz was estimated by using the local earthquake's waveform data recorded from 22 Yunnan digital seismic stations.Coda attenuation Q-c1 of each station was firstly calculated by single scattering method. Then, mean free path Le and seismic albedo Bo of each station were calculated, and scattering attenuation Q-1s and intrinsic attenuation Q-1i were separated from total attenuation Q-1t by multiple lapse time window analysis based on the multiple scattering model in uniform random isotropic scattering medium. The attenuating characteristics in Yunnan show that most value of Le are in 10~30 km, with maximal within 2~6 Hz;Bo are about 0.5 at 1~2 Hz, but less than 0.5at other frequency-bands, which means Q-1i is comparable with Q-1s at 1~2 Hz, and after 1~2 Hz, Q-1i is greater than Q-1s and dominates the attenuation process. Q-1c is close to Q-1i at other frequency bands except 1~2 Hz.Results show that Q-1 especially Qs-1 varies spatially, Q-1 in eastern Yunnan zone is a bit higher than in northwestern Yunnan zone;northwestern Yunnan zone higher than southwestern Yunnan zone. Comparing with other results in global, Qs-1 in Yunnan is lower than the global average value among these results, Q-1i is higher than the global average value, and Q-1t lies the middle among these results.  相似文献   

20.
Storage is a fundamental but elusive component of drainage basin function, influencing synchronization between precipitation input and streamflow output and mediating basin sensitivity to climate and land use/land cover (LULC) change. We compare hydrometric and isotopic approaches to estimate indices of dynamic and total basin storage, respectively, and assess inter-basin differences in these indices across the Oak Ridges Moraine (ORM) region of southern Ontario, Canada. Dynamic storage indices for the 20 study basins included the ratio of baseflow to total streamflow (baseflow index BFI), Q 99 flow and flow duration curve (FDC) slope. Ratios of the standard deviation of the streamflow stable isotope signal relative to that of precipitation were determined for each basin from a 1 year bi-weekly sampling program and used as indicators of total storage. Smaller ratios imply longer water travel times, smaller young water fractions (F yw, < ~2–3 months in age) in streamflow and greater basin storage. Ratios were inversely related to BFI and Q 99, and positively related to FDC slope, suggesting longer travel times and smaller F yw for basins with stable baseflow-dominated streamflow regimes. Inter-basin differences in all indices reflected topographic, hydrogeologic and LULC controls on storage, which was greatest in steep, forest-covered headwaters underlain by permeable deposits with thick and relatively uniform unsaturated zones. Nevertheless, differential sensitivity of indices to controls on storage indicates the value of using several indices to capture more completely how basin characteristics influence storage. Regression relationships between storage indices and basin characteristics provided reasonable predictions of aspects of the streamflow regime of test basins in the ORM region. Such relationships and the underlying knowledge of controls on basin storage in this landscape provide the foundation for initial predictions of relative differences in streamflow response to regional changes in climate and LULC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号