首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A theoretical solution framework to the nonlinear stochastic partial differential equations (SPDE) of the kinematic wave and diffusion wave models of overland flows under stochastic inflows/outflows, stochastic surface roughness field and stochastic state of flows was obtained. This development was realized by means of an eigenfunction representation of the time-space overland flow depths, and by transforming the problem into the phase space. By using Van Kampen's lemma and the cumulant expansion theory of Kubo-Van Kampen-Fox, the deterministic partial differential equation (PDE) for the evolutionary probability density function (pdf) of overland flow depths was finally obtained. Once this deterministic PDE is solved for the time-varying pdf of overland flow depths, then the time-space varying pdf of overland flow depths can be obtained by a transformation given in the text. In this solution framework it is possible to incorporate the stochastic dynamic behavior of the parameters and of the forcing functions of the overland flow process. For example, not only the individual rainfall duration and fluctuating rain intensity characteristics but also the sequential behavior of rainfall patterns is incorporated into the evolutionary probability density function of overland flow depths.  相似文献   

2.
3.
We present a methodology conducive to the application of a Galerkin model order reduction technique, Proper Orthogonal Decomposition (POD), to solve a groundwater flow problem driven by spatially distributed stochastic forcing terms. Typical applications of POD to reducing time-dependent deterministic partial differential equations (PDEs) involve solving the governing PDE at some observation times (termed snapshots), which are then used in the order reduction of the problem. Here, the application of POD to solve the stochastic flow problem relies on selecting the snapshots in the probability space of the random quantity of interest. This allows casting a standard Monte Carlo (MC) solution of the groundwater flow field into a Reduced Order Monte Carlo (ROMC) framework. We explore the robustness of the ROMC methodology by way of a set of numerical examples involving two-dimensional steady-state groundwater flow taking place within an aquifer of uniform hydraulic properties and subject to a randomly distributed recharge. We analyze the impact of (i) the number of snapshots selected from the hydraulic heads probability space, (ii) the associated number of principal components, and (iii) the key geostatistical parameters describing the heterogeneity of the distributed recharge on the performance of the method. We find that our ROMC scheme can improve significantly the computational efficiency of a standard MC framework while keeping the same degree of accuracy in providing the leading statistical moments (i.e. mean and covariance) as well as the sample probability density of the state variable of interest.  相似文献   

4.
Second-order exact ensemble averaged equation for linear stochastic differential equations with multiplicative randomness and random forcing is obtained by using the cumulant expansion ensemble averaging method and by taking the time dependent sure part of the multiplicative operator into account. It is shown that the satisfaction of the commutativity and the reversibility requirements proposed earlier for linear stochastic differential equations without forcing are necessary for the linear stochastic differential equations with forcing when the cumulant expansion ensemble averaging method is used. It is shown that the applicability of the operator equality, which is used for the separation of operators in the literature, is also subjected to the satisfaction of the commutativity and the reversibility requirements. The van Kampen’s lemma, which is proposed for the analysis of nonlinear stochastic differential equations, is modified in order to make the probability density function obtained through the lemma depend on the forcing terms too. The second-order exact ensemble averaged equation for linear stochastic differential equations with multiplicative randomness and random forcing is also obtained by using the modified van Kampen’s lemma in order to validate the correctness of the modified lemma. Second-order exact ensemble averaged equation for one dimensional convection diffusion equation with reaction and source is obtained by using the cumulant expansion ensemble averaging method. It is shown that the van Kampen’s lemma can yield the cumulant expansion ensemble averaging result for linear stochastic differential equations when the lemma is applied to the interaction representation of the governing differential equation. It is found that the ensemble averaged equations given for one the dimensional convection diffusion equation with reaction and source in the literature obtained by applying the lemma to the original differential equation are restricted with small sure part of multiplicative operator. Second-order exact differential equations for the evolution of the probability density function for the one dimensional convection diffusion equation with reaction and source and one dimensional nonlinear overland flow equation with source are obtained by using the modified van Kampen’s lemma. The equation for the evolution of the probability density function for one dimensional nonlinear overland flow equation with source given in the literature is found to be not second-order exact. It is found that the differential equations for the evolution of the probability density functions for various hydrological processes given in the literature are not second-order exact. The significance of the new terms found due to the second-order exact ensemble averaging performed on the one dimensional convection diffusion equation with reaction and source and during the application of the van Kampen’s lemma to the one dimensional nonlinear overland flow equation with source is investigated.  相似文献   

5.
While rainfall intermittency is a dynamical phenomenon, little progress has been made in the literature on the link between rainfall intermittency and atmospheric dynamics. We present the basic dynamical models of intermittency that are phenomenologically most similar to rainfall: Pomeau–Manneville Type-III and On–Off. We then illustrate each type with both a 1-D iterative map and a corresponding stochastic process stressing the appearance of these dynamics in high-dimensional (stochastic) systems as opposed to low-dimensional chaotic systems. We show that the pdf of rainfall intensities, the pdf of “laminar phases” (periods of zero rainfall intensity), and the spectrum of the rainfall series all have power-law behavior that is broadly consistent with intermittency in the classic types. Using a seasonal analysis, we find that summer convective rainfall at daily and sub-daily scales seems consistent with features of Type-III intermittency. The correspondence with Type-III intermittency and a preliminary entropic analysis further suggest that rainfall may be an example of sporadic randomness, blending deterministic and stochastic components.  相似文献   

6.
Near-surface soil CO2 gas-phase concentration (C) and concomitant incident rainfall (Pi) and through-fall (Pt) depths were collected at different locations in a temperate pine forest every 30 min during the 2005 and 2006 growing seasons (and then averaged to the daily timescale). At the daily scale, C temporal variations were well described by a sequence of monotonically decreasing functions interrupted by large positive jumps induced by rainfall events. A stochastic model was developed to link rainfall statistics responsible for these jumps to near-surface C dynamics. The model accounted for the effect of daily rainfall variability, both in terms of timing and amount of water, and permitted an analytical derivation of the C probability density function (pdf) using the parameters of the rainfall pdf. Given the observed positive correlation between daily C and soil CO2 fluxes to the atmosphere (Fs), the effects of various rainfall regimes on the statistics of Fs can be deduced from the behavior of C under different climatic conditions. The predictions from this analytical model are consistent with flux measurements reported in manipulative experiments that varied rainfall amount and frequency.  相似文献   

7.
This study investigates divering overland flow utilizing kinematic wave theory, which does not appear to have been dealt with previously. Explicit analytical solutions are derived in dimensionless form for space-time invariant rainfall. Analytical solutions do not seem to be tractable for time-varying rainfall. Depending upon the duration of rainfall, equilibrium and partial equilibrium cases are distinguished explicitly. The effect of divergence parameter on the hydrograph shape is shown. The adequacy of kinematic approximation for characterization of diverging overland flow is tested against laboratory watershed results. The diverging overland flow model is found to yield results which compare well with observations and with those of a plane model.  相似文献   

8.
引入两个负指数型差值函数,估计降雨量的概率分布,以此描述流域降雨空间变异性问题.将降雨量空间统计分布与垂向混合产流模型耦合进行产流量计算,即对地表径流,采用超渗产流模式,根据降雨与土壤下渗能力的联合分布推求其空间分布;对地面以下径流,采用蓄满产流模式,以地表渗入量的均值作为输入,进行简化处理以提高其实用性;最终推导出总产流量概率分布函数计算公式.将流域概化成一个线性水库,并根据随机微分方程理论,推导任一计算时段洪水流量的概率分布,从而构建了一个完整的随机产汇流模型.以淮河支流黄泥庄流域为例进行应用研究,结果表明,该模型可提供洪水过程的概率预报,可用于防洪风险分析,若以概率分布的期望值作为确定性预报,亦具有较高精度.  相似文献   

9.
Contaminant transport models under random sources   总被引:1,自引:0,他引:1  
  相似文献   

10.
Many simplifications are used in modeling surface runoff over a uniform slope. A very common simplification is to determine the infiltration rate independent of the overland flow depth and to combine it afterward with the kinematic-wave equation to determine the overland flow depth. Another simplication is to replace the spatially variable infiltration rates along the slope i(x, t) due to the water depth variations h(x,t) with an infiltration rate that is determined at a certain location along the slope. The aim of this study is to evaluate the errors induced by these simplications on predicted infiltration rates, overland flow depths, and total runoff volume. The error analysis is accomplished by comparing a simplified model with a model where the interaction between the overland flow depth and infiltration rate is counted. In this model, the infiltration rate is assumed to vary along the slope with the overland flow depth, even for homogeneous soil profiles. The kinematic-wave equation with interactive infiltration rate, calculated along the slopy by Richard's equation, are then solved by a finite difference scheme for a 100-m-long uniform slope. In the first error analysis, we study the effect of combining an ‘exact’ and ‘approximate’ one-dimensional infiltration rate with the kinematic-wave equation for three different soil surface roughness coefficients. The terms ‘exact’ and ‘approximate’ stand for the solution of Richard's equation with and without using the overland flow depth in the boundary condition, respectively. The simulations showed that higher infiltration rates and lower overland flow depths are obtained during the rising stage of the hydrograph when overland flow depth is used in the upper boundary condition of the one-dimensional Richard's equation. During the recession period, the simplified model predicts lower infiltration rates and higher overland flow depths. The absolute relative errors between the ‘exact’ and ‘approximate’ solutions are positively correlated to the overland flow depths which increase with the soil surface roughness coefficient. For this error analysis, the relative errors in surface runoff volume per unit slope width throughout the storm are much smaller than the relative errors in momentary overland flow depths and discharges due to the alternate signs of the deviations along the rising and falling stages. In the second error analysis, when the spatially variable infiltration rate along the slope i(x, t) is replaced in the kinematic-wave equation by i(t), calculated at the slope outlet, the overland flow depth is underestimated during the rising stage of the hydrograph and overestimated during the falling stage. The deviations during the rising stage are much smaller than the deviations during the falling stage, but they are of a longer duration. This occurs because the solution with i(x, t) recognizes that part of the slope becomes dry after rainfall stops, while overland flow still exists with i(t) determined at the slope outlet. As obtained for the first error analysis, the relative errors in surface runoff volume per unit slope width are also much smaller than the relative errors in momentary overland flow depths and discharges. The relation between the errors in overland flow depth and discharge to different mathematical simplifications enables to evaluate whether certain simplifications are justified or more computational efforts should be used.  相似文献   

11.
1 INTRODUCTIONThe prediction of future impacts on terrestrial ecosystems by atmospheric, climatic and land-usechanges is the aim of watershed management. Meeting these requirements scientists, managers and policymakers try to achieve the sustainable management of the vitally important resources of watersheds due toan integrated ecosystem approach at the catchment scale. As composite landscapes often have a highdegree of contingency between its elements, the transport over these landscape s…  相似文献   

12.
Predicting the behavior of overland flow with analytical solutions to the kinematic wave equation is appealing due to its relative ease of implementation. Such simple solutions, however, have largely been constrained to applications on simple planar hillslopes. This study presents analytical solutions to the kinematic wave equation for hillslopes with modest topographic curvature that causes divergence or convergence of runoff flowpaths. The solution averages flow depths along changing hillslope contours whose lengths vary according hillslope width function, and results in a one-dimensional approximation to the two-dimensional flow field. The solutions are tested against both two-dimensional numerical solutions to the kinematic wave equation (in ParFlow) and against experiments that use rainfall simulation on machined hillslopes with defined curvature properties. Excellent agreement between numerical, experimental and analytical solutions is found for hillslopes with mild to moderate curvature. The solutions show that curvature drives large changes in maximum flow rate qpeak and time of concentration tc , predictions frequently used in engineering hydrologic design and analysis.  相似文献   

13.
Many problems in hydraulics and hydrology are described by linear, time dependent partial differential equations, linearity being, of course, an assumption based on necessity.Solutions to such equations have been obtained in the past based purely on deterministic consideration. The derivation of such a solution requires that the initial conditions, the boundary conditions, and the parameters contained within the equations be stipulated in exact terms. It is obvious that the solution so derived is a function of these specified, values.There are at least four ways in which randomness enters the problem. i) the random initial value problem; ii) the random boundary value problem; iii) the random forcing problem when the non-homogeneous part becomes random and iv) the random parameter problem.Such randomness is inherent in the environment surrounding the system, the environment being endowed with a large number of degrees of freedom.This paper considers the problem of groundwater flow in a phreatic aquifer fed by rainfall. The goveming equations are linear second order partial differential equations. Explicit form solutions to this randomly forced equation have been derived in well defined regular boundaries. The paper also provides a derivation of low order moment equations. It contains a discussion on the parameter estimation problem for stochastic partial differential equations.  相似文献   

14.
Realistic modeling of discontinuous overland flow on irregular topographic surfaces has been proven to be a challenge. This study is aimed to develop a new modeling framework to simulate the discontinuous puddle-to-puddle (P2P) overland flow dynamics for infiltrating surfaces with various microtopographic characteristics. In the P2P model, puddles were integrated in a well-delineated, cascaded drainage system to facilitate explicit simulation of their dynamic behaviors and interactions. Overland flow and infiltration were respectively simulated by using the diffusion wave model and a modified Green–Ampt model for the DEM-derived flow drainage network that consisted of a series of puddle-based units (PBUs). The P2P model was tested by using a series of data from laboratory overland flow experiments for various microtopography, soil, and rainfall conditions. The modeling results indicated that the hierarchical relationships and microtopographic properties of puddles significantly affected their connectivity, filling–spilling dynamics, and the associated threshold flow. Surface microtopography and rainfall characteristics also exhibited strong influences on the spatio-temporal distributions of infiltration rates, runoff fluxes, and unsaturated flow. The model tests demonstrated its applicability in simulating microtopography-dominated overland flow on infiltrating surfaces.  相似文献   

15.
IINTRODUCTIONWhileriverflowsareusuallydeepandturbulent,overlandflowisextremelyshallowandcanbelaminar,transitionalandturbulent.Becauseoftheshallownessoftheflolw,overlandflowhydraulicsisgreatlyaffectedbysurfaceroughness,raindropimpact,andinthecaseoflaminarflow,flui(Iviscosity.Theinitiationofsedimentmovementinoverlandflowisthereforeexpectedtodifferfromthatinriverflows.InriverstUdies,bedshearStressgbhastraditionallybeenusedtocharacterizethecriticalflowconditionatwhichsedimentbeginstomove.At…  相似文献   

16.
Point rainfall triggers the complex processes of overland flow and surface erosion. The probability density functions of rainfall duration and intensity are coupled with a physically based dynamic formulation of rainfall-runoff-sediment transport relationships for upland areas. When considering a single storm, rainfall depth alone is a poor predictor of sediment transport because of the dispersion introduced by the effect of rainfall intensity. On a long terms basis, however, the total amount of rainfall can be used to predict total erosion losses.  相似文献   

17.
Two distributed parameter models, a one‐dimensional (1D) model and a two‐dimensional (2D) model, are developed to simulate overland flow in two small semiarid shrubland watersheds in the Jornada basin, southern New Mexico. The models are event‐based and represent each watershed by an array of 1‐m2 cells, in which the cell size is approximately equal to the average area of the shrubs. Each model uses only six parameters, for which values are obtained from field surveys and rainfall simulation experiments. In the 1D model, flow volumes through a fixed network are computed by a simple finite‐difference solution to the 1D kinematic wave equation. In the 2D model, flow directions and volumes are computed by a second‐order predictor–corrector finite‐difference solution to the 2D kinematic wave equation, in which flow routing is implicit and may vary in response to flow conditions. The models are compared in terms of the runoff hydrograph and the spatial distribution of runoff. The simulation results suggest that both the 1D and the 2D models have much to offer as tools for the large‐scale study of overland flow. Because it is based on a fixed flow network, the 1D model is better suited to the study of runoff due to individual rainfall events, whereas the 2D model may, with further development, be used to study both runoff and erosion during multiple rainfall events in which the dynamic nature of the terrain becomes an important consideration. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
《Advances in water resources》2003,26(11):1189-1198
A two-dimensional finite element based overland flow model was developed and used to study the accuracy and stability of three numerical schemes and watershed parameter aggregation error. The conventional consistent finite element scheme results in oscillations for certain time step ranges. The lumped and the upwind finite element schemes are tested as alternatives to the consistent scheme. The upwind scheme did not improve on the stability or the accuracy of the solution, while the lumped scheme provided stable and accurate solutions for time steps twice the size of time steps needed for the consistent scheme. A new accuracy based dynamic time step estimate for the two-dimensional overland flow kinematic wave solution is developed for the lumped scheme. The newly developed dynamic time step estimates are functions of the mesh size, and time of concentration of the watershed hydrograph. Due to lack of analytical solutions, the time step was developed by comparing numerical solutions of various levels of discretization to a reference solution using a very fine mesh and a very small time step. The time step criteria were tested on a different set of problems and proved to be adequate for accurate and stable solutions. A sensitivity analysis for the watershed slope, Manning’s roughness coefficient and excess rainfall rate was conducted in order to test the effect of parameter aggregation on the stability and accuracy of the solution. The results of this analysis show that aggregation of the slope data resulted in the highest error. The roughness coefficient had a smaller effect on the solution while the rainfall intensity did not show any significant effect on the flow rate solution for the range of rainfall intensity used. This work pioneers the challenge of providing guidelines for accurate and stable numerical solutions of the two-dimensional kinematic wave equations for overland flow.  相似文献   

19.
Uncertainty in bed roughness is a dominant factor in providing a sufficiently accurate simulation of floodplain flows. This study describes a method to compute the transition probability density distribution of time-varying water elevations where the evolutionary process is based on a conventional one-dimensional storage cell model with governing stochastic differential equation. By including the random inputs (or noise terms) of bed roughness and initial water depth, time-dependent and spatially varying probability density function of the water surface leads to a Fokker–Planck equation. The model’s performance is evaluated by applying it to shallow water flow with a horizontal bed. Sensitivity of model predictions to variations in the bed friction parameters is shown. By comparing the result of the proposed method with that of conventional Monte Carlo simulation, the advantage of the former as a method for density function prediction is confirmed.  相似文献   

20.
MATHEMATICALMODELOFOVERLANDFLOWANDMECHANISMOFSOILCONSERVATIONFORFORESTEDSTEEPHILLSLOPE(1)AnalyticalSolutiontotheOverlandFlowo...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号