首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 631 毫秒
1.
Soft gamma repeaters outside the Local Group   总被引:1,自引:0,他引:1  
We propose that the best sites to search for soft gamma repeaters (SGRs) outside the Local Group are galaxies with active massive-star formation. Different possibilities to observe SGR activity from these sites are discussed. In particular, we have searched for giant flares from the nearby galaxies (∼2–4 Mpc away) M82, M83, NGC 253 and 4945 in the Burst and Transient Source Experiment (BATSE) data. No candidate giant SGR flares were found. The absence of such detections implies that the rate of giant flares with energy release in the initial spike above  0.5 × 1044 erg  is less than 1/30 yr−1 in our Galaxy. However, hyperflares similar to that of 2004 December 27 can be observed from larger distances. Nevertheless, we do not see any significant excess of short GRBs from the Virgo galaxy cluster or from the galaxies Arp 299 and NGC 3256 (both with extremely high star formation rates). This implies that the Galactic rate of hyperflares with energy release  ∼1046 erg  is less than ∼10−3 yr−1. With this constraint the fraction of possible extragalactic SGR hyperflares among BATSE's short GRBs should not exceed a few per cent. We present the list of short GRBs coincident with the galaxies mentioned above, and discuss the possibility that some of them are SGR giant flares. We propose that the best target for the observations of extragalactic SGR flares with Swift is the Virgo cluster.  相似文献   

2.
The proposed correlations between the energetics of gamma-ray bursts (GRBs) and their spectral properties, namely the peak energy of their prompt emission, can broadly account for the observed fluence distribution of all 'bright' BATSE GRBs, under the hypothesis that the GRB rate is proportional to the star formation rate and that the observed distribution in peak energy is independent of redshift. The correlations can also be broadly consistent with the properties of the whole BATSE long GRB population for a peak energy distribution smoothly extending towards lower energies, and in agreement with the properties of a sample at 'intermediate' fluences and with the luminosity functions inferred from the GRB number counts. We discuss the constraints that this analysis imposes on the shape of such peak energy distribution, the opening angle distribution and the tightness of the proposed correlations.  相似文献   

3.
Hakkila  J.  Meegan  C.  Horack  J.  Pendleton  G.  Briggs  M.  Paciesas  W.  Emslie  G.  Mallozzi  R. 《Astrophysics and Space Science》1995,231(1-2):369-372
Constraints are found on the gamma-ray burst luminosity function from an analysis of the combined BATSE/PVO intensity distribution. If bursts originate in an extended Galactic halo, then the intrinsic luminosity range is narrow, with bursts spanning only a factor of five or less in luminosity. If bursts originate in a simple Friedmann cosmology with = 1 and = 0, then very few luminosity constraints exist.National Research Council Fellow at NASA/MSFC  相似文献   

4.
We present evidence for burst emission from SGR 1900+14 with a power-law high-energy spectrum extending beyond 500 keV. Unlike previous detections of high-energy photons during bursts from soft gamma repeaters (SGRs), these emissions are not associated with extraordinarily bright flares. Not only is the emission hard, but the spectra are better fitted by D. Band's gamma-ray burst (GRB) function rather than by the traditional optically thin thermal bremsstrahlung model. We find that the spectral evolution within these hard events obeys a hardness/intensity anticorrelation. Temporally, these events are distinct from typical SGR burst emissions in that they are longer ( approximately 1 s) and have relatively smooth profiles. Despite a difference in peak luminosity of greater, similar1011 between these bursts from SGR 1900+14 and cosmological GRBs, there are striking temporal and spectral similarities between the two kinds of bursts, aside from spectral evolution. We outline an interpretation of these events in the context of the magnetar model.  相似文献   

5.
We compute the luminosity function (LF) and the formation rate of long gamma-ray bursts (GRBs) by fitting the observed differential peak flux distribution obtained by the Burst and Transient Source Experiment (BATSE) in two different scenarios: (i) the GRB luminosity evolves with redshift and (ii) GRBs form preferentially in low-metallicity environments. In both cases, model predictions are consistent with the Swift number counts and with the number of detections at   z > 2.5  and >3.5. To discriminate between the two evolutionary scenarios, we compare the model results with the number of luminous bursts (i.e. with isotropic peak luminosity in excess of 1053 erg s−1) detected by Swift in its first 3 yr of mission. Our sample conservatively contains only bursts with good redshift determination and measured peak energy. We find that pure luminosity evolution models can account for the number of sure identifications. In the case of a pure density evolution scenario, models with   Z th > 0.3 Z  are ruled out with high confidence. For lower metallicity thresholds, the model results are still statistically consistent with available lower limits. However, many factors can increase the discrepancy between model results and data, indicating that some luminosity evolution in the GRB LF may be needed also for such low values of Z th. Finally, using these new constraints, we derive robust upper limits on the bright end of the GRB LF, showing that this cannot be steeper than ∼2.6.  相似文献   

6.
本文研究了CGRO卫星上BATSE探测器对硬X天空监测过程中触发和记录到的1 0 0 0多个γ暴和 40 0 0多个太阳硬X射线暴的强度和时间性质 ,发现它们的强度分布相似 ,这也许意味着硬X射线天空中两种主要的爆发现象机制相似 ,同时对将γ暴的强度分布作为其宇宙学起源的证据提出了疑问 .对太阳暴的持续时间分析表明 ,其强度和持续时间呈正相关 ,而γ暴是弱负相关 .太阳暴的强度和持续时间在BATSE运行过程中有长时标变化 ,最近对γ暴的研究也发现了这种现象  相似文献   

7.
We analyze the data obtained when the Konus-Wind gamma-ray spectrometer detected a giant flare in SGR 1806-20 on December 27, 2004. The flare is similar in appearance to the two known flares in SGR 0526-66 and SGR 1900+14 while exceeding them significantly in intensity. The enormous X-ray and gamma-ray flux in the narrow initial pulse of the flare leads to almost instantaneous deep saturation of the gamma-ray detectors, ruling out the possibility of directly measuring the intensity, time profile, and energy spectrum of the initial pulse. In this situation, the detection of an attenuated signal of inverse Compton scattering of the initial pulse emission by the Moon with the Helicon gamma-ray spectrometer onboard the Coronas-F satellite was an extremely favorable circumstance. Analysis of this signal has yielded the most reliable temporal, energy, and spectral characteristics of the pulse. The temporal and spectral characteristics of the pulsating flare tail have been determined from Konus-Wind data. Its soft spectra have been found to contain also a hard power-law component extending to 10 MeV. A weak afterglow of SGR 1806-20 decaying over several hours is traceable up to 1 MeV. We also consider the overall picture of activity of SGR 1806-20 in the emission of recurrent bursts before and after the giant flare.  相似文献   

8.
The gamma-ray burst GR170817 A associated with GW170817 is subluminous and subenergetic compared with other typical short gamma-ray bursts. It may be due to a relativistic jet viewed off-axis, or a structured jet or cocoon emission. Giant flares from magnetars may possibly be ruled out.However, the luminosity and energetics of GRB 170817 A are coincident with those of magnetar giant flares. After the coalescence of a binary neutron star, a hypermassive neutron star may be formed. The hypermassive neutron star may have a magnetar-strength magnetic field. During the collapse of this hypermassive neutron star, magnetic field energy will also be released. This giant-flare-like event may explain the luminosity and energetics of GRB 170817 A. Bursts with similar luminosity and energetics are expected in future neutron star-neutron star or neutron star-black hole mergers.  相似文献   

9.
Of the over one thousand detected cosmic transient gamma-ray sources, only three are known to have exhibited recurrent activity. Apart from their recurrent nature, these events differ from the majority of bursts in that they are of much shorter duration and have relatively soft spectra. They can thus be considered as a distinct class of objects- the Soft Gamma Repeaters (SGRs). Their embryonic sky distribution suggests that they are galactic objects. The absence of detection of new sources in the 4.0 years of BATSE operation, together with the BATSE detection of the reactivation of two of the three already known SGRs, indicates that these objects are rare. We present here a short review of the overall SGR activity and their global characteristics.  相似文献   

10.
Based on the magnetar model, we have studied in detail the processes of neutrino cooling of an electron-positron plasma generating an SGR giant flare and the influence of the magnetar magnetic field on these processes. Electron-positron pair annihilation and synchrotron neutrino emission are shown to make a dominant contribution to the neutrino emissivity of such a plasma. We have calculated the neutrino energy losses from a plasma-filled region at the long tail stage of the SGR 0526-66, SGR 1806–20, and SGR 1900+14 giant flares. This plasma can emit the energy observed in an SGR giant flare only in the presence of a strongmagnetic field suppressing its neutrino energy losses. We have obtained a lower bound on the magnetic field strength and showed this value to be higher than the upper limit following from an estimate of the magnetic dipole losses for the magnetars being analyzed in a wide range of magnetar model parameters. Thus, it is problematic to explain the observed energy release at the long tail stage of an SGR giant flare in terms of the magnetarmodel.  相似文献   

11.
提供一个基于光变曲线的长γ暴光度的估计量.对BASTE记录到的12个已知红移的γ暴,利用时域上的时变分析方法计算了各暴的功率密度谱,用功率密度的峰值P表征光变曲线变化的剧烈程度.通过拟合发现在共动坐标系P与γ暴的各向同性峰值光度L之间存在着相关关系.这是继Norris等和Reichart等发现时间延迟与光度、变化率与光度的相关性之后又一个γ暴时变特征量与其光度之间的相关关系.  相似文献   

12.
The power required to eject relativistic plasma clouds in the hard X-ray transient GRS 1915+105 is at least 100 times the luminosity of the soft-ray bursts (SGRs) that were observed by BATSE from the same region of the sky in the year 1992. We show that there are spatial, time, and spectral coincidences between GRS 1915+105 and the SGRs observed by BATSE which suggest that they are one and the same source. However, the position of the SGRs is rather uncertain and until better positions are obtained, the question on the association of GRS 1915+105 with the SGRs must remain open.  相似文献   

13.
We apply isotropy tests to our new uniform catalog of cosmic gamma-ray bursts (GRBs) (Stern and Tikhomirova 1999). The catalog contains trigger and nontrigger bursts found in 1024-ms BATSE records over seven years. Based on this catalog, we confirm isotropy of the GRB spatial distribution for a sample that surpasses previous samples in size (2934 bursts) and in achieved threshold (fluxes down to 0.1 phot. cm?2 s?1, which is a factor of ~2 lower than the BATSE trigger threshold). We also confirm that there is no excess of bursts toward the galaxy M 31.  相似文献   

14.
We show that our original suggestion that gamma-ray bursts (GRB) may be flares on Magnetically Active Stellar Systems (MASS) namely flare stars, RS CVn binaries and Cataclysmic variables agrees well with the new observations of CGRO. We make a multi component fit to the log(N) - log(S) distribution and the high degree of isotropy as observed by the previous generation of satellites as well as BATSE/CGRO using the second BATSE catalogue. We then discuss individual source association and optical transient observations and show that they favor the present suggestion. We discuss the physical mechanisms and gamma-ray production processes that can occur on such systems giving the GRB their characteristics. We predict increase of anisotropy in the BATSE/CGRO observations for bright GRB.  相似文献   

15.
The Transient Gamma Ray Spectrometer (TGRS) is a 215 cm3 passivelycooled germanium detector designed primarily to study spectral features of gamma ray bursts. Since shortly after its launch on 1994 Nov. 1 it has been producing high-resolution spectra of GRBs and solar flares. Some of these spectra are presented here.Although it has not yet detected any line features in GRBs-none were expected so early in the mission-several bursts have been seen simultaneously by TGRS, the Konus instruments on the same spacecraft, and the BATSE instrument on Compton GRO. A comparison of the spectra obtained by these various instruments, as presented here, may resolve the question of whether line features actually exist, and if so provide detailed spectroscopy to determine their physical origin.  相似文献   

16.
We searched for anomalously long gamma-ray bursts (GRBs) in the archival records of the Burst and Transient Sources Experiment (BATSE). Ten obvious superlong (>500 s) GRBs with almost continuous emission episodes were found. Nine of these events were known from the BATSE catalog, but five had no duration estimates; we found one burst for the first time. We also detected events with emission episodes separated by a long period of quiescence (up to ~1000 s) with a total duration of 1000–2000 s. In the latter case, we cannot reach an unequivocal conclusion about a common origin of the episodes due to the BATSE poor angular resolution. However, for most of these pairs, the probability of independent GRBs coinciding is much lower than unity, and the probability that all of these are coincidences is ~10?8. All of the events have a hardness ratio (the ratio of the count rates in different energy channels) typical of GRBs, and their unique duration is unlikely to be related to their high redshifts. Superlong bursts do not differ in their properties from typical long (>2 s) GRBs. We estimated the fraction of superlong GRBs (>500 s) among the long (>2 s)GRBs in the BATSE sample with fluxes up to 0.1 ph cm?2 s?1 to be between 0.3 and 0.5%, which is higher than the estimate based on the BATSE catalog.  相似文献   

17.
We developed a new semi-analytic galaxy formation model: Galaxy Assembly with Binary Evolution(GABE). For the first time, we introduce binary evolution into semi-analytic models of galaxy formation by using the Yunnan-II stellar population synthesis model, which includes various binary interactions. When implementing our galaxy formation model onto the merger trees extracted from the Millennium simulation, it can reproduce a large body of observational results. We find that in the local universe, the model including binary evolution reduces the luminosity at optical and infrared wavelengths slightly, but it increases the luminosity at ultraviolet wavelengths significantly, especially in FUV band. The resulting luminosity function does not change very much over SDSS optical bands and infrared band, but the predicted colors are bluer, especially when the FUV band is under consideration. The new model allows us to explore the physics of various high energy events related to the remnants of binary stars, such as type Ia supernovae, short gamma-ray bursts and gravitational wave events, and their relation with host galaxies in a cosmological context.  相似文献   

18.
This work presents a possible luminosity estimator for long γ-ray bursts (GRBs) based on their light curves. We use the method of variability analysis in the time domain to calculate the power density spectrum (PDS) for each of the 12 GRBs with known redshifts observed by CGRO/BATSE. The peak of the power density spectrum P is a measure of the intensity of variability of the given light curve and a strong correlation is found between P and the isotropic peak luminosity L of the GRB. It is a successor to the lag-luminosity relation of Norris et al. (2000) and the variability-luminosity relation of Reichart et al. (2001).  相似文献   

19.
During the impulsive phase of many solar flares, blueshifted emission wings are observed on the soft X-ray spectral lines of highly excited ions that are produced in the flare plasma. This emission has been commonly interpreted as chromospheric evaporation of material from the footpoints of coronal loops by non-thermal particle beams, although the question of whether the bulk of the energy is carried by electrons or ions (protons) has been the subject of much debate. The precise temporal relationship between the onsets of the blueshifted emission and the hard X-ray bursts is particularly important in resolving the mechanism of energy transfer to the hot plasma in the impulsive phase. A sample of flares observed with the Bragg Crystal Spectrometer (BCS) onYohkoh has been analysed for blueshifted emission and the results compared with hard X-ray light turves obtained with the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (CGRO). In some flares, the blueshifted emission precedes the onset of the hard X-rays by up to 100 s. There is no evidence for a temporal correlation between the maximum energy input to the hard X-ray bursts and the maximum blueshifted intensity. These results lend support to those models favouring protons as the dominant energy carrier in the impulsive phase of flares and are inconsistent with the hypothesis that the bulk of the energy resides in electron beatos, although some other energy input, while unlikely, cannot be completely eliminated.  相似文献   

20.
使用currentBATSE catakog中的一部分数据,定义了2个分别反映γ射线暴的能谱形和光变曲线的物理量FR和TR,同时对它们的分布作了统计分析,发现对于两类不同的γ射线暴,它们的分布存在统计上的较为明显的差异。这意味着两类暴可能产生于不同的辐射区域,两类暴的暴源可能有本质的差异,这些结果支持了把γ射线暴分为长暴和短暴的分类方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号