首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Polymict ureilites contain various mineral and lithic clasts not observed in monomict ureilites, including plagioclase, enstatite, feldspathic melt clasts and dark inclusions. This paper investigates the microdistributions and petrogenetic implications of rare earth elements (REEs) in three polymict ureilites (Elephant Moraine (EET) 83309, EET 87720 and North Haig), focusing particularly on the mineral and lithic clasts not found in monomict ureilites. As in monomict ureilites, olivine and pyroxene are the major heavy (H)REE carriers in polymict ureilites. They have light (L)REE‐depleted patterns with little variation in REE abundances, despite large differences in major element compositions. The textural and REE characteristics of feldspathic melt clasts in the three polymict ureilites indicate that they are most likely shocked melt that sampled the basaltic components associated with ureilites on their parent body. Simple REE modeling shows that the most common melt clasts in polymict ureilites can be produced by 20–30% partial melting of chondritic material, leaving behind a ureilitic residue. The plagioclase clasts, as well as some of the high‐Ca pyroxene grains, probably represent plagioclase‐pyroxene rock types on the ureilite parent body. However, the variety of REE patterns in both plagioclase and melt clasts cannot be the result of a single igneous differentiation event. Multiple processes, probably including shock melting and different sources, are required to account for all the REE characteristics observed in lithic and mineral clasts. The C‐rich matrix in polymict ureilites is LREE‐enriched, like that in monomict ureilites. The occurrence of Ce anomalies in C‐rich matrix, dark inclusions and the presence of the hydration product, iddingsite, imply significant terrestrial weathering. A search for 26Mg excesses, from the radioactive decay of 26Al, in the polymict ureilite EET 83309 was negative.  相似文献   

2.
Abstract— We present a petrographic and petrologic analysis of 21 olivine‐pigeonite ureilites, along with new experimental results on melt compositions predicted to be in equilibrium with ureilite compositions. We conclude that these ureilites are the residues of a partial melting/smelting event. Textural evidence preserved in olivine and pigeonite record the extent of primary smelting. In pigeonite cores, we observe fine trains of iron metal inclusions that formed by the reduction of olivine to pigeonite and metal during primary smelting. Olivine cores lack metal inclusions but the outer grain boundaries are variably reduced by a late‐stage reduction event. The modal proportion of pigeonite and percentage of olivine affected by late stage reduction are inversely related and provide an estimation of the degree of primary smelting during ureilite petrogenesis. In our sample suite, this correlation holds for 16 of the 21 samples examined. Olivine‐pigeonite‐liquid phase equilibrium constraints are used to obtain temperature estimates for the ureilite samples examined. Inferred smelting temperatures range from ~1150°C to just over 1300°C and span the range of estimates published for ureilites containing two or more pyroxenes. Temperature is also positively correlated with modal percent pigeonite. Smelting temperature is inversely correlated with smelting depth—the hottest olivine‐pigeonite ureilites coming from the shallowest depth in the ureilite parent body. The highest temperature samples also have oxygen isotopic signatures that fall toward the refractory inclusion‐rich end of the carbonaceous chondrite‐anhydrous mineral (CCAM) slope 1 mixing line. These temperature‐depth variations in the ureilite parent body could have been created by a heterogeneous distribution of heat producing elements, which would indicate that isotopic heterogeneities existed in the material from which the ureilite parent body was assembled.  相似文献   

3.
Abstract— For most elements, polymict ureilite EET83309 shows no significant compositional difference from other ureilites, including ordinary (“monomict”) ureilites. Polymict ureilites appear to be mixtures of a wide variety of ordinary ureilites, with little dilution by “foreign” extra-ureilitic materials. Thus, they apparently were mixed (i.e., the ureilites in general formed) on a very small number of parent bodies. In one respect, polymict ureilites do stand out. Along with the only other polymict ureilite that has been analyzed for REE (Nilpena), EET83309 has much higher concentrations of light-middle REE than most ordinary ureilites. Despite these relative enrichments in LREE, polymict ureilites are nearly devoid of basaltic (Al-rich) material. A basaltic component should have formed along with (and presumably above) the ultramafic ureilites, in any closed-system differentiation of an originally chondritic asteroid. This scarcity of complementary basaltic materials may be an important clue to ureilite origins. We suggest that ureilites originated as paracumulates (mushy, cumulate-like, partial melt residues) deep within a primordially-heated asteroid or asteroids. While still largely molten, the asteroid was severely disrupted, and most of its external basaltic portion was permanently blown away, by impact of a large, C-rich projectile. This partially-disruptive impact tended to permeate the paracumulates with C-rich, noble-gas-rich, and 16O-rich magma derived mainly from shock-melting of the projectile. After reaccumulation and cooling, the resultant mixtures of cumulus mafic silicates with essentially “foreign” C-matrix became “monomict” ureilites. Further small impacts produced polymict ureilites as components of a newly-developed, basalt-poor megaregolith. The consistently moderate pyroxene/olivine ratios of the ureilites are as expected for partial melt residues, but not for cumulate (sensu stricto) rocks. The final projectile/target mixing ratio tended to be greatest among the more magnesian and pyroxene-rich portions of the paracumulate, because these portions were lowest in density, and thus concentrated toward the upper surface of the paracumulate layer. As a result, ureilites show correlations among C, Δ17O, and silicate-core mg. This model appears to reconcile many paradoxical aspects of ureilite composition (primitive, near-chondritic, except depleted in basalt, diverse Δ17O) and petrography (igneous, cumulate-like).  相似文献   

4.
Abstract— Ureilites are modeled as impact-melt products of CV-chondrite-like material. This model is consistent with the brecciated nature and cumulate textures of ureilites, O-isotopic constraints (which indicate ureilite derivation from an isotopically heterogeneous body like the CV-chondrite parent), the high abundance of planetary-type noble gases, and the relatively high concentrations of siderophile and chalcophile elements (indicating incomplete separation of metal-sulfide from silicate). Each ureilite may have been derived from a separate cratering event.  相似文献   

5.
Abstract— Magmatic inclusions occur in type II ureilite clasts (olivine‐orthopyroxene‐augite assemblages with essentially no carbon) and in a large isolated plagioclase clast in the Dar al Gani (DaG) 319 polymict ureilite. Type I ureilite clasts (olivine‐pigeonite assemblages with carbon), as well as other lithic and mineral clasts in this meteorite, are described in Ikeda et al.(2000). The magmatic inclusions in the type II ureilite clasts consist mainly of magnesian augite and glass. They metastably crystallized euhedral pyroxenes, resulting in feldspar component‐enriched glass. On the other hand, the magmatic inclusions in the large plagioclase clast consist mainly of pyroxene and plagioclase, with a mesostasis. They crystallized with a composition along the cotectic line between the pyroxene and plagioclase liquidus fields. DaG 319 also contains felsic lithic clasts that represent various types of igneous lithologies. These are the rare components not found in the common monomict ureilites. Porphyritic felsic clasts, the main type, contain phenocrysts of plagioclase and pyroxene, and their groundmass consists mainly of plagioclase, pyroxene, and minor phosphate, ilmenite, chromite, and/or glass. Crystallization of these porphyritic clasts took place along the cotectic line between the pyroxene and plagioclase fields. Pilotaxitic felsic clasts crystallized plagioclase laths and minor interstitial pyroxene under metastable conditions, and the mesostasis is extremely enriched in plagioclase component in spite of the ubiquitous crystallization of plagioclase laths in the clasts. We suggest that there are two crystallization trends, pyroxene‐metal and pyroxene‐plagioclase trends, for the magmatic inclusions and felsic lithic clasts in DaG 319. The pyroxene‐metal crystallization trend corresponds to the magmatic inclusions in the type II ureilite clasts and the pilotaxitic felsic clasts, where crystallization took place under reducing and metastable conditions, suppressing precipitation of plagioclase. The pyroxene‐plagioclase crystallization trend corresponds to the magmatic inclusions in the isolated plagioclase clast and the porphyritic felsic clasts. This trend developed under oxidizing conditions in magma chambers within the ureilite parent body. The felsic clasts may have formed mainly from albite component‐rich silicate melts produced by fractional partial melting of chondritic precursors. The common monomict ureilites, type I ureilites, may have formed by the fractional partial melting of alkali‐bearing chondritic precursors. However, type II ureilites may have formed as cumulates from a basaltic melt.  相似文献   

6.
Abstract— A popular model for ureilites assumes that during anatexis in an asteroidal mantle, pressure‐buffered equilibrium smelting (partial reduction coincident with partial melting) engendered their conspicuous mafic‐silicate‐core mg diversity (75–96 mol%). Several mass‐balance problems arise from this hypothesis. Smelting inevitably consumes a large proportion of any plausible initial carbon while generating significant proportions of Fe metal and copious proportions of CO gas. The most serious problem concerns the yield of CO gas. If equilibrium smelting produced the ureilites’ entire 21 mol% range in olivine‐core mg, the proportion of gas within the asteroidal mantle (assuming plausibly low pressure <~80 bar) should have reached ≥85 vol%. Based on the remarkably stepwise cooling history inferred from ureilite texture and mineralogy, a runaway, CO‐leaky process that can loosely be termed smelting appears to have occurred, probably triggered by a major impact. The runaway scenario appears likely because, by Le Chǎtelier's principle, CO leakage would tend to accelerate the smelting process. Also, the copious volumes of gas produced by smelting would have led to explosive, mass‐leaky eruptions into the vacuum surrounding the asteroid. Loss of mass would mean diminution of interior pressure, which would induce further smelting, leading to further loss of mass (basalt), and so on. Such a disruptive runaway process may have engendered the ureilites’ distinctive reduced olivine rims. But the only smelting, according to this scenario, was a short‐lived disequilibrium process that reduced only the olivine rims, not the cores; and the ureilites were cooling, not melting, during the abortive “smelting” episode.  相似文献   

7.
Abstract— Ureilites are coarse-grained ultramafic rocks whose petrography, mineral chemistry, lithophile element bulk chemistry, and Sm-Nd isotopic systematics suggest that they are highly fractionated igneous rocks and thus are products of common planetary differentiation processes. However, they also have primitive characteristics that are difficult to reconcile with extensive igneous processing. These include high abundances of siderophile elements, planetary-type noble gases, and the oxygen isotopic signature of unequilibrated solar system materials. The incongruity between igneous and primitive features constitutes the most important problem in understanding ureilite petrogenesis. In this review the petrographic, chemical, and isotopic characteristics of ureilites are summarized, and the petrogenetic implications of these characteristics are discussed. The most important constraints on ureilite petrogenesis are: 1) Ureilites have lost a basaltic complement; 2) Ureilites had a two-stage cooling history; 3) Ureilites are probably residues but partly crystallized from melts; 4) Ureilites are derived from a minimum of six reservoirs which were distinct in oxygen isotopic composition and did not equilibrate with one another; 5) A correlation between oxygen isotopic composition and mg ratio was established in ureilite parent material in the solar nebula; 6) If carbon-metal-silicate-CO/CO2 equilibrium was maintained then the mg ratios of ureilites were pressure/depth-dependent; however, if the pressure was sufficiently high (> 100–200 bars) that a CO/CO2 gas phase was not present then carbon and metal could have been at equilibrium with all ureilite mg ratios at the same pressure; 7) Ureilites either lost a low-melting temperature metal fraction or gained a refractory-rich metal component; 8) Primordial noble gases were retained in carbon in ureilites; 9) The ultramafic ureilite assemblage formed at ~4.55 Ga, but Sm-Nd and Rb-Sr isotopic systematics have been subsequently disturbed. Recently proposed models for ureilite petrogenesis are evaluated in terms of how well they satisfy these constraints; no models unequivocally satisfy all of them. Reconciling constraints 5 and 6 requires a large ureilite parent body.  相似文献   

8.
Abstract— The thermal and shock histories of ureilites can be divided into four periods: 1) formation, 2) initial shock, 3) post‐shock annealing, and 4) post‐annealing shock. Period 1 occurred ?4.55 Ga ago when ureilites formed by melting chondritic material. Impact events during period 2 caused silicate darkening, undulose to mosaic extinction in olivines, and the formation of diamond, lonsdaleite, and chaoite from indigenous carbonaceous material. Alkali‐rich fine‐grained silicates may have been introduced by impact injection into ureilites during this period. About 57% of the ureilites were unchanged after period 2. During period 3 events, impact‐induced annealing caused previously mosaicized olivine grains to become aggregates of small unstrained crystals. Some ureilites experienced reduction as FeO at the edges of olivine grains reacted with C from the matrix. Annealing may also be responsible for coarsening of graphite in a few ureilites, forming euhedral‐appearing, idioblastic crystals. Orthopyroxene in Meteorite Hills (MET) 78008 may have formed from pigeonite by annealing during this period. The Rb‐Sr internal isochron age of ?4.0 Ga for MET 78008 probably dates the annealing event. At this late date, impacts are the only viable heat source. About 36% of ureilites experienced period 3 events, but remained unchanged afterwards. During period 4, ?7% of the ureilites were shocked again, as is evident in the polymict breccia, Elephant Moraine (EET) 83309. This rock contains annealed mosaicized olivine aggregates composed of small individual olivine crystals that exhibit undulose extinction. Ureilites may have formed by impact‐melting chondritic material on a primitive body with heterogeneous O isotopes. Plagioclase was preferentially lost from the system due to its low impedance to shock compression. Brief melting and rapid burial minimized the escape of planetary‐type noble gases from the ureilitic melts. Incomplete separation of metal from silicates during impact melting left ureilites with relatively high concentrations of trace siderophile elements.  相似文献   

9.
Abstract— The mid-infrared (4000–450 cm?1; 2.5–22.2 μm) transmission spectra of seven Antarctic ureilites and 10 Antarctic H-5 ordinary chondrites are presented. The ureilite spectra show a number of absorption bands, the strongest of which is a wide, complex feature centered near 1000 cm?1 (10 μm) due to Si-O stretching vibrations in silicates. The profiles and positions of the substructure in this feature indicate that Mg-rich olivines and pyroxenes are the main silicates responsible. The relative abundances of these two minerals, as inferred from the spectra, show substantial variation from meteorite to meteorite, but generally indicate olivine is the most abundant (olivine:pyroxene = 60:40 to 95:5). Both the predominance of olivine and the variable olivine-to-pyroxene ratio are consistent with the known composition and heterogeneity of ureilites. The H-5 ordinary chondrites spanned a range of weathering classes and were used to provide a means of addressing the extent to which the ureilite spectra may have been altered by weathering processes. It was found that, while weathering of these meteorites produces some weak bands due to the formation of small amounts of carbonates and hydrates, the profile of the main silicate feature has been little affected by Antarctic exposure in the meteorites studied here. The mid-infrared ureilite spectra provide an additional means of testing potential asteroidal parent bodies for the ureilites. At present, the best candidates include the subset of S-type asteroids having low albedos and weak absorption features in the near infrared.  相似文献   

10.
The lightly-shocked ureilite RC027 was found in Roosevelt County, New Mexico in 1984. In terms of petrography, texture, mineral compositions, bulk chemical composition, and oxygen isotopic composition it is a typical ureilite. It contains ~75% olivine (Fo 79.4) and 25% pigeonite (mg 81.3, Wo 8.0), with intergranular graphite and (Fe, Ni) metal. It also contains less than 1% of fine-grained, interstitial silicate material, which had not previously been recognized in any ureilite. This material is an assemblage of low-Ca pyroxene (Wo 3.5–9, mg 87–93), augite (Wo 24–36, mg 90–98), glass (typically ~95% SiO2, 4% Al2O3, 0.5% Na2O), and crystalline SiO2. This material has an igneous texture, indicating that it crystallized from an interstitial liquid. Low-Ca pyroxene compositions indicate that the interstitial liquid was not in equilibrium with core pigeonite and olivine and cannot have been either an evolved intercumulus liquid or a low-degree partial melt. It may contain a component of shock-melted olivine and pigeonite, although petrographic evidence indicates that it could not have been an in situ shock melt. One sample of RC027 has a V-shaped rare earth element pattern, typical of ureilites. Another is depleted in light rare earth elements (LREE), similar to acid-treated samples of ureilites, which suggests that LREE in ureilites are contained in an inhomogeneously-distributed phase. RC027 shows the strongest olivine preferred-orientation yet observed in a ureilite. Its fabric is characteristic of fabrics formed by tabular minerals in a fluid laminar flow regime and is unlike those formed by syntectonic recrystallization and plastic flow. The elemental and isotopic compositions of noble gases in RC027 are typical of previously analyzed ureilites. This result indicates that there is no correlation of noble gas content with degree of shock in ureilites, and thus suggests that the gases were present in the ureilite material before shock. Cosmogenic He and Ne contents indicate cosmic ray exposure ages of 1.7 and 1.9 Myr, respectively. Thus, RC027 is not paired with Kenna (a ureilite also found in Roosevelt County), which has an exposure age of ~33 Myr.  相似文献   

11.
Abstract— We studied the petrography and mineralogy of two monomict ureilites, Hammadah al Hamra 064 (HH064) and Jalanash, by using reflected light and scanning electron microscopy. Quantitative analyses were performed by electron microprobe and the microstructures were investigated with transmission electron microscopy (TEM). HH064 features two different textures, a poikilitic and a typical one, whereas Jalanash shows only the typical ureilite texture. Our synergetic chemical and microstructural investigations reveal a complex cooling history for both ureilites. The temperature for the first equilibrium deduced from the pigeonite‐augite assemblage in HH064 is ~1200°C. The presence of antiphase domains in low‐Ca pyroxenes proves that they are clearly pigeonite. The occurrences of tweed micro structure and orthopyroxene lamellae, which are incompletely developed, imply a faster cooling rate from the first equilibrium with a sudden end. Although both ureilites contain shock induced diamonds, dislocations in silicates are rare. This observation suggests that the meteorites were hot at the time of strong shock metamorphism or that they were heated after strong shock metamorphism. After this event, new microstructural features were generated by different cooling processes and were frozen by a final rapid decrease in temperature possibly due to excavation from the ureilite parent body, or bodies.  相似文献   

12.
Abstract— A popular model for ureilites assumes that during anatexis in an asteroidal mantle, pressure‐buffered equilibrium smelting (partial reduction coincident with partial melting) engendered their conspicuous mafic‐silicate‐core mg diversity (75–96 mol%). Several mass‐balance problems arise from this hypothesis. Smelting inevitably consumes a large proportion of any plausible initial carbon while generating significant proportions of Fe metal and copious proportions of CO gas. The most serious problem concerns the yield of CO gas. If equilibrium smelting produced the ureilites' entire 21 mol% range in olivine‐core mg, the proportion of gas within the asteroidal mantle (assuming plausibly low pressure <˜80 bar) should have reached ≥85 vol%. Based on the remarkably stepwise cooling history inferred from ureilite texture and mineralogy, a runaway, CO‐leaky process that can loosely be termed smelting appears to have occurred, probably triggered by a major impact. The runaway scenario appears likely because, by Le Châtelier's principle, CO leakage would tend to accelerate the smelting process. Also, the copious volumes of gas produced by smelting would have led to explosive, mass‐leaky eruptions into the vacuum surrounding the asteroid. Loss of mass would mean diminution of interior pressure, which would induce further smelting, leading to further loss of mass (basalt), and so on. Such a disruptive runaway process may have engendered the ureilites' distinctive reduced olivine rims. But the only smelting, according to this scenario, was a short‐lived disequilibrium process that reduced only the olivine rims, not the cores; and the ureilites were cooling, not melting, during the abortive “smelting” episode.  相似文献   

13.
Abstract— The Nova 001 [= Nuevo Mercurio (b)] and Nullarbor 010 meteorites are ureilites, both of which contain euhedral graphite crystals. The bulk of the meteorites are olivine (Fo79) and pyroxenes (Wo9En73Fs18, Wo3En77Fs20), with a few percent graphite and minor amounts of troilite, Ni-Fe metal, and possibly diamond. The rims of olivine grains are reduced (to Fo91) and contain abundant blebs of Fe metal. Silicate mineral grains are equant, anhedral, up to 2 mm across, and lack obvious preferred orientations. Euhedral graphite crystals (to 1 mm x 0.3 mm) are present at silicate grain boundaries, along boundaries and protruding into the silicates, and entirely within silicate mineral grains. Graphite euhedra are also present as radiating clusters and groups of parallel plates grains embedded in olivine; no other ureilite has comparable graphite textures. Minute lumps within graphite grains are possibly diamond, inferred to be a result of shock. Other shock effects are limited to undulatory extinction and fracturing. Both ureilites have been weathered significantly. Considering their similar mineralogies, identical mineral compositions, and identical unusual textures, Nova 001 and Nullarbor 010 are probably paired. Based on olivine compositions, Nova 001 and Nullarbor 010 are in Group 1 (FeO-rich) of Berkley et al. (1980). Silicate mineral compositions are consistent with those of other known ureilites. The presence of euhedral graphite crystals within the silicate minerals is consistent with an igneous origin, and suggests that large proportions of silicate magma were present locally and crystallized in situ.  相似文献   

14.
Abstract— The Asuka 881931 meteorite is an unbrecciated ferroan ureilite and consists mainly of equi—granular olivine and pigeonite grains, a metal—sulfide network, interstitial silicates, and glass. Peripheral portions of equigranular olivine grains are often replaced by fine-grained forsterite—metal aggregates and sometimes by fine-grained enstatite—metal aggregates. These aggregates may have been produced from the equigranular olivine by reduction. Peripheral portions of equigranular pigeonite grains also are sometimes replaced by fine-grained orthopyroxene aggregates with tiny patches of Si-rich glass and may have been produced from the pigeonite by reduction reaction with silicate melt. Interstitial silicates are mainly orthopyroxene, magnesian pigeonite, high-Ca pyroxene (diopside/fassaite), and CaO-poor enstatite; and they crystallized from interstitial silicate melt. Interstitial glass is classified into two types—-Si-poor and Si-rich. The Si-poor glass is always in contact with equigranular olivine, but the Si-rich glass never contacts equigranular olivine and is in contact with pyroxene and the metal—sulfide network. Both types of glass were produced from an original interstitial silicate melt, but the Si-poor glass formed mainly by fractional crystallization of pyroxenes, and the Si-rich glass may have formed by addition of Si mainly from nearby metal—sulfide melt, as well as crystallization of pyroxenes. The Si-poor and Si-rich melts were finally quenched as interstitial glasses under rapid cooling conditions.  相似文献   

15.
A detailed mineralogical and chemical study of Almahata Sitta fine‐grained ureilites (MS‐20, MS‐165, MS‐168) was performed to shed light on the origin of these lithologies and their sulfide and metal. The Almahata Sitta fine‐grained ureilites (silicates <30 μm grain size) show textural and chemical evidence for severe impact smelting as described for other fine‐grained ureilites. Highly reduced areas in Almahata Sitta fine‐grained ureilites show large (up to ~1 mm) Si‐bearing metal grains (up to ~4.5 wt% Si) and niningerite [Mg>0.5,(Mn,Fe)<0.5S] with some similarities to the mineralogy of enstatite (E) chondrites. Overall, metal grains show a large compositional variability in Ni and Si concentrations. Niningerite grains probably formed as a by‐product of smelting via sulfidation. The large Si‐Ni variation in fine‐grained ureilite metal could be the result of variable degrees of reduction during impact smelting, inherited from coarse‐grained ureilite precursors, or a combination of both. Large Si‐bearing metal grains probably formed via coalescence of existing and newly formed metal during impact smelting. Bulk and in situ siderophile trace element abundances indicate three distinct populations of (1) metal crystallized from partial melts in MS‐20, (2) metal resembling bulk chondritic compositions in MS‐165, and (3) residual metal in MS‐168. Almahata Sitta fine‐grained ureilites developed their distinctive mineralogy due to severe reduction during smelting. Despite the presence of E chondrite and ureilite stones in the Almahata Sitta fall, a mixing relation of E chondrites or their constituents and ureilite material in Almahata Sitta can be ruled out based on isotopic, textural, and mineral‐chemical reasons.  相似文献   

16.
Abstract— The LEW 88774 ureilite is extraordinarily rich in Ca, Al, and Cr, and mineralogically quite different from other ureilites in that it consists mainly of exsolved pyroxene, olivine, Cr-rich spinel, and C. The presence of coarse exsolved pyroxene in LEW 88774 is unique because pyroxene in most other ureilites is not exsolved. The pyroxene has bulk Wo contents of 15–20 mol% and has coarse exsolution lamellae of augite and low-Ca pyroxene, 50 μm in width. The compositions of the exsolved augite (Ca33.7Mg52.8Fe13.5) and host low-Ca pyroxene (Ca4.4Mg75Fe20.6) show that these exsolution lamellae were equilibrated at 1280 °C. A computer simulation of the cooling rate, obtained by solving the diffusion equation for reproducing the diffusion profile of CaO across the lamellae, suggests that the pyroxene was cooled at 0.01 °C/year until the temperature reached 1160 °C. This cooling rate corresponds to a depth of at least 1 km in the parent body, assuming it was covered by a rock-like material. Therefore, LEW 88774 was held at this high temperature for 1.2 × 104years. The proposed cooling history is consistent with that of other ureilites with coarsegrained unexsolved pigeonites. Lewis Cliff 88774 includes abundant Cr-rich spinel in comparison with other ureilites. The range of FeO content of spinels in LEW 88774 is from 1.3 wt% to 21 wt% [Fe/(Fe + Mg) = 0.04–0.6]. The Cr-rich and Fe-poor spinel in LEW 88774 has less Fe (FeO, 1.3 wt%) than spinels in other achondrites. We classify this spinel as an Fe, Al-bearing picrochromite. Most ureilites are depleted in Ca and Al, but this meteorite has high-Ca and Al concentrations. In this respect, as well as mineral assemblage and the presence of coarse exsolution lamellae in pyroxene, LEW 88774 is a unique ureilite. Most differentiated meteorites are poor in volatile elements such as Zn, but the LEW 88774 spinels contain abundant Zn (up to 0.6 wt%). We note that such a high Zn concentration in spinel has been observed in the carbonaceous chondrites and recrystallized chondrites. This unusual ureilite has more primitive characteristics than most other ureilites.  相似文献   

17.
Ureilites are carbon‐rich ultramafic achondrites that have been heated above the silicate solidus, do not contain plagioclase, and represent the melting residues of an unknown planetesimal (i.e., the ureilite parent body, UPB). Melting residues identical to pigeonite‐olivine ureilites (representing 80% of ureilites) have been produced in batch melting experiments of chondritic materials not depleted in alkali elements relative to the Sun’s photosphere (e.g., CI, H, LL chondrites), but only in a relatively narrow range of temperature (1120 ºC–1180 ºC). However, many ureilites are thought to have formed at higher temperature (1200 ºC–1280 ºC). New experiments, described in this study, show that pigeonite can persist at higher temperature (up to 1280 ºC) when CI and LL chondrites are melted incrementally and while partial melts are progressively extracted. The melt productivity decreases dramatically after the exhaustion of plagioclase with only 5–9 wt% melt being generated between 1120 ºC and 1280 ºC. The relative proportion of pyroxene and olivine in experiments is compared to 12 ureilites, analyzed for this study, together with ureilites described in the literature to constrain the initial Mg/Si ratio of the UPB (0.98–1.05). Experiments are also used to develop a new thermometer based on the partitioning of Cr between olivine and low‐Ca pyroxene that is applicable to all ureilites. The equilibration temperature of ureilites increases with decreasing Al2O3 and Wo contents of pyroxene and decreasing bulk REE concentrations. The UPB melted incrementally, at different fO2, and did not cool significantly (0 ºC–30 ºC) prior to its disruption. It remained isotopically heterogenous, but the initial concentration of major elements (SiO2, MgO, CaO, Al2O3, alkali elements) was similar in the different mantle reservoirs.  相似文献   

18.
Abstract– New analyses of mafic silicates from 14 ureilite meteorites further constrain a strong correlation ( Singletary and Grove 2003 ) between olivine‐core Fo ratio and the temperature of equilibration (TE) recorded by the composition of pigeonite. This correlation may be compared with relationships implied by various postulated combinations of Fo and pressure P in models for ureilite genesis by a putative process of anatectic (depth‐linked, P‐controlled) smelting. In such models, any combination of Fo and P together fixes the temperature of smelting. Agreement between the observed correlation and these models is poor. The anatectic smelting model also carries implausible implications for the depth range at which ureilites of a given composition (Fo) form. Actual ureilites (and polymict ureilite clasts: Downes et al. 2008 ) show a distribution strongly skewed toward the low‐Fo end of the compositional range, with approximately 58% in the range Fo76–81. In contrast, the P‐controlled smelting model implies that the Fo76–81 region is a small fraction of the volume of the parent body: not more than 3.2%, in a model consistent with the Fo‐TE observations; and even ignoring the Fo‐TE evidence not more than 11% (percentages cited require optimal assumptions concerning the size of the parent body). This region also must occur deep within the body, where no straightforward model would imply a strong bias in the impact‐driven sampling process. The ureilites did not derive preponderantly from one atypical “largest offspring” disruption survivor, because cooling history evidence shows that after the disruption (whose efficiency was increased by gas jetting), all of the known ureilites cooled in bodies that were tiny (mass of order 10?9) in comparison with the precursor body. The Ca/Al ratio of the ureilite starting matter cannot be 2.5 times chondritic, as has been suggested, unless the part of the body from which ureilites come is at most 50% of the whole body. Published variants of the anatectic, P‐controlled smelting model have the ureilites coming from a region that is >50 vol% of their parent body; and to invoke a larger body would have the drawback of implying that the Fo76–81 spike represents an even smaller fraction of the parent body’s interior. The ureilites’ moderate depletions in incompatible elements are difficult to reconcile with a fractional fusion model. It is not plausible that melt formed grossly out of equilibrium with the medium‐sized ureilite crystals. The alternative to pressure‐controlled smelting, i.e., a model of gasless or near‐gasless anatexis, has very different implications for the size and evolution of the original parent body. To yield internal pressures prohibitive of smelting in even the shallowest and most ferroan portion of its anatectic mantle, the body would have to be larger than roughly 690 km in diameter. A 400 km body would have approximately 12 vol% of the interior (or 13 vol% of the interior apart from the thermal “skin” that never undergoes anatexis) prone, if both extremely shallow and extremely ferroan, to mild smelting. Gasless anatexis also implies that this large parent body was compositionally, at least in terms of mg, grossly heterogeneous before anatexis, probably (in view of the oxygen isotopic diversity) as a result of mixed accretion.  相似文献   

19.
We have examined the magnetic characteristics of representative ureilites, with a view to identify the magnetic effects of shock and to isolate a primary component of the natural remanent magnetization (NRM). As a group, the ureilites show remarkably uniform patterns of magnetic behavior, attesting to a common genesis and history. However, a clearly observed gradation in magnetic properties of the ureilites studied with shock level, parallels their classification based on petrologic and chemical fractionation shock-related trends.The ureilite meteorites possess a strong and directionally stable NRM. Laboratory thermal modelling of this presumably primordial NRM preserved in Goalpara and Kenna produced reliable paleointensity estimates of order 1 Oe, thus providing evidence for strong early, nebular magnetic fields. This paleofield strength is compatible with values obtained previously from carbonaceous chondrites and supports isotopic evidence for a contemporary origin of these two groups of meteorites in the same nebular region. The mechanism for recording nebular fields, manifestly different in carbonaceous chondrite vs. ureilite meteorites, is thus relatively unimportant: violent collisional shock in ureilites seems to have only partially altered an original magnetization, by preferential removal of its least stable portion.  相似文献   

20.
Abstract— Asteroid differentiation was driven by a complex array of magmatic processes. This paper summarizes theoretical and somewhat speculative research on the physics of these processes. Partial melts in asteroids migrate rapidly, taking < 106 years to reach surface regions. On relatively small (<100 km) asteroids with sufficient volatiles in partial melts (<3000 ppm), explosive volcanism accelerated melts to greater than escape velocity, explaining the apparent lack of basaltic components on the parent asteroids of some differentiated meteorites. Partial melting products include the melts (some eucrites, angrites), residues (lodranites, ureilites), and unfractionated residues (acapulcoites). The high liquidus temperatures of magmatic iron meteorites, the existence of pallasites with only olivine, and the fact that enstatite achondrites formed from ultramafic magmas argue for the existence of magma oceans on some asteroids. Asteroidal magma oceans would have been turbulently convective. This would have prevented crystals nucleated at the upper cooling surface (the only place for crystal nucleation in a low-pressure body) from settling until the magma became choked with crystals. After turbulent convection slowed, crystals and magma would have segregated, leaving a body stratified from center to surface as follows: a metallic core, a small pallasite zone, a dunite region, a feldspathic pyroxenite, and basaltic intrusions and lava flows (if the basaltic components had not been lost by explosive volcanism). The pallasite and dunite zones probably formed from coarse (0.5–1 cm) residual olivine left after formation of the magma ocean at >50% partial melting of the silicate assemblage. Iron cores crystallized dendritically from the outside to the inside. The rapid melt migration rate of silicate melts suggests that 26Al could not be responsible for forming asteroidal magma oceans because it would leave the interior before a sufficient amount of melting occurred. Other heat sources are more likely candidates. Our analysis suggests that if Earth-forming planetesimals had differentiated they were either small (<100 km) and poor in volatiles (<1000 ppm) or they were rich in volatiles and large enough (>300 km) to retain the products of pyroclastic eruptions; if these conditions were not met, Earth would not have a basaltic component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号