首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The mineral industry is leading towards a technology driven optimization process. Drilling and blasting are such unit operations in a mine, which can alter the balance sheet of the mine if not planned properly. The development, improvement and utilization of innovative technologies in terms of blast monitoring instruments and explosives technology are important for cost effectiveness and safety of mineral industries.

The ever-growing demand for minerals has compelled the industry to adopt large opencast projects using heavy equipment. This has necessitated use of a few hundred tonnes of explosives in each blast. The bulk delivered fourth generation explosives have solved the problem of explosive loading to a large extent as it provides improved safety in manufacturing, transportation and handling. Bulk delivered emulsion is non-explosive until gasification is complete and a large quantity of explosive can be transported and loaded into blast holes efficiently and with safety. The priming of bulk delivered explosives in Indian mines uses the conventional PETN/TNT-based boosters. The conventional booster possesses safety problems in terms of handling and use, so Indian Explosives Ltd has developed an emulsion-based booster (Powergel Boost).

This paper explores the potential of an emulsion-based booster used as a primer to initiate bulk delivered emulsion explosives used in mines. An attempt has been made at a comparative study between the conventional booster and the emulsion-based booster in terms of the initiation process developed and their capability of developing and maintaining a stable detonation process in the column explosives. The study has been conducted using a continuous velocity of detonation (VOD) measuring instrument, the VODMate two channel system manufactured by Instantel Inc. of Canada. During this study three blasts were monitored. In each blast two holes were selected for study, the first hole was initiated using a conventional booster while the other one used an emulsion-based booster. The findings of the study advocates that the emulsion-based booster is capable of the efficient priming of bulk delivered column explosive with a stable detonation process in the column.  相似文献   

2.
Most blast fragmentation models assume the rock mass properties. explosive properties and blast design variables to be constants and uniformly distributed within a blast. However, in reality all these input variables vary within a blast resulting in variation in the resulting fragmentation size distribution. A stochastic modelling approach is introduced in this paper to quantify this variation. This technique takes the input variables as statistical distributions rather than constants and through several thousand iterations, generates a statistical representation of the expected fragmentation resulting from a poduction blast. A case study of three production blasts from a large open pit mine are presented and the modelled fragmentation 'envelope' shows good agreement with the fragmentation 'envelope' estimated from Split image analysis. The various blast-related parameters influence different parts of the fragmentation distribution, e.g., rock strength and explosive velocity of detonation have most impact on the fines. The technique is used to identify the parameters that have the greatest influence on various size fractions. Such an analysis will be useful to direct resources to efficiently minimise the variation.  相似文献   

3.
Shallow buried explosives pose a significant threat to lightweight vehicles and their onboard personnel. To date, designers of lightweight vehicles are limited in their knowledge of what occurs during the blast. The high intensity, short term loading imparted by the explosion is enormously complex and can be significantly affected by a number of parameters including the size, shape, type, detonation point and depth of burial (DOB) of the explosive and the type, density and water content of the soil. Recent advancements in numerical simulations have enabled the complex blast event to be accurately modelled by coupling Eulerian and Lagrangian analyses: the former is well suited to modelling the blast and while the latter, the structural response. Further validation of the modelling technique is considered in the current paper, which details simulations performed utilising the coupled Eulerian-Lagrangian analysis to study the blast output of explosives buried in saturated sand. These experiments varied explosive charge size, its depth of burial, the target stand-off (SO) distance and the dimensions of the target plate. The investigation concludes with a discussion of the accuracy of the numerical simulations when compared with the experimental observations.  相似文献   

4.
Wall control blasting practices arc necessary to reduce the impact of blasting on mine faces but can also have a significant negative impact on mine productivity and operating costs. The conventional practice in deep open pit mines is to use so-called trim blasts adjacent to pit walls. To provide burden relief these trim blasts have fewer rows than full production blasts and are fired to a cleared free-face: hence they are termed 'unchoked.' This practice leads to scheduling constraints on the pit operations and can cause ore dilution due to excessive muckpile movement. The use of such trim blasts stems from the perception that increased wall damage results from 'choked' blasts. These concerns are based on the unproven assumptions that blast vibration levels and explosive gas penetration increase with increased blast burden and face confinement. This paper describes work undertaken as part of a major investigation into wall control blasting at the KCGM Fimiston Mine, Kalgoorlie, Western Australia. It details a study to assess damage effects due to blast burden. Borehole air pressure measurements and borehole video camera inspections owere done behind a series of single blastholes drilled owith varying burden distances, as owell as behind a dedicated trim blast and a full production blast. It was found that the measured damage effects, including visible rock cracking, dilation, and the limited extent of gas penetration behind the blastholes, did not vary significantly with burden or blast type for the cases tested. This result was in complete agreement with detailed vibration measurements conducted by Blair and Armstrong [1] during the study, which found that vibration was independent of blast burden. As a result of these investigations, changes to the blasting practices at the mine were implemented. Dedicated trim blasts and free-face blasting have been replaced by modified production blasts and the practice of 'choking' blasts has been introduced. This has resulted in a significant improvement in productivity and cost savings without compromising pit wall integrity.  相似文献   

5.
Blast damage control in jointed rock mass   总被引:2,自引:0,他引:2  
Highly jointed rocks often cause problems associated with blast damage and the stability of the back and/or walls of the excavation. A field study was performed to understand the role played by the joint parameters in inducing blast damage. The field work included blasting of small scale models, drift rounds and monitoring of blast damage at several operating mines. The damage was assessed by blast vibration monitoring, half cast factor, overbreak measurement and visual inspection.

The effect of spacing, orientation, aperture, condition, filling material and wall strength of joints on blast damage is described. The interaction between the joint planes and explosive energy has been discussed and the overbreak control measures have been suggested.  相似文献   

6.
The demand for coal from surface mining projects are on the higher side like never before for which blasting is the basic unit operation. The explosive plays an important role in blasting and also influence the explosive-rock interaction. The most common explosive type used in surface mines is emulsion explosives. This paper presents the study on the detonation velocity of bulk emulsion explosives due to variation in gassing agent and density. In this study Sodium Nitrite (NaNO2) has been used as the gas generating additive and the performance of emulsion explosives with different concentrations of gassing agents at different temperatures has been observed. This study was undertaken to also understand the cyclic variation of temperature on gassing kinetics and performance of explosive. The effect of cooling on detonic-behaviour of bulk emulsion explosives has also been studied and presented in this paper.  相似文献   

7.
Blast Design Using Measurement While Drilling Parameters   总被引:1,自引:0,他引:1  
Measurement while drilling (MWD) techniques can provide a useful tool to aid drill and blast engineers in open cut mining. By avoiding time consuming tasks such as scan-lines and rock sample collection for laboratory tests, MWD techniques can not only save time but also improve the reliability of the blast design by providing the drill and blast engineer with the information specially tailored for use. While most mines use a standard blast pattern and charge per blasthole, based on a single rock factor for the entire bench or blast region, information derived from the MWD parameters can improve the blast design by providing more accurate rock properties for each individual blasthole. From this, decisions can be made on the most appropriate type and amount of explosive charge to place in a per blasthole or to optimise the inter-hole timing detonation time of different decks and blastholes. Where real-time calculations are feasible, the system could extend the present blast design even be used to determine the placement of subsequent holes towards a more appropriate blasthole pattern design like asymmetrical blasting.  相似文献   

8.
The present work deals with the three-dimensional nonlinear finite element (FE) analyses of the tunnel in soil subjected to internal blast loading. The analyses are performed using the coupled Eulerian–Lagrangian analysis tool in FE software Abaqus/Explicit. The soil and reinforced concrete lining are modeled using the Lagrangian elements. The explosive Trinitrotoluene (TNT) is modeled using the Eulerian elements. The stress–strain response of soil, concrete, and reinforcement are simulated using strain rate dependent Drucker–Prager plasticity, concrete damaged plasticity and Johnson–Cook (J–C) plasticity models, respectively. The pressure–volume relationship of the TNT explosive is simulated using the Jones-Wilkins-Lee equation of state. Parametric sensitivity studies have been performed for different (1) tunnel lining thicknesses, (2) explosive charge weights and (3) angles of internal friction of soil. It is observed from the results that blast induced pressure on the tunnel lining increases with the increase in charge weight. Both the lining and the surrounding soil undergo significant deformation. The deformation of the tunnel lining increases with increasing charge weight and decreases with increasing lining thickness and increasing the angle of internal friction of soil. Blast-induced velocity in soil attenuates with increasing distance from the source of the blast.  相似文献   

9.
Dynamic Analysis of Subway Structures Under Blast Loading   总被引:3,自引:1,他引:2  
Public transit systems have become one of the targets of terrorist attacks using explosives, examples of which are the 1995 attack on Paris subway and the 2004 attack on Moscow subway. Considering the intense threats of terrorist attacks on subway systems in metropolitan areas, explicit three-dimensional Finite Element method was used to investigate the dynamic response and damage of subway structures under internal blast loading. The study was motivated by the fact that explosion in subway structure may not only cause direct life loss, but also damage the subway structure and lead to further loss of lives and properties. The study based on the New York subway system, and investigated the influences of various factors on the possible damage of subway tunnel, including weight of explosive, ground media, burial depth and characteristics of blast pressure. A mitigation measure using grouting to improve ground stiffness and strength was also analyzed. Considering the amount of explosive terrorists may use, the present study focused on small-diameter single-track tunnels, which are more vulnerable to internal blast loading and are common in New York City. Blast pressure from explosion was applied to lining surface assuming triangle pressure–time diagram, and the elasto-plasticity of ground and lining as well as their nonlinear interaction was taken into account in the numerical model. It is found from the numerical study that maximum lining stress occurred right after explosion, before the blast air pressure reduced to the atmospheric one, and it was more dependent on the maximum magnitude of air pressure than on the specific impulse, which is the area below the pressure–time curve. Small tunnels embedded in soft soil, with small burial depth, might be permanently damaged even by modest internal explosion that may be perpetuated by terrorists.  相似文献   

10.
Blast design is a critical factor dominating fragmentation and cost of actual bench blasts. However, due to the varying nature of rock properties and geology as well as free surface conditions, reliable theoretic formulae are still unavailable at present and in most cases blast design is carried out by personal experience. As an effort to find a more scientific and reliable tool for blast design, a computer-aided bench blast design and simulation system, the BLAST-CODE model, is developed for Shuichang surface mine, Mining Industry Company of the Capital Iron and Steel Corporation Beijing. The BLAST-CODE model consists of a database representing geological and topographical conditions of the mine and the modules Frag + and Disp + for blast design and prediction of resultant fragmentation and displacement of rock mass. The two modules are established in accordance with cratering theory qualitatively and modified quantitatively by regression of the data collected from 85 bench blasting practices conducted in 3 mines of the Shuichang surface mine. Blasting parameters are selected based upon quantitative and comprehensive evaluation on the effect of the factors such as rock properties, geology, free surface conditions and detonation characteristics of the explosive products in use. In order to ensure practicality and reliability of the system, the BLAST-CODE model allows automatic adjustment to the selected parameters such as burden B and spacing S as well as explosive charge amount Q of any blasthole under irregular topographic and/or varying blastability conditions of the rock mass to be blasted. Simulation of the BLAST-CODE model includes prediction of fragmentation and displacement that are demonstrated in terms of swell factor, characteristic rock size x c and size distribution coefficient n by Rossin-Ramler's equation, and 3-dimentional muck pile profile. The BLAST-CODE model also permits interactive parameter selection based on comparison of the predicted fragmentation and displacement as well as the cost for drilling, explosives, and accessories until the most effective option can be selected.  相似文献   

11.
New Prediction Models for Mean Particle Size in Rock Blast Fragmentation   总被引:2,自引:1,他引:1  
The paper refers the reader to a blast data base developed in a previous study. The data base consists of blast design parameters, explosive parameters, modulus of elasticity and in situ block size. A hierarchical cluster analysis was used to separate the blast data into two different groups of similarity based on the intact rock stiffness. The group memberships were confirmed by the discriminant analysis. A part of this blast data was used to train a single-hidden layer back propagation neural network model to predict mean particle size resulting from blast fragmentation for each of the obtained similarity groups. The mean particle size was considered to be a function of seven independent parameters. An extensive analysis was performed to estimate the optimum value for the number of units for the hidden layer for each of the obtained similarity groups. The blast data that were not used for training were used to validate the trained neural network models. For the same two similarity groups, multivariate regression models were also developed to predict mean particle size. Capability of the developed neural network models as well as multivariate regression models was determined by comparing predictions with measured mean particle size values and predictions based on one of the most applied fragmentation prediction models appearing in the blasting literature. Prediction capability of the trained neural network models as well as multivariate regression models was found to be strong and better than the existing most applied fragmentation prediction model. Diversity of the blasts data used is one of the most important aspects of the developed models.  相似文献   

12.
Measurement and analysis of near-field blast vibration and damage   总被引:8,自引:0,他引:8  
Summary Blast vibration and its attenuation within the rock mass immediately adjacent to a blast hole (2–15 m) were monitored for a blast hole diameter of 100 mm and a 2.4 m column of an emulsion explosive charge. Peak particle velocities calculated from the measured accelerations were compared with predictions from the charge-weight scaling law using typical site parameters which would be adopted for many far-field vibration predictions. It was found that the vibration amplitudes predicted by the conventional charge-weight scaling law are significantly lower than measured values. Strain and strain rates at different monitoring holes were calculated from experimental data. Using attenuation analysis of different frequency bands of measured acceleration signals, it was found that blast vibration attenuation between 2 m and 4 m depended not only on frequency but also on amplitude. A failure wave was postulated based on observations at the monitoring hole 2 m from the blast. A blast damage zone was evaluated using borehole camera and cross hole seismic studies. The damage zone in the rock was also analysed according to acceleration waveforms measured at different monitoring locations. The use of different techniques to measure blast damage provided an accurate assessment of the blast damage volume.  相似文献   

13.
In blasting with air decks, repeated oscillation of shock waves within the air gap increases the time over which it acts on the surrounding rock mass by a factor at between 2 and 5. The ultimate effect lies in increasing the crack network in the surrounding rock and reducing the burden movement. Trials of air deck blasting in the structurally unfavourable footwall side of an open pit manganese mine has resulted in substantial improvements in fragmentation and blast economics. Better fragmentation resulted in improved shovel loading efficiency by 50–60%. Secondary blasting was almost eliminated. Use of ANFO explosive with this technique reduced explosive cost by 31.6%. Other benefits included reductions in overbreak, throw and ground vibration of the order of 60–70, 65–85 and 44% respectively. This paper reviews the theory of air deck blasting and describes in detail the air deck blast trials conducted in a manganese open pit mine in India. The blast performance data have been analysed to evaluate the benefits of air decking over conventional blasting.  相似文献   

14.
Summary An overview of economics and design consideration for explosive overburden casting is given and the criteria for the successful application of this technique are discussed. These criteria are: blast design, economic considerations and environmental considerations. Explosive overburden casting may effect considerable cost savings if the market for increased production is available. However, if a fixed sales constraint exists the economic benefits of explosive overburden casting may be marginal and an extensive economic analysis is warranted.  相似文献   

15.
Summary Formulation and case studies of a three dimensional kinematic model are presented. Thein situ overburden geometry can be simulated accurately and various initiation patterns of blasts can be modelled. The overburden geometry, hole patterns and explosive distribution are all explicit model inputs. Because the effect of explosive properties, rock mass condition and inter-row delay are very difficult to measure in terms of blast performance, these are represented in the model by control parameters which are left for calibration using field data. The output of the model is a three dimensional muckpile shape of any cross section and a contour map of grade distribution within the muckpile. Two case studies are presented which have shown that the model is a valuable tool for optimizing production blasting as well as for controlling grade dilution during blasting.  相似文献   

16.
概述了空气反循环钻进工艺应用于物探爆破孔施工的原理、特点及其试验应用情况。通过试验应用得出结论,该工艺方法具有钻进速度快、成孔深度深、有效实现不提钻下炸药等优点,具有良好的应用前景。  相似文献   

17.
This paper analyses results of trial, construction and quarry blasting, carried out in sediment rock deposits, mainly limestone and dolomite. Based on results of seismic measurements and engineering geological observations in sedimentary formation, an empirical relationship was established between ground vibration and geological strength index (GSI). The charge weight of explosive that may be detonated per delay for any given distance of nearby structures from the blast is approximately determined by using the concept of the scaled distance (SD) along with the DIN 4150 standard.  相似文献   

18.
酒钢1#高炉于1990年3月12日在生产过程中突然发生坍塌,造成国内外冶金史上罕见的高炉生产特大事故。坍塌后对炉缸、炉底风口下沿粘土残砖、炉缸中部环碳砖、炉底高铝砖缝中渗结物等进行了分析,初步查明上述炉料中含有较多的碱金属氧化物K2O、Na2O及锌等有害元素是造成炉缸内粘土砖破损和碳砖产生环形裂缝的主要原因。1 物相组成1-1 化学成分分别从炉缸、炉底采取试样进行化学分析,结果列于表1。表1 试样化学成分(%)Table1 Chemicalcompositionofsamples(%)样品号Si…  相似文献   

19.
毛堂金矿和蒲塘金矿为两个产在花岗斑岩-爆破角砾岩筒中的斑岩-爆破角砾岩型复合矿床,二者成矿地质条件和成矿特征相似,矿化与流体沸腾,隐爆,稀释作用有关。通过流体包裹体地球化学研究和野外地质观察,探讨了这两个矿床的成矿物理化学条件和成岩成矿中的流体演化过程。  相似文献   

20.
河南毛堂及蒲塘金矿成矿物理化学条件和流体演化   总被引:4,自引:0,他引:4  
毛堂金矿和蒲塘金矿为2个产在花岗斑岩-爆破角砾岩筒中的斑岩-爆破角砾岩型复合矿床,二者成矿地质条件和成矿特征相似,矿化与流体沸腾,隐爆,稀释作用有关。探讨了这2个矿床的成矿物理化学条件和成岩成矿中的流体演化过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号