首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
潮汐汊道形态动力过程研究综述   总被引:5,自引:0,他引:5  
高抒 《地球科学进展》2008,23(12):1237-1248
潮汐汊道是潮流作用占优势的沉积环境之一。潮汐汊道系统的口门水道往往是天然航道,在海港建设上具有重要性。从动力地貌学的观点来看,口门水道形态特征和演化研究涉及多种关键的海岸动力过程,因而具有重要的理论意义。均衡态下的潮汐汊道的口门过水断面面积与纳潮量之间存在着幂函数关系,当用传统的O′Brien方法来确定幂函数曲线时,指数n的值变化范围较大,这是由于参与统计分析的部分汊道系统未达到均衡态而造成的;而应用沉积动力学方法,所获的n值稳定在1.15左右,能更好地代表均衡态断面面积。在断面形状上,小型潮汐汊道可以形成宽浅水道中镶嵌次级水道的形态,以适应沉积物输运和堆积过程,提高汊道系统的稳定性。因此,小型潮汐汊道具有不同于大型潮汐汊道的时间—流速不对称特征。这些研究结果在小型汊道的开发和整治工程上具有应用价值。由于口门断面形态是与口门水道和潮流三角洲的整体特征及其动态相联系的,因此,今后的研究重点应是水动力条件、沉积物输运和堆积过程、水道形态之间的反馈关系,以及与纳潮海湾充填同步的潮流三角洲的生长过程,从而使水道地貌演化能够被定量地模拟。  相似文献   

2.
钟建强 《广东地质》1997,12(1):45-50
通过对海底底质类型与分布,泥沙来源,泥沙运动的分析,认为粤东大埕湾的海岸属稳定或微涨海岸,其地貌演化与由3个岬角,2个湖汐汊道和2条砂质海岸组成的泥沙运动体系密度相关,岸段的悬移质泥沙主要源自西部的韩江,黄冈河,诏安东溪,岸段大部呈或微淤状态,底质由东向西呈粗-细-粗的变化,可能与宫口港输出的泥沙为海滩沙的主要来源有关。  相似文献   

3.
海岸生物地貌过程研究海岸带生物过程和动力-沉积-地貌过程之间的双向相互作用,是海岸生态系统响应和反馈全球变化的重要机制,被列为全球变化核心项目海岸带陆海相互作用研究的重点内容。20世纪90年代以来的调查研究揭示了华南红树林和珊瑚礁热带生物海岸生物地貌过程的主要特点。造礁石珊瑚的高生长率和珊瑚礁高堆积速率是珊瑚礁生物地貌过程的物质基础;红树林生态系统的高生产力、高归还率和捕沙促淤功能是红树林生物地貌过程的物质基础。热带生物海岸地貌结构显示分带性和生物地貌类型和动力地貌类型的叠加和共存,潮汐水位严格控制群落分布格局并形成重要的生物地貌界限。热带生物海岸生物地貌过程有利于消除或减缓海平面上升的浸淹效应。热带生物海岸不断加剧的人类活动干扰和生态破坏导致生物地貌功能削弱和海岸资源环境恶化。  相似文献   

4.
中国沿岸海平面上升及影响研究的现状与问题   总被引:17,自引:0,他引:17  
对近年来中国沿岸相对海平面上升趋势及其影响研究的现状进行了总结,着重就目前研究中有关我国沿岸潮滩湿地与其他低地淹没以及加剧的海岸灾害估算等方面存在的难点和问题进行了分析与讨论。并在此基础上提出今后应加强相关基础资料积累、重视海平面上升与其他协同作用因素对研究对象的综合影响、海平面上升引起的海洋水文与海岸环境要素演变以及我国沿岸海岸信息系统研究等方面的建议。  相似文献   

5.
进入20世纪50年代以来,我国海岸侵蚀日趋明显,一些海岸带资源或油田设施遭到破坏。针对我国黄河三角洲和长江三角洲海岸线的侵蚀现状,分析了我国海岸线侵蚀的主要因素:河流泥沙减少;海平面的上升或海洋动力因素增强以及人为因素的影响。并对目前我国所采用的海岸防护措施进行了分析。提出了我国海岸防护工程类型较多,应根据海岸侵蚀的特点采用不同的措施或多种形式组合,因势利导,使工程达到最好的防护效果。  相似文献   

6.
渤海湾西岸的几道贝壳堤   总被引:2,自引:1,他引:1  
渤海湾西岸出露或埋藏了多道贝壳堤,通过地质调查发现:贝壳堤的平面分布结构是沿着(或随着)渤海湾海岸由老至新(从岸—海)与海岸呈大致平行排列。贝壳堤的划分方案有两种,一种是从新至老,另一种是从老至新,本文采取后一种划分方法:即第Ⅰ道(老)—第Ⅵ道(新)贝壳堤。本文对每道贝壳堤的物质(岩性特征)组成与堆积特征进行了描述(图2~图7);对贝壳堤的几何形态特征进行了数理统计(表2);对贝壳堤形成的年代特征进行了对比分析(表3);对贝壳堤的生物组合特征等资料进行了归纳和整理;对贝壳堤的分道方案进行了对比分析(表1),揭示了贝壳堤的赋存状态、形成的年代及第Ⅰ道—第Ⅵ道贝壳堤所处的潮位变化(图8)。以形成贝壳堤这一独特的地质载体为基础,试图从渤海湾宏观整体的角度分析并揭示贝壳堤的成因机制(表4,图9),笔者认为广义的渤海湾是内陆的半泻湖(海),也可以视为局部海:山东庙岛列岛—辽东半岛构成了渤海的障壁海岸,在障壁海岸这样的自然地理和地貌条件下,通过大量的资料综合分析认为只有障壁海岸才是形成"科珀河型三角洲与喙状三角洲"的必然条件,而"科珀河型三角洲与喙状三角洲类型"等是形成障壁砂坝(障壁岛,障壁滩)—贝壳堤的或然条件,这就是贝壳堤成因的主要机制。  相似文献   

7.
现代大陆边缘海岸类型是多姿多态的,但若按照影响海岸类型的古地形和水动力作用过程来划分,大致可以分为三种类型:一种是以波浪作用为主,称为无障壁的海岸;第二种是以潮汐作用为主,称为障壁海岸;第三种是两者兼而有之的以波浪和潮汐共同作用的,称为过渡海岸。这三种海岸类型都有其独特的一套标志,这对于古代已经消失的不同时期众多海岸类型是一种很好识别标志。我国特大型铅锌矿床所在的厂坝地区,就是一个在中一晚泥盆世早期同一地区并存三种海岸类型的地区。尽管它们有许多共同特征,如水体活  相似文献   

8.
董玉祥 《沉积学报》2002,20(4):656-662
现代海岸风成砂的粒度特征是海岸风沙研究的重要问题,本文以我国温带海岸为研究区域,利用 136个现代海岸风成砂样数据,通过粒度组成、平均粒径、标准偏差和偏差、峰态等粒度参数分析了其粒度特征。结果表明,我国温带海岸的现代风成砂并非过去认为的几乎全由分选很好的细砂组成,是以正偏为主,粒度参数的地域差异明显,并随沙丘类型、规模及距海岸线的远近不同等而变化。与海滩砂比较,风成砂具有普遍含有粉沙、略细、多正偏、峰态偏窄等特点,但利用粒度参数散点图和因子分析法二者均无法区分。我国温带海岸现代海岸风成砂粒度参数的上述特征与其特有的发育条件和演化过程密切相关,其中主要与季风气候特征显著、形成时间短、风力作用时间有限以及风沙活动空间狭小并受到水力与重力作用的干扰等有关。  相似文献   

9.
根据我国东部海岸现代潮坪沉积物和古代潮汐沉积物的研究,新发现一种潮汐沉积物所具有的特殊沉积构造,这种沉积构造可区分出三种类型,特征明显,易于鉴定,反映潮汐运动规律,命名为“潮汐周期层序”。用这种沉积构造作为古代潮汐沉积物的鉴定标志,将大大提高鉴定的可靠性。  相似文献   

10.
河口海岸地处海陆交界带,其沉积层理特征与形成机制是沉积动力学、动力地貌学和地层学等学科方向的研究热点,对评价海岸工程环境效应、重建沉积古环境等具有重要参考价值。通过梳理河口海岸区域径流、潮汐、波浪等多种动力因子作用的研究成果,归纳不同动力主导作用形成的沉积层理特征,剖析3种基本动力对沉积层理塑造的动力学机制,阐释洪水、风暴偶发动力因子以及生物扰动、海平面变化、围垦工程等其他影响因子对沉积层理形成和保存的作用机理。同时,总结了数值模拟手段在沉积层理形成和破坏机制解译方面的应用及取得的机理认知,提出在河口海岸沉积层理时空尺度认知、多因素耦合反演模型开发应用等方面有待进一步研究的科学问题。  相似文献   

11.
Large, well-developed flood tidal deltas on a barrier island coastline generally indicate a wave-dominated, microtidal sedimentary regime. Vibracores in a lagoon behind the barrier island Shackleford Banks, North Carolina contain an upward fining sequence of coarse-medium, very shelly sand, medium-fine laminated sand, fine-very fine cross-laminated sand and marsh mud. This sequence is interpreted as being a flood tidal delta deposit based on analogy with modern flood tidal delta sediments and represents lagoonal deposition in response to a migrating or closing inlet. The sand facies defined in lagoonal vibracores is found to be continuous beneath a lagoonal marsh and correlative with inlet sections identified in Shackleford Banks drill holes. The correlation of flood tidal delta deposits with inlet sequences in this microtidal environment indicates a close relationship between barrier and backbarrier inlet controlled sedimentation.  相似文献   

12.
Drifter tracks and shipboard CTD observations have revealed a number of distinct features of the flood tide circulation carrying water through Beaufort Inlet, North Carolina. One of the most noteworthy of these features is a nearshore jet in the flow carrying water to the inlet on a flood tide. Characterized by a shoreward increase in longshore flow, the jet produces a narrow coastal zone over which water is carried into the inlet. The jet appears to be principally a tidal phenomenon, as it is closely reproduced by a tidally-driven barotropic numerical model. The model results also indicate the jet may be a near-inlet feature. Model simulations of spring tide conditions show the jet confined to within 4 km of the inlet mouth. Another observed phenomenon, which is reproduced by the tidal model, is a distinct splitting of the flow entering the inlet, in which water passing through a particular inlet segment tends to move up-estuary along a well-defined path. An observed flow feature not reproduced by the tidal model is an eastward skew of the region over which water is drawn into the inlet on a flood tide. This asymmetry is unrelated to the local wind. Modeling results from a previous study suggest it may be due to convergent flow at the edge of the low salinity plume issuing from the inlet. Taken together, the results of this and other recent studies in the Beaufort Inlet region reveal the importance of nearshore currents on the eastern side of the inlet in delivering oceanic-spawned larvae to the estuarine system connected to the inlet.  相似文献   

13.
Power-law relationship between tidal prism (P) and the cross-sectional area of the entrance channel (A) is applicable to assess the equilibrium conditions of a tidal inlet system. The classic method of determining P-A relationships proposed by O’Brien depends on datasets from multi-tidal inlet systems, which has shown some limitations and is unable to assess equilibrium of a single tidal inlet. This paper focuses on establishing a new P-A relationship for a single tidal inlet. Our experimental result shows that in order to maintain the status, power n should be > 1, implying that the inlet width will narrow and current speed within the entrance will increase as tidal prism becomes smaller. A possible explanation for power n <,1.0, as many researchers argued before, is that the influence of tidal prism has been exaggerated. Meanwhile, the magnitude of coefficient C is dependent on many factors such as longshore drift, freshwater discharge, etc, resulting in a wide range of variation of C. It should be pointed out that P-A relationship given by the sediment dynamical approach is still a representative of average status for tidal inlets in equilibrium. As tide, wave, freshwater discharge and tidal inlet morphology change with time, actual P-A relationships will fluctuate also. The problems that need to be solved when applying sediment dynamic methods to P-A relationships include the cross-sectional distribution pattern of tidal current speeds in the entrance channel, the relationship between the tidal current and the tidal water level at the entrance, and the calculation of the ratio of width to depth. This paper will establish a sediment dynamical approach of P-A relationship for a single tidal inlet. The results are tested for P-A relationships of Yuehu Inlet, a small inlet-lagoon system located in Shandong Peninsula, China. __________ Translated from Oceanologia Et Limnologia Sinica, 2005, 36(3): 269–276 [译自: 海洋与湖沼]  相似文献   

14.
A rhodamine dye tracer study was conducted over eight tidal cycles to investigate mixing and tidal exchange processes in Perch Pond, a Cape Cod embayment subject to recurrent blooms of the toxic dinoflagellate, Gonyaulax tamarensis. Dye injected at the inlet to Perch Pond during flood tide became well-mixed within the pond in one day and was removed at an effective first order rate of 0.36 d?1, equivalent to a 70% utilization of the maximum possible tidal exchange. This relatively high flushing efficiency can be attributed to a density-driven circulation within the pond, consisting of a subsurface inflow of high salinity dense water on the flood tide followed by removal of lighter surface layers through the shallow inlet during ebb tide. The formation of a frontal convergence near the inlet on flood tide is consistent with the observed distribution of G. tamarensis cysts and shelifish toxicity. It is also clear that phytoplankton like G. tamarensis, whose maximum growth rates approximate the rate of tidal flushing, can only bloom within the embayment by avoiding the outflowing surface waters. Mixing within the pond is probably less efficient and population losses greater during dry periods when the pond salinity is higher and the stratification weaker.  相似文献   

15.
The Hörnum tidal inlet is located in the German sector of the Wadden Sea between the barrier islands Sylt and Amrum. On the basis of seven bathymetric surveys of the tidal inlet covering a 55-yr period from 1939 to 1994 and long-term records from two tide gauges, a process-response analysis for the inlet was carried out. Following the method described by Dean and Walton (1975), the volume of sediment stored in the ebb–tidal delta (Vebd) was calculated for each survey. Furthermore, the cross-sectional area of the tidal inlet throat (Ac), and the area-height distribution (hypsographic curve) of the study area were established. Between 1939 and 1994, Ac increased by about 32%, whereas Vebd diminished by about 18%. Earlier investigations by, e.g., O'Brien (1931), Walton and Adams (1976), Dean (1988), and Eysink and Biegel (1992) documented a strong positive correlation between these two morphological parameters and tidal currents in the inlet. In conformity with the literature, regression of the values of Ac with the corresponding fall velocities of the water level in the inlet (a direct indication of ebb–tidal currents) produced a correlation coefficient (r) of 0.87. However, Vebd shows a weak negative correlation (r=−0.74) with fall velocities of the water level. Apparently, other factors than changes in ebb–tidal currents must have been responsible for the decrease in Vebd. It is suggested that one factor might be the observed considerable increase in storminess, i.e. wave action, in the region since approximately 1960. Consequently, storm wave action on the ebb–tidal delta intensified and erosion was here initiated. As a result, the swash bars of the ebb–tidal delta, in particular, suffered from severe erosion between 1959 and 1994. As the ebb–tidal currents increased simultaneously, sand supply to the terminal lobe of the ebb–tidal delta increased as well, thereby balancing the loss of sediment from the terminal lobe caused by the increasing storminess. The results of this case study indicate that the ratio of ebb–tidal currents to (storm) wave action determines, in large part, the value of Vebd.  相似文献   

16.
A three-dimensional model for a tidal inlet-barrier island depositional system was constructed through examination of 37 vibracores and 10 auger drill holes on Capers and Dewees Islands, South Carolina. Two cycles of southerly inlet migration and subsequent abandonment resulted in beach ridge truncation on the northern ends of both barriers. Historical evidence indicates that these tidal inlets migrated 1.5 km to the south owing to a dominant north-south longshore transport direction. The hydraulic inefficiency of these over-extended inlet channels caused shorter, more northerly-oriented channels to breach through the ebbtidal deltas. After inlet reorientation, large wave-formed swash bars migrated landward closing former inlet channels. Weakened tidal currents through the abandoned channels permitted clay plugs to form thick impermeable seals over active channel-fill sand and shell. Price and Capers Inlets formed during the onset of the Holocene transgression following submergence of the ancestral Plio-Pleistocene Santee River drainage system. Coarse, poorly sorted inlet-deposited sand disconformably overlies Pleistocene estuarine clay and is capped by a dense clay plug. Shoreline reorientation and landward retreat of a primary barrier island chain occurred between the first and second cycles of inlet-channel migration and abandonment. Beach ridges prograded seaward over the first inlet sequence. A second cycle of inlet migration truncated the northernmost portion of these beach ridges and scoured into the clay plug of the earlier inlet deposit. Abandonment of this channel resulted in deposition of a second abandoned inlet-channel clay plug. Abandoned tidal inlet channels exhibit U-shaped strike and crescentic- to wedge-shaped dip geometries. Basal, poorly sorted inlet sands are sealed beneath impermeable, abandoned-channel silt and clay, washover deposits, and salt marsh. Multiple episodes of inlet migration and abandonment during a rising sea-level deposited stacked inlet-fill sequences within the barrier islands. The resultant stratigraphy consists of interlayered, fining-upward, active inlet-fill sand overlain by thicker abandoned inlet-fill clay plugs. These clay plugs form impermeable zones between adjacent barrier island sand bodies. Shoreline transgression would remove the uppermost barrier island deposits, sealing the inlet-fill sequences between Pleistocene estuarine clay and shoreface to shelf silt and clay.  相似文献   

17.
Size and shape sorting in a Dutch tidal inlet   总被引:1,自引:0,他引:1  
A tidal inlet system with an outer tidal, delta, situated between two barrier islands along the north coast of Holland was studied for size and shape sorting. With size data different sand types can be distinguished and in individual samples distinct grain populations can be recognized in some cases. Graphs of shape values, plotted against the size intervals of samples also reveal the presence of different grain populations, together with their genetical significance. The following conclusions could be drawn. There is no sand transport directly from island to island. Sand up to 400 μm enters the tidal inlet, is sorted out in the tidal flat area and partly re-enters the sea via the outer tidal delta. On the delta, the sediment is split up again in different populations. A lag deposit is left behind on the frontal part of the delta. The rest of the sand either re-enters the tidal inlet cycle or contributes to the beach building of the next island. In the offshore environment, sand movement by wave-induced currents is restricted to the shallow zone. In deeper water, part of the sediment is relatively immobile and has preserved inherited characteristics from the early Holocene transgressive phase. In front of Ameland, fossil barrier-face deposits-are present, off Schiermonnikoog the sea floor contains old tidal channel deposits.  相似文献   

18.
Field data of tidal current speeds collected January 9–31, 1990, in Sebastian Inlet, which connects the Atlantic Ocean and the Indian River Lagoon on the east coast of central Florida, show that the average Eulerian and Stokes residual currents are both lagoonward. This pattern can be used to explain the long-term trend of accumulations of marine sediments on the flood tidal delta adjacent to the lagoon end of the inlet. Numerical model results indicate that the long-term Stokes residual current is mainly determined by the tidal characteristics of the lagoon and ocean, and subsequently, are less variable. The long-term lagoonward Eulerian current, on the other hand, is interrupted by episodic weather events such as frontal storms. Storms can cause the abrupt superelevation of instantaneous water-levels on the lagoon side of the inlet. The short-lived pulses of freshwater inflow into the lagoon associated with storms could be discharged through the inlet instantaneously. Both the instantaneous superelevation of lagoon water levels and freshwater outflow can cause temporary reversal of Eulerian residual current in the inlet. Therefore, the general residual flow pattern in Sebastian Inlet is not only determined by the tidal characteristics of the Atlantic Ocean and Indian River Lagoon but also by the wind and precipitation associated with episodic storms, and by the long-term mean sea-level difference between the lagoon and the ocean.  相似文献   

19.
The Mgeni Estuary is situated on the subtropical, mainly microtidal Natal coast. Modern sedimentary environments in the estuary comprise two groups. Barrier-associated environments include inlet channel, inlet beachface, tidal delta, washover fans, transverse intertidal bars and aeolian dunes. Estuarine environments include subtidal channels, interidal bars, back-barrier lagoon, tidal creek, tidal creek side-attached bars, creek mouth bar, mangrove fringe and supratidal mudflats. Each sedimentary facies is described in terms of grain-size, sedimentary structures, and sedimentary processes. The distinctive flora and fauna play an important role in facies recognition. Vertical sequences produced by infilling of the estuary and subsequent coastal erosion are discussed. The facies are considered sufficiently distinct to warrant recognition in the geological record.  相似文献   

20.
The Mono estuary is an infilled, microtidal estuary located on the wave-dominated Bight of Benin coast which is subject to very strong eastward longshore drift. The estuarine fill comprises a thick unit of lagoonal mud deposited in a ‘central basin’between upland fluvial deposits and estuary-mouth wave-tide deposits. This lagoonal fill is capped by organic-rich tidal flat mud. In addition to tidal flat mud, the superficial facies overlying the ‘central basin’fill include remnants of spits resting on transgressive/washover sand, an estuary-mouth association of beach, shoreface, flood-tidal delta and tidal inlet deposits, and a thin sheet of fluvial sediments deposited over tidal flat mud. After an initial phase of spit intrusion over the infilled central basin east of the present Mono channel, the whole estuary mouth became bounded by a regressive barrier formed from sand supplied by the Volta Delta during the middle Holocene eustatic highstand. Barrier progradation ceased late in the Holocene following the establishment of an equilibrium plan-form shoreline alignment that allowed through-drift of Volta sand to sediment sinks further downdrift. Over the same period, accretion, from fluvially supplied sediments, of the estuarine plain close to the limit of spring high tides, or, over much of the lower valley, into a fluvial plain no longer subject to tidal flooding, induced marked meandering of the Mono and its tidal distributaries in response to confinement of much of the tidal prism to these channels. The process resulted in erosion of spit/washover and regressive barrier sand, and in reworking of the tidal flat and floodbasin deposits. The strong longshore drift, equilibrium shoreline alignment and the year-round persistence of a tidal inlet maintained by discharge from the Mono and from Lake Ahémé have resulted in a stationary barrier that is reworked by a mobile inlet. The Mono example shows that advanced estuarine infill may result in considerable facies reworking, obliteration of certain facies and marked spatial imbrication of fluvial, estuarine and wave-tide-deposited facies, and confirms patterns of sedimentary change described for microtidal estuaries on wave-influenced coasts. In addition, this study shows that local environmental factors such as sediment supply relative to limited accommodation space, and strong longshore drift, which may preclude accumulation of sediments in the vicinity of the estuary mouth, may lead to infilled equilibrium or near-equilibrium estuaries that will not necessarily evolve into deltas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号