首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Typical rock samples with different lithologic characteristics were collected from exploring wells drilled in sandstone-conglomerate sedimental reservoirs with positive rhythm. In different pore fluid states (fully saturated with gas, water and oil), the velocities of compressional and shear waves (Vp, Vs) were measured under different overburden pressure in laboratory. The effects of pore fluid and different fluid types on the velocities were analyzed. The velocities (Vp, Vs) of the samples fully saturated with water were calculated by use of Gassmann's formula that is suitable for low frequency. The calculated values were compared with the experimental values obtained at high frequency. The result shows that Gassmann's theory can be used to calculate elastic wave velocities in porous rocks saturated with fluid. By this result, the change of elastic velocities with the change of fluid can be predicted. The error is allowable in petroleum engineering. This conclusion is useful for sonic logging interpretation and seismic datum processing.  相似文献   

2.
This paper describes the measurements of the acoustic and petrophysical properties of two suites of low‐shale sandstone samples from North Sea hydrocarbon reservoirs, under simulated reservoir conditions. The acoustic velocities and quality factors of the samples, saturated with different pore fluids (brine, dead oil and kerosene), were measured at a frequency of about 0.8 MHz and over a range of pressures from 5 MPa to 40 MPa. The compressional‐wave velocity is strongly correlated with the shear‐wave velocity in this suite of rocks. The ratio VP/VS varies significantly with change of both pore‐fluid type and differential pressure, confirming the usefulness of this parameter for seismic monitoring of producing reservoirs. The results of quality factor measurements were compared with predictions from Biot‐flow and squirt‐flow loss mechanisms. The results suggested that the dominating loss in these samples is due to squirt‐flow of fluid between the pores of various geometries. The contribution of the Biot‐flow loss mechanism to the total loss is negligible. The compressional‐wave quality factor was shown to be inversely correlated with rock permeability, suggesting the possibility of using attenuation as a permeability indicator tool in low‐shale, high‐porosity sandstone reservoirs.  相似文献   

3.
在实验室对5块储层砂岩进行了模拟地层压力条件下的超声波速度测试。砂岩样品采自WXS凹陷的W地层,覆盖了从低到高的孔隙度和渗透率范围。实验选用了卤水和4种不同密度油作为孔隙流体,结合温度变化,实现了对流体粘度引致的速度频散研究。对实验结果的分析表明:(1)对于高孔隙度和渗透率的样品,无论是哪种流体饱和,观察到的超声波速度测试值和零频率Gassmann预测值的差异较小(约2-3%),基本上可以用Biot模型解释;对于中等孔隙度和渗透率的样品,低粘度流体(<约3mP?S)的频散效应也可以用Biot模型得到合理解释;(2)对于低、中孔隙度和渗透率样品,当流体粘度增加时,喷射流机制起主导作用,导致严重的速度频散(可达8%)。对储层砂岩的微裂隙纵横比进行了估计并用于喷射流特征频率的计算,当高于该特征频率时,Gassmann理论的假设条件受到破坏,实验室测得的高频速度不能直接用于地震低频条件下的W地层砂岩的Gassmann流体替换研究。  相似文献   

4.
In heterogeneous natural gas reservoirs, gas is generally present as small patch-like pockets embedded in the water-saturated host matrix. This type of heterogeneity, alsocalled "patchy saturation", causes significant seismic velocity dispersion and attenuation. Toestablish the relation between seismic response and type of fluids, we designed a rock physicsmodel for carbonates. First, we performed CT scanning and analysis of the fluid distributionin the partially saturated rocks. Then, we predicted the quantitative relation between the waveresponse at different frequency ranges and the basic lithological properties and pore fluids.A rock physics template was constructed based on thin section analysis of pore structuresand seismic inversion. This approach was applied to the limestone gas reservoirs of the rightbank block of the Amu Darya River. Based on poststack wave impedance and prestack elasticparameter inversions, the seismic data were used to estimate rock porosity and gas saturation.The model results were in ~ood a~reement with the production regime of the wells.  相似文献   

5.
Partially saturated reservoirs are one of the major sources of seismic wave attenuation, modulus defect and velocity dispersion in real seismic data. The main attenuation and dispersion phenomenon is wave induced fluid flow due to the heterogeneity in pore fluids or porous rock. The identification of pore fluid type, saturation and distribution pattern within the pore space is of great significance as several seismic and petrophysical properties of porous rocks are largely affected by fluid type, saturation and fluid distribution pattern. Based on Gassmann-Wood and Gassmann- Hill rock physics models modulus defect, velocity dispersion and attenuation in Jurassic siliclastic partially-saturated rocks are studied. For this purpose two saturation patterns - uniform and patchy - are considered within the pore spaces in two frequency regimes i.e., lower frequency and higher frequency. The results reveal that at low enough frequency where saturation of liquid and gas is uniform, the seismic velocity and bulk modulus are lower than at higher frequency where saturation of fluid mixture is in the form of patches. The velocity dispersion and attenuation is also modeled at different levels of gas saturation. It is found that the maximum attenuation and velocity dispersion is at low gas saturation. Therefore, the dispersion and attenuation can provide a potential way to predict gas saturation and can be used as a property to differentiate low from high gas saturation.  相似文献   

6.
碳酸盐岩孔隙结构类型复杂多样,当地震波经过含有不同孔隙结构的流体饱和岩石后往往会产生不同的波频散和衰减特征,这使得根据波的不同响应特征来推断碳酸盐岩的孔隙结构类型,甚至孔隙流体性质信息成为可能.本文针对白云岩、灰岩以及人工碳酸盐岩样品开展了跨频段(超声+低频)实验测量和理论建模,探索碳酸盐岩的孔隙结构类型和孔隙流体对模量频散和衰减的影响机制.首先根据铸体薄片、扫描电镜的图像对碳酸盐岩样品进行了孔隙结构类型分析,并将样品主要分为裂缝型、裂缝-孔隙型、孔洞型三类,然后测量了相应样品完全饱和流体后在不同围压下的模量频散与衰减.在完全饱和甘油并处于低围压时,裂缝型与孔洞型样品均出现一个衰减峰,分别位于1 Hz与100 Hz附近,而裂缝-孔隙型样品则具有两个衰减峰,一个在1 Hz附近,另一个在100 Hz附近.裂缝型样品(裂缝主导)的衰减峰相比孔洞型样品(中等刚度孔隙主导)对应的衰减峰在低围压下幅度更大,且对围压变化更敏感.在测量数据的基础上,建立了考虑纵横比分布的软孔隙和中等刚度孔隙的喷射流模型,认为该模型能一定程度上解释裂缝型、裂缝-孔隙型、孔洞型三种类型碳酸盐岩在测量频带的频散.以上研究加深了对不同孔隙类型主导的碳酸盐岩储层地震响应特征的认识,对储层预测工作的进一步精细化具有重要意义.  相似文献   

7.
含流体砂岩地震波频散实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究孔隙流体对不同渗透率岩石地震波速度的影响,在实验室利用跨频带岩石弹性参数测试系统得到了应变幅值10-6的2~2000Hz频段下的地震波速度和1 MHz频率下的超声波速度,利用差分共振声谱法得到了频率600Hz岩石干燥和完全饱水情况下岩石声学参数.实验表明,在低饱和度下,致密砂岩在地震和超声频段下没有明显的频散;在高饱和度下纵波速度的频散变得明显.从干燥到完全水饱和条件,不同频率测量的致密砂岩的体积模量随岩石孔隙度增高而降低,且体积模量的变化量受岩石微观孔隙结构的影响较大.高孔、高渗砂岩无论在低含水度下还是在高含水饱和度下频散微弱,并且在地震频段下围压对于岩石纵横波速度的影响要大于频率的影响.高孔、高渗砂岩和致密砂岩不同含水饱和度下的频散差异可应用于储层预测,油气检测等方面,同时该研究可以更好地帮助理解岩石的黏弹性行为,促进岩石物理频散理论的发展,提高地震解释的精度.  相似文献   

8.
储层砂岩声波速度预测   总被引:3,自引:0,他引:3  
本文主要基于Gassmann方程和经验规律,提出了孔隙流体替代和孔隙度改变时对砂央地震波速度变化的估计,以及直接利用岩石矿物和孔隙流体的弹性性质计算砂岩地震波速度方法,利用已知的岩芯,测井或地震数据,运用这此方法,可合理地对储层砂岩地震波速度进行预测。  相似文献   

9.
油藏水驱开采时移地震监测岩石物理基础测量   总被引:9,自引:0,他引:9       下载免费PDF全文
岩石物理测量是油藏水驱开采时移地震监测的基础.在实验室对来自胜利油田的5块岩石样品模拟储层条件进行了水驱和气驱动态岩石物理弹性测量,重点分析了流体替换、温度、孔隙压力对岩石纵、横波速度的影响.实验表明,在水驱情形下,由于流体替换和温度、孔隙压力变化所引起的岩石纵横波速度的变化均很小,实施时移地震监测具有较大的风险性.相比之下,气驱可能引起较为明显的纵波速度变化,有利于时移地震监测的实施.进一步完善实验方法、丰富实验内容、是今后时移地震岩石物理实验研究的主要任务.  相似文献   

10.
Predicting the shear‐wave (S‐wave) velocity is important in seismic modelling, amplitude analysis with offset, and other exploration and engineering applications. Under the low‐frequency approximation, the classical Biot–Gassmann theory relates the Biot coefficient to the bulk modulus of water‐saturated sediments. If the Biot coefficient under in situ conditions can be estimated, the shear modulus or the S‐wave velocity can be calculated. The Biot coefficient derived from the compressional‐wave (P‐wave) velocity of water‐saturated sediments often differs from and is less than that estimated from the S‐wave velocity, owing to the interactions between the pore fluid and the grain contacts. By correcting the Biot coefficients derived from P‐wave velocities of water‐saturated sediments measured at various differential pressures, an accurate method of predicting S‐wave velocities is proposed. Numerical results indicate that the predicted S‐wave velocities for consolidated and unconsolidated sediments agree well with measured velocities.  相似文献   

11.
岩石的地震波性质是区域构造研究和浅部地震勘探应用的基础.延长油田是我国重要的油气生产基地之一,但目前仍缺乏地震波性质方面的基础资料.作者利用Autolab2000多功能岩石物性自动测试设备,在0~180MPa及饱含不同孔隙流体(干燥、饱水及饱油)条件下,研究了三种来自延长油田砂岩岩芯的纵波、横波速度.结果表明:三种砂岩的Vp、Vs1和Vs2均随压力增加(或降低)而基本呈对数曲线增大(或减小);干燥、饱水和饱油三种波速间的关系因砂岩类型不同而不同,这主要取决于岩石的有效弹性模量、孔隙流体性质以及岩石的内部结构等;含同种孔隙流体的不同类型砂岩,其Vp、Vs1和Vs2随压力变化的规律主要受岩石孔隙度和粒度的影响;而含不同孔隙流体的同种砂岩,其Vp、Vs1和Vs2随压力变化的规律则主要受控于岩石的有效弹性模量和流体密度.另外,含水或含油饱和度的变化对Vs1和Vs2基本没有影响.实验结果可以为该地区地震资料的解释及与声波测井之间的对比提供重要的基础数据和参考依据.  相似文献   

12.
本文综合考虑了在波传播过程中孔隙介质的三种重要力学机制——"Biot流动机制一squirt流动机制-固体骨架黏弹性机制",借鉴等效介质思想,将含水饱和度引入波动力学控制方程,并考虑了不同波频率下孔隙流体分布模式对其等效体积模量的影响,给出了能处理含粘滞性非饱和流体孔隙介质中波传播问题的黏弹性Biot/squirt(BISQ)模型。推导了时间-空间域的波动力学方程组,由一组平面谐波解假设,给出频率-波数域黏弹性BISQ模型的相速度和衰减系数表达式。基于数值算例分析了含水饱和度、渗透率与频率对纵波速度和衰减的影响,并结合致密砂岩和碳酸盐岩的实测数据,对非饱和情况下的储层纵波速度进行了外推,碳酸盐岩储层中纵波速度对含气饱和度的敏感性明显低于砂岩储层。  相似文献   

13.
We report laboratory measurements of P- and S-wave velocities on samples of tuff from Campi Flegrei (Italy), and a new tomographic velocity map of the Campi Flegrei caldera. Laboratory measurements were made in a hydrostatic pressure vessel during both increasing and decreasing effective pressure cycles. Selected samples were also thermally stressed at temperatures up to 600°C to induce thermal crack damage. Acoustic emission output was recorded throughout each thermal stressing experiment, and velocities were measured after thermal stressing. Laboratory P- and S-wave velocities are initially low for the tuff, which has an initial porosity of ~45%, but both increase by between 25 and 50% over the effective pressure range of 5 to 80 MPa, corresponding to a decrease of porosity of ~70%. Marked velocity hysteresis, due to inelastic damage processes, is also observed in samples subjected to a pressurization-depressurization cycle. Tomographic seismic velocity distributions obtained from field recordings are in general agreement with the laboratory measurements. Integration of the laboratory ultrasonic and seismic tomography data indicates that the tuffs of the Campi Flegrei caldera can be water or gas saturated, and shows that inelastic pore collapse and cracking produced by mechanical and thermal stress can significantly change the velocity properties of Campi Flegrei tuffs at depth. These changes need to be taken into account in accurately interpreting the crustal structure from tomographic data.  相似文献   

14.
The propagation of seismic waves through a saturated reservoir compresses the fluid in the pore spaces. During this transition, parts of seismic energy would be attenuated because of intrinsic absorption. Rock physics models make the bridge between the seismic properties and petrophysical reality in the earth. Attenuation is one of the significant seismic attributes used to describe the fluid behaviour in the reservoirs. We examined the core samples using ultrasonic experiments at the reservoir conditions. Given the rock properties of the carbonate reservoir and experiment results, the patchy saturation mechanism was solved for substituted fluid using the theory of modulus frequency. The extracted relationship between the seismic attenuation and water saturation was used in time–frequency analysis. We performed the peak frequency method to estimate the Q factor in the Gabor domain and determined the water saturation based on the computed rock physics model. The results showed how the probable fault in the reservoir has stopped the fluid movement in the reservoir and caused touching the water‐bearing zone through drilling.  相似文献   

15.
We investigate the seismic detectability of an overpressured reservoir in the North Sea by computing synthetic seismograms for different pore-pressure conditions. The modelling procedure requires the construction of a geological model from seismic, well and laboratory data. Seismic inversion and AVO techniques are used to obtain the P-wave velocity with higher reliability than conventional velocity analysis. From laboratory experiments, we obtain the wave velocities of the reservoir units versus confining and pore pressures. Laboratory experiments yield an estimate of the relationship between wave velocities and effective pressure under in situ conditions. These measurements provide the basis for calibrating the pressure model. Overpressures are caused by different mechanisms. We do not consider processes such as gas generation and diagenesis, which imply changes in phase composition, but focus on the effects of pure pore-pressure variations. The results indicate that changes in pore pressure can be detected with seismic methods under circumstances such as those of moderately deep North Sea reservoirs.  相似文献   

16.
本文从WXS凹陷中低孔渗储层岩石声波实验出发,以岩样的纵横波速度和密度为基础数据,求取出一系列的弹性参数,包括纵横波波速比、纵波波阻抗、横波波阻抗、泊松比、拉梅常数、剪切模量、体积模量、杨氏模量,等等。在前人的孔隙流体识别究基础上,综合相关理论和实验分析,构建了一个新的流体识别因子F。以饱和流体岩石弹性参数及其组合参数的相对变化量Ag/w和Ao/w为定量指标,评价各流体识别因子的流体识别效果,并采用交会图技术进行了验证。新流体敏感因子在传统较难分辨的孔隙流体"水"和"油"的区别上具有良好效果,有利于提高中低孔渗储层流体识别的成功率。  相似文献   

17.
ABSTRACT A genetic annealing (GAN) algorithm is used to derive an empirical model which predicts compressional-wave velocity values for overpressured siliciclastic rocks. The algorithm involves non-linear random searching and mutation techniques and its annealing component imposes a very strict control over the rate of convergence of the search. This technique provides an alternative to the standard calculations involving the effective stress coefficient ( n ). The pore pressure is introduced into the model as an explicit variable and as part of an overpressure coefficient, ( P p/ P c) − the ratio of pore to confining pressure. Empirical model-derived data and known laboratory data are compared and their differences are shown to be within statistically acceptable error limits. The empirical equation fits all under- and overpressured data simultaneously, irrespective of pore fluid pressure level, with the same parameters. It is used to predict seismic velocities very accurately for extreme levels of overpressure, starting from normally pressured experimental data. The model highlights the effect of pore pressure on the compressional-wave velocity of fully saturated samples with different clay contents. It can be used when the experimental data available are sparse and particularly when a prediction of material behaviour is necessary at specific pore fluid pressure and depth conditions.  相似文献   

18.
利用新方法制作出含可控裂缝的双孔隙人工砂岩物理模型,具有与天然岩石更为接近的矿物成分、孔隙结构和胶结方式,其中裂缝密度、裂缝尺寸和裂缝张开度等裂缝参数可以控制以得到实验所需要的裂缝参数,岩样具有真实的孔隙和裂缝空间并可以在不同饱和流体状态下研究流体性质对于裂缝介质性质的影响.本次实验制作出一组具有不同裂缝密度的含裂缝人工岩样,对岩样利用SEM扫描电镜分析可以看到真实的孔隙结构和符合我们要求的裂缝参数,岩样被加工成八面棱柱以测量不同方向上弹性波传播的速度,用0.5 MHz的换能器使用透射法测量在饱和空气和饱和水条件下各个样品不同方向上的纵横波速度,并得出纵横波速度、横波分裂系数和纵横波各向异性强度受裂缝密度和饱和流体的影响.研究发现流体对于纵波速度和纵波各向异性强度的影响较强,而横波速度、横波分裂系数和横波各向异性强度受饱和流体的影响不大,但是对裂缝密度的变化更敏感.  相似文献   

19.
储层砂岩微观孔隙结构特征不仅影响干燥岩石的弹性波传播速度,也决定了岩石介质中与流体流动相关的速度频散与衰减作用.依据储层砂岩微观结构特征及速度随有效压力变化的非线性特征,将其孔隙体系理想化为不同形状的硬孔隙(纵横比α0.01)与软孔隙(纵横比α0.01)的组合(双孔隙结构).基于孔弹性理论,给出软孔隙最小初始纵横比值(一定压力下所有未闭合软孔隙在零压力时的纵横比最小值)的解析表达式,并在此基础上利用岩石速度-压力实验观测结果给出求取介质中两类孔隙纵横比及其含量分布特征的方法.通过逐步迭代加入软孔隙的方法对基于特征纵横比的"喷射流"(squirt fluid)模型进行了扩展,以考虑复杂孔隙分布特征对岩石喷射流作用的影响及其可能引起的速度频散特征.相较于典型的喷射流作用速度频散模式,对于岩石中软孔隙纵横比及其对应含量在较宽的范围呈谱分布的一般情况,其速度频散曲线不存在明显的低频段和中间频段,速度随频率的增大呈递增趋势直至高频极限.这说明即使在地震频段,微观尺度下的喷射流作用仍起一定作用,同样会造成流体饱和岩石介质的地震速度与Gassmann方程预测结果有不可忽略的差异.本文是对现有喷射流模型的重要补充,也为利用实验数据建立不同频段间岩石弹性波传播速度的可能联系提供了理论依据.  相似文献   

20.
To predict the earthquake response of saturated porous media it is essential to correctly simulate the generation, redistribution, and dissipation of excess pore water pressure during and after earthquake shaking. To this end, a reliable numerical tool requires a dynamic, fully coupled formulation for solid–fluid interaction and a versatile constitutive model. Presented in this paper is a 3D finite element framework that has been developed and utilized for this purpose. The framework employs fully coupled dynamic field equations with a upU formulation for simulation of pore fluid and solid skeleton interaction and a SANISAND constitutive model for response of solid skeleton. After a detailed verification and validation of the formulation and implementation of the developed numerical tool, it is employed in the seismic response of saturated porous media. The study includes examination of the mechanism of propagation of the earthquake-induced shear waves and liquefaction phenomenon in uniform and layered profiles of saturated sand deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号