首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to various decay processes associated with weathering, the stability of artificial slopes in weak rocks may be affected well within their envisaged engineering lifetime. Conceptually, the decay following the initial stress release after excavation can be described as a process seeking equilibrium between weathering and erosion. The extent to which such an equilibrium is actually reached influences the outcome of the weathering‐erosion decay process as well as the effects that the decay has on the geotechnical properties of the exposed rock mass, and thus ultimately the stability of slopes affected by erosion and weathering. This paper combines two conceptual models for erosion and weathering, and derives a numerical model which predicts the resulting slope development. This can help to predict the development of a slope profile excavated in a weak rock in time, and can be extended with the addition of strength parameters to the weathering profile to enable prediction of slope stability as a function of time. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Relief generation in non‐glaciated regions is largely controlled by river incision into bedrock but datable fluvial terraces that allow quantifying incision rates are not always present. Here we suggest a new method to determine river incision rates in regions where low‐relief surfaces are dissected by streams. The approach consists of three steps and requires the 10Be concentrations of a stream sediment sample and a regolith sample from the low‐relief surface. In the first step, the spatial distribution of 10Be surface concentrations in the given catchment is modelled by assuming that denudation rates are controlled by the local hillslope angles. The slope–denudation rate relation for this catchment is then quantified by adjusting the relation between slope angle and denudation rate until the average 10Be concentration in the model is equal to the one measured in the stream sediment sample. In the second step, curved swath profiles are used to measure hillslope angles adjacent to the main river channel. Third, the mean slope angle derived from these swath profiles and the slope–denudation relation are used to quantify the river incision rate (assuming that the incision rate equals the denudation rate on adjacent hillslopes). We apply our approach to two study areas in southern Tibet and central Europe (Black Forest). In both regions, local 10Be denudation rates on flat parts of the incised low‐relief surface are lower than catchment‐wide denudation rates. As the latter integrate across the entire landscape, river incision rates must exceed these spatially averaged denudation rates. Our approach yields river incision rates between ~15 and ~30 m/Ma for the Tibetan study area and incision rates of ~70 to ~100 m/Ma in the Black Forest. Taking the lowering of the low‐relief surfaces into account suggests that relief in the two study areas increases at rates of 10–20 and 40–70 m/Ma, respectively. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

3.
Rates of surface processes on slopes,slope retreat and denudation   总被引:1,自引:0,他引:1  
Results taken from 270 publications on rates are summarized, and collated with those from 149 publications reviewed previously (Young, 1969, 1974). The data are classified by major climatic zone, normal or steep relief, and consolidated or unconsolidated rocks. Representative rates and their ranges are given for soil creep, solifluction, surface wash, solution (chemical denudation), rock weathering, slope retreat, cliff (free face) retreat, marine cliff retreat, and denudation, the last being compared with representative rates of uplift. Solifluction is of the order of 10 times faster than soil creep, but both cause only very slow ground loss. Solution is an important cause of ground loss for siliceous rocks, on which it may be half as rapid as on limestones. Total denudation, brought about mainly by surface wash, reaches a maximum in the semi-arid and probably also the tropical savanna zones. Acceleration of natural erosion rates by human activities ranges from 2–3 times with moderately intense land use to about 10 times with intensive land use (and considerably higher still where there is recognized accelerated soil erosion). Where there is active uplift, typical rates are of the order of 10 times faster than denudation, although in some high, steep mountain ranges these may approach equality.  相似文献   

4.
Spatially discontinuous permafrost conditions frequently occur in the European Alps. How soils under such conditions have evolved and how they may react to climate warming is largely unknown. This study focuses on the comparison of nearby soils that are characterised by the presence or absence of permafrost (active‐layer thickness: 2–3 m) in the alpine (tundra) and subalpine (forest) range of the Eastern Swiss Alps using a multi‐method (geochemical and mineralogical) approach. Moreover, a new non‐steady‐state concept was applied to determine rates of chemical weathering, soil erosion, soil formation, soil denudation, and soil production. Long‐term chemical weathering rates, soil formation and erosion rates were assessed by using immobile elements, fine‐earth stocks and meteoric 10Be. In addition, the weathering index (K + Ca)/Ti, the amount of Fe‐ and Al‐oxyhydroxides and clay minerals characteristics were considered. All methods indicated that the differences between permafrost‐affected and non‐permafrost‐affected soils were small. Furthermore, the soils did not uniformly differ in their weathering behaviour. A tendency towards less intense weathering in soils that were affected by permafrost was noted: at most sites, weathering rates, the proportion of oxyhydroxides and the weathering stage of clay minerals were lower in permafrost soils. In part, erosion rates were higher at the permafrost sites and accounted for 79–97% of the denudation rates. In general, soil formation rates (8.8–86.7 t/km2/yr) were in the expected range for Alpine soils. Independent of permafrost conditions, it seems that the local microenvironment (particularly vegetation and subsequently soil organic matter) has strongly influenced denudation rates. As the climate has varied since the beginning of soil evolution, the conditions for soil formation and weathering were not stable over time. Soil evolution in high Alpine settings is complex owing to, among others, spatio‐temporal variations of permafrost conditions and thus climate. This makes predictions of future behaviour very difficult. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
6.
Landform evolution models are powerful tools for determining long-term erosional stability and denudation rates spanning geological timescales. SIBERIA, CAESAR and CHILD are examples of these model. The newly developed State Space Soil Production and Assessment Model (SSSPAM) coupled soilscape-landform evolution model has the ability to assess overall erosion rates of catchment scale landforms either using short-term precipitation events, variable precipitation or time-averaged precipitation (annual average). In addition, SSSPAM has the capability of developing the subsurface soil profile through weathering and armouring. In SSSPAM, physical processes of pedogenesis such as erosion and armouring, diffusion, sediment deposition and weathering are modelled using a state space matrix approach. In this article we simulate the short-term evolution (100 years) of a proposed post-mining landform using both SIBERIA and SSSPAM and compare the erosion and sediment output results. For the short-term simulations SSSPAM's armouring capability was disabled. The models were then used to simulate the evolution of the catchment for 10,000 years. Results demonstrate that the short-term SSSPAM simulation results compare well with the results from the established landform evolution model SIBERIA. The long-term armouring disabled SSSPAM simulations produces simulated erosion rates comparable with SIBERIA simulations both of which are similar to upper limit of field measured denudation rates. The SSSPAM simulation using armouring demonstrated that armouring reduced the erosion rate of the catchment by a factor of 4 which is comparable with the lower limit of field measured denudation rates. This observation emphasizes the importance of armouring in long-term evolution of landforms. Soil profile cross-sections developed from the same results show that SSSPAM can also reproduce subsurface soil evolution and stratification and spatial variability of soil profile characteristics typically observed in the field.  相似文献   

7.
Accurate estimates of watershed denudation absent anthropogenic effects are required to develop strategies for mitigating accelerated physical erosion resulting from human activities, to model global geochemical cycles, and to examine interactions among climate, weathering, and uplift. We present a simple approach to estimate predevelopment denudation rates using in-situ-produced cosmogenic 10Be in fluvial sediments. Denudation processes in an agricultural watershed (Cayaguás River Basin, Puerto Rico) and a matched undisturbed watershed (Icacos River Basin) were compared using 10Be concentrations in quartz for various size fractions of bed material. The coarse fractions in both watersheds bear the imprint of long subsurface residence times. Fine material from old shallow soils contributes little, however, to the present-day sediment output of the Cayaguás. This confirms the recent and presumably anthropogenic origin of the modern high denudation rate in the Cayaguás Basin and suggests that pre-agricultural erosional conditions were comparable to those of the present-day Icacos.  相似文献   

8.
Soil erosion is one of the most severe land degradation processes in the Mediterranean region. Although badlands occupy a relatively small fraction of the Mediterranean area, their erosion rates are very high. Many studies have investigated to what extent vegetation controls soil erosion rates. This study, however, deals with the impact of erosion on vegetation establishment. In semi‐arid badlands of the Mediterranean, soil water availability constitutes the main limiting factor for vegetation development. As a consequence, south‐facing slopes are typically less vegetated due to a very large water stress. However, these findings do not necessarily apply to humid badlands. The main objective of this paper is to determine the topographic thresholds for plant colonization in relation to slope aspect and to assess the spatial patterns of vegetation cover and species richness. We surveyed 179 plots on highly eroded badland slopes in the Central Pyrenees. We defined four aspect classes subdivided into slope angle classes. Colonization success was expressed in terms of vegetation cover and species richness. Slope angle thresholds for plant colonization were identified for each slope aspect class by means of binary logistic regressions. The results show that a critical slope angle exists below which plants colonize the badland slopes. Below this critical slope angle, plant cover and species richness increase with a decreasing slope angle. The largest critical slope angles in humid badlands are observed on south‐facing slopes, which contrasts with the results obtained in semi‐arid badlands. North‐facing slopes however are characterized by a reduced overall vegetation cover and species richness, and lower topographic threshold values. The possible underlying processes responsible for this slope‐aspect discrepancy in vegetation characteristics are discussed in terms of environmental variables that control regolith development, weathering and erosion processes. Moreover, possible restoration strategies through the use of vegetation in highly degraded environments are highlighted. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
How soil erosion rates evolved over the last about 100 ka and how they relate to environmental and climate variability is largely unknown. This is due to a lack of suitable archives that help to trace this evolution. We determined in situ cosmogenic beryllium-10 (10Be) along vertical landforms (tors, boulders and scarps) on the Sila Massif to unravel their local exhumation patterns to develop a surface denudation model over millennia. Due to the physical resistance of tors, their rate of exhumation may be used to derive surface and, thus, soil denudation rates over time. We derived soil denudation rates that varied in the range 0–0.40 mm yr-1. The investigated boulders, however, appear to have experienced repositioning processes about ~20–25 ka bp and were therefore a less reliable archive. The scarps of the Sila upland showed a rapid bedrock exposure within the last 8–15 ka. Overall, the denudation rates increased steadily after 75 ka bp but remained low until about 17 ka bp . The exhumation rates indicate a denudation pulse that occurred about 17–5 ka bp . Since then the rates have continuously decreased. We identify three key factors for these developments – climate, topography and vegetation. Between 75 and 17 ka bp , climate was colder and drier than today. The rapid changes towards warmer and humid conditions at the Pleistocene–Holocene transition apparently increased denudation rates. A denser vegetation cover with time counteracted denudation. Topography also determined the extent of denudation rates in the upland regime. On slopes, denudation rates were generally higher than on planar surfaces. By determining the exhumation rates of tors and scarps, soil erosion rates could be determined over long timescales and be related to topography and particularly to climate. This is key for understanding geomorphic dynamics under current environmental settings and future climate change. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

10.
11.
A hydrochemical budget is used to quantify the rate of chemical weathering and solutional denudation on Old Red Sandstone in East Twin drainage basin (0.2 km2) on the Mendip Hills for the 1972–73 Water Year. Net nutrient uptake by the biomass and precipitation inputs are subtracted from stream solute outputs to give an estimate of the solutes released to the system by weathering. The mineralogies of the sandstone and the soil are compared to predict possible weathering reactions for the primary and secondary minerals. Tentative estimates of primary mineral alteration and secondary mineral formation are then made by substituting the hydrochemical balances into the formulated weathering reactions. Finally the rate of solutional denudation (0.8 tonnes/a or 1.6 mm/100 a) is compared with other estimates of solutional and mechanical denudation at East Twin and with similarly derived results for other lithologies.  相似文献   

12.
The type and relative rate of geomorphic process activity on residual hillslopes in the White River Badlands of South Dakota were found to vary as a function of aspect-induced differences in topoclimate. Drainage densities on north-facing slopes several orders of magnitude greater than those on slopes facing south indicate that north-facing slopes experience greater fluvial erosion. Comparative analysis of mass movement features suggests that north-facing slopes are prone to relatively high-magnitude, low-frequency failures, whereas south-facing slopes experience far more frequent but much smaller movements. Variations in process activity can be explained in large part by aspect-induced differences in moisture regime. Field monitoring of moisture conditions indicates that north-facing slopes maintain higher and less variable moisture levels. South-facing slopes are not only drier in- general but are subject to more frequent and intense episodes of wetting and drying. Differences in moisture conditions promote differences in weathering activity as evidenced by thicknesses of slope regoliths. Higher moisture levels on north-facing slopes lead to more rapid dissolution of binding cements and consequently, thicker regolith covers. On south-facing slopes, however, regolith covers are virtually non-existent due to both drier conditions and episodic desiccation, which triggers small rockfalls. Greater fluvial erosion on north-facing slopes is a consequence of higher antecedent moisture levels, which retard infiltration. Further, the unconsolidated regolith cover is more erodible than the relatively unweathered materials exposed on the surfaces of south-facing slopes. Resistance to slumps and mudflows is lower on north-facing slopes because the weathered regolith is less cohesive than the unweathered parent material and also because the regoliths are periodically saturated.  相似文献   

13.
In an attempt to model the effect of slope on the dynamics of lava flow emplacement, four distinct morphologies were repeatedly produced in a series of laboratory simulations where polyethylene glycol (PEG) was extruded at a constant rate beneath cold sucrose solution onto a uniform slope which could be varied from 1° through 60°. The lowest extrusion rates and slopes, and highest cooling rates, produced flows that rapidly crusted over and advanced through bulbous toes, or pillows (similar to subaerial “toey” pahoehoe flows and to submarine pillowed flows). As extrusion rate and slope increased, and cooling rate decreased, pillowed flows gave way to rifted flows (linear zones of liquid wax separated by plates of solid crust, similar to what is observed on the surface of convecting lava lakes), then to folded flows with surface crusts buckled transversely to the flow direction, and, at the highest extrusion rates and slopes, and lowest cooling rates, to leveed flows, which solidified only at their margins. A dimensionless parameter, Ψ, primarily controlled by effusion rate, cooling rate and flow viscosity, quantifies these flow types. Increasing the underlying slope up to 30° allows the liquid wax to advance further before solidifying, with an effect similar to that of increasing the effusion rate. For example, conditions that produce rifted flows on a 10° slope result in folded flows on a 30° slope. For underlying slopes of 40°, however, this trend reverses, slightly owing to increased gravitational forces relative to the strength of the solid wax. Because of its significant influence on heat advection and the disruption of a solid crust, slope must be incorporated into any quantitative attempt to correlate eruption parameters and lava flow morphologies. These experiments and subsequent scaling incorporate key physical parameters of both an extrusion and its environment, allowing their results to be used to interpret lava flow morphologies on land, on the sea floor, and on other planets.  相似文献   

14.
Differences in chemical weathering extent and character are expected to exist across topographic escarpments due to spatial gradients of climatic and/or tectonic forcing. The passive margin escarpment of south‐eastern Australia has a debated but generally accepted model of propagation in which it retreated (within 40 Ma) to near its current position following rifting between Australia and New Zealand 85–100 Ma before present. We focus on this escarpment to quantify chemical weathering rates and processes and how they may provide insight into scarp evolution and retreat. We compare chemical weathering extents and rates above and below the escarpment using a mass balance approach coupling major and trace element analyses with previous measurements of denudation rates using cosmogenic nuclides (10Be and 26Al). We find a slight gradient in saprolite chemical weathering rate as a percentage of total weathering rate across the escarpment. The lowlands area, encompassing the region extending from the base of the escarpment to the coast, experiences a greater extent of chemical weathering than the highland region above the escarpment. Percents of denudation attributable to saprolite weathering average 57 ± 6% and 47 ± 7% at low and high sites respectively. Furthermore, the chemical index of alteration (CIA), a ratio of immobile to mobile oxides in granitic material that increases with weathering extent, have corresponding average values of 73·7 ± 3·9 and 65·5 ± 3·4, indicating lower extents of weathering above the escarpment. Finally, we quantify variations in the rates and extent of chemical weathering at the hillslope scale across the escarpment to suggest new insight into how climate differences and hillslope topography help drive landscape evolution, potentially overprinting longer term tectonic forcing. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Soil‐covered upland landscapes constitute a critical part of the habitable world. Our understanding of how they evolve as a function of different climatic, tectonic and geological regimes is important across a wide range of disciplines and depends, in part, on understanding the links between chemical and physical weathering processes. Extensive previous work has shown that soil production rates decrease with increasing soil column thickness, but chemical weathering rates were not measured. Here we examine a granitic, soil‐mantled hillslope at Point Reyes, California, where soil production rates were determined using in situ produced cosmogenic nuclides (10Be and 26Al), and we quantify the extent as well as the rates of chemical weathering of the saprolite from beneath soil from across the landscape. We collected saprolite samples from the base of soil pits and analysed them for abrasion pH as well as for major and trace elements by X‐ray fluorescence spectroscopy, and for clay mineralogy by X‐ray diffraction spectroscopy. Our results show for the first time that chemical weathering rates decrease with increasing soil thickness and account for 13 to 51 per cent of total denudation. We also show that spatial variation in chemical weathering appears to be topographically controlled: weathering rate decreases with slope across the divergent ridge and increases with upslope contributing area in the convergent swale. Furthermore, to determine the best measure for the extent of saprolite weathering, we compared four different chemical weathering indices – the Vogt ratio, the chemical index of alteration (CIA), Parker's index, and the silicon–aluminium ratio – with saprolite pH. Measurements of the CIA were the most closely correlated with saprolite pH, showing that weathering intensity decreases linearly with an increase in saprolite pH from 4·7 to almost 7. Data presented here are among the first to couple directly rates of soil production and chemical weathering with how topography is likely to control weathering at a hillslope scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Terrestrial cosmogenic nuclide concentrations in sediment are used to quantify mean denudation rates in catchments. This article explores the differences between the 10Be concentration in fine (sand) and in coarse (1–3 or 5–10 cm pebbles) river sediment. Sand and pebbles were sampled at four locations in the Huasco Valley, in the arid Chilean Andes. Sand has 10Be concentrations between 4.8 and 8.3·105 at g−1, while pebbles have smaller concentrations between 2.2 and 3.3·105 at g−1. It appears that the different concentrations, systematically measured between sand and pebbles, are the result of different denudation rates, linked with the geomorphologic processes that originated them. We propose that the 10Be concentrations in sand are determined by the mean denudation rate of all of the geomorphologic processes taking place in the catchment, including debris flow processes as well as slower processes such as hill slope diffusion. In contrast, the concentrations in pebbles are probably related to debris flows occurring in steep slopes. The mean denudation rates calculated in the catchment are between 30 and 50 m/Myr, while the denudation rates associated with debris flow are between 59 and 81 m/Myr. These denudation rates are consistent with those calculated using different methods, such as measuring eroded volumes.  相似文献   

17.
In carbonate karst basins, adequate denudation rates are difficult to estimate when there are allogenic inputs. It is shown that the common practice of correcting for allogenic input by Corbel's modified formula leads to erroneous results unless the karst ratio is very high. When choosing small basins that are subsets of each other, assumptions of hydrologic and lithologic uniformity may be satisfied. Then the autogenic and allogenic components of the denudation may be calculated by a linear model of uniform mixing. The model was tested in a subarctic stripe karst in North Norway, yielding an autogenic denudation rate of 32.5 ± 10.2 mm ka?1. The mean annual runoff is 2600 mm. The result is supported by independent denudation rates from comparable areas, micro-erosion meter data as well as the total post-glacial corrosion deduced from pedestal and vein heights.  相似文献   

18.
Short‐term (contemporary) and long‐term denudation rates were determined for the Blue Mountains Plateau in the western Sydney Basin, Australia, to explore the role of extreme events (wildfires and catastrophic floods) in landscape denudation along a passive plate margin. Contemporary denudation rates were reconstructed using 40 years of river sediment load data from the Nattai catchment in the south‐west of the basin, combined with an analysis of hillslope erosion following recent wildfires. Long‐term denudation rates (10 kyr–10 Myr) were determined from terrestrial cosmogenic nuclides, apatite fission track thermochronology and post‐basalt flow valley incision. Contemporary denudation rates average several times lower than the long‐term average (5·5 ± 4 mm kyr?1 versus 21·5 ± 7 mm kyr?1). Erosion of sediment following wildfires accounts for only a small proportion (5%) of the contemporary rate. Most post‐fire sediment is stored on the lower slopes and valley floor, with the amount transported to the river network dependent on rainfall–run‐off conditions within the first few years following the fire. Historical catastrophic floods account for a much larger proportion (35%) of the contemporary erosion rate, and highlight the importance of these events in reworking stored material. Evidence for palaeofloods much larger than those experienced over the past 200 years suggests even greater sediment export potential. Mass movement on hillslopes along valleys incised into softer lithology appears to be a dominant erosion process that supplies substantial volumes of material to the valley floor. It is possible that a combination of infrequent mass movement events and high fluvial discharge could account for a significant proportion of the discrepancy between the contemporary and long‐term denudation rates. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Excess delivery of land‐based sediments is an important control on the overall condition of nearshore coral reef ecosystems. Unpaved roads have been identified as a dominant sediment source on St John in the US Virgin Islands. An improved understanding of road sediment production rates is needed to guide future development and erosion control efforts. The main objectives of this study were to: (1) measure sediment production rates at the road segment scale; (2) evaluate the importance of precipitation, slope, contributing area, traffic, and grading on road sediment production; (3) develop an empirical road erosion predictive model; and (4) compare our measured erosion rates to other published data. Sediment production from 21 road segments was monitored with sediment traps from July 1998 to November 2001. The selected road segments had varying slopes, contributing areas, and traffic loads. Precipitation was measured by four recording rain gauges. Sediment production was related to total precipitation and road segment slope. After normalizing by precipitation and slope, the mean sediment production rate for roads that had been graded within the last two years was 0·96 kg m?2 cm?1 m m?1 or approximately 11 kg m?2 a?1 for a typical road with a 10 per cent slope and an annual rainfall of 115 cm a?1. The mean erosion rate for ungraded roads was 42 per cent lower, or 0·56 kg m?2 cm?1 m m?1. The normalized mean sediment production rate for road segments that had been abandoned for over fifteen years was only about 10 per cent of the mean value for ungraded roads. Sediment production was not related to traffic loads. Multiple regression analysis led to the development of an empirical model based on precipitation, slope to the 1·5 power, and a categorical grading variable. The measured and predicted erosion rates indicate that roads are capable of increasing hillslope‐scale sediment production rates by up to four orders of magnitude relative to undisturbed conditions. The values from St John are at the high end of reported road erosion rates, a finding that is consistent with the high rainfall erosivities and steep slopes of many of the unpaved roads on St John. Other than paving, the most practical methods to reduce current erosion rates are to minimize the frequency of grading and improve road drainage. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
The pattern of relative denudation at the soil-bedrock interface over a wooded Magnesian Limestone hillslope was investigated using micro-weight loss bedrock tablets. The resulting pattern of weight loss after emplacement for one year indicated a consistent upslope increase in solutional denudation. Results from tablets emplaced for two years confirmed this. Dye tracing and gypsum sphere weight loss results showed that water movement over the slope was by vertical percolation and not by throughflow. The pattern of solutional denudation was related to changes in soil type and associated changes in soil pH. Continued slope development by solutional denudation will ultimately lead to slope decline. Comparison with a similar study suggests that a general soil chemistry based model of hillslope solutional denudation can be proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号