首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract The hydrothermal metamorphism of a sequence of Pliocene-aged seamount extrusive and volcanoclastic rocks on La Palma includes a relatively complete low-P-T facies series encompassing the zeolite, prehnite-pumpellyite, and greenschist facies. The observed mineral zonations imply metamorphic gradients of 200–300° C km-1. The transition from smectite to chlorite in the La Palma seamount series is characterized by discontinuous steps between discrete smectite, corrensite and chlorite, which occur ubiquitously as vesicles and, to a much lesser extent, vein in-fillings. Trioctahedral smectites [(Mg/(Fe + Mg) = 0.4–0.75] occur with palagonite and Na-Ca zeolites such as analcime and a thompsonite/natrolite solid solution. Corrensite [(Mg/(Fe + Mg) = 0.5–0.65] first appears at stratigraphic depths closely corresponding to the disappearance of analcime and first appearance of pumpellyite. Discrete chlorite [(Mg/(Fe + Mg) = 0.4–0.6] becomes the dominant layer silicate mineral coincident with the appearance of epidote and andraditic garnet. Within the stratigraphic section there is some overlap in the distribution of the three discrete layer silicate phases, although random interstratifications of these phases have not been observed. Although smectite occurs as both low- and high-charge forms, the La Palma corrensite is a compositionally restricted, 1:1 mixture of low-charge, trioctahedral smectite and chlorite. Electron microprobe analyses of coarse-grained corrensite yield structural formulae close to ideal values based on 50 negative charge recalculations. Calcium (average 0.20 cations/formula unit) is the dominant interlayer cation, with lesser Mg, K and Na. The absence of randomly interlayered chlorite/smectite in the La Palma seamount series may reflect high, time-integrated fluid fluxes through the seamount sequence. This is consistent with the ubiquity of high-variance metamorphic mineral assemblages and the general absence of relict igneous minerals in these samples.  相似文献   

2.
The clay mineralogy of the Newark Supergroup (Upper Triassic/Lower Jurassic) in the Connecticut Valley was studied by X-ray diffraction analysis. Clay minerals identified in 126 samples are illite, chlorite, smectite, kaolinite, vermiculite, expandable chlorite, mixed-layer illite/smectite, mixed-layer chlorite/smectite, and mixed-layer chlorite/vermiculite. In general, the rocks are illitic with subordinate amounts of chlorite. However, the various lithofacies in the Newark Supergroup are characterized by distinct clay-mineral assemblages. Red beds of floodplain origin contain clays mainly of detrital nature with 2M illite most abundant. Subordinate amounts of chlorite, smectite, vermiculite, kaolinite and mixed-layer illite/smectite are also present. An interstratified chlorite/vermiculite occurs in red mudstone underlying basalt flows. Lacustrine gray beds are generally characterized by the clay-mineral assemblage 1Md illite + chlorite with minor amounts of smectite ane expandable chlorite. An interstratified chlorite/smectite predominates in gray mudstone associated with perennial lake cycles in the East Berlin Formation. Black shales of deeper lacustrine origin contain the assemblage 1Md ifillite + trioctahedral smectite and traces of chlorite. Illite and smectite also occur as mixed-layer phases.In many respects, the distribution of clay minerals in the Connecticut Valley can be likened to the general scheme proposed for the Permo-Triassic basins of Europe and Africa. These display both vertical and horizontal variations in clay-mineral assemblages that reflect the chemical and spatiotemporal evolution of intrabasin depositional and diagenetic environments. Chemical data indicate that magnesium, especially, was concentrated in the black muds of large perennial lakes that intermittently occupied the Connecticut rift valley. Pore waters derived from these sediments played an important role in the development of Mg-rich 2 : 1 and interstratified clay minerals during early diagenesis.  相似文献   

3.
准噶尔盆地南缘新生界粘土矿物分布及影响因素   总被引:10,自引:8,他引:10       下载免费PDF全文
根据粘土矿物的相对含量研究了准噶尔盆地南缘新生界砂岩粘土矿物类型、组合特征及纵、横向分布规律及其主要影响因素。划分出无序伊/蒙混层型、部分有序伊/蒙混层型、伊利石+伊/蒙混层型、蒙皂石型以及含坡缕石型等5类粘土矿物组合。按照伊/蒙混层相对含量的变化,粘土矿物纵向上演化呈正常转化型(伊/蒙混层相对含量降低)、反向转化型(伊/蒙混层相对含量增加)和“S”型(伊/蒙混层相对含量呈曲线变化)3种形式。平面上,伊/蒙混层和伊利石这两类主要粘土矿物从湖盆的边缘向中心分别呈现减少和增多的趋势,湖盆边缘相带以无序伊/蒙混层型、蒙皂石型和含坡缕石型为主,湖盆中心则为部分有序伊/蒙混层型和伊利石+伊/蒙混层型组合等类型。上述分布规律的控制因素主要有沉积环境、构造运动及层序发育等。  相似文献   

4.
The Upper Red Formation (URF) comprises over 1–5 km of late Miocene siliciclastic sediments in the Central Iran Basin. The formation is dominated by volcaniclastic conglomerates and arenites. The prevailing arid conditions during most of the basin's history resulted in deposition of predominantly organic‐poor, red sediments with gypsum and zeolites. This investigation concentrates on the mineralogy and geochemistry of the URF in the southern and northern margins of the basin where the formation was buried to depths of 2.4 and 6.6 km, respectively. Fine fraction mineral separates from the southern margin consist of nearly pure smectite and zeolites at a depth of 400 m and smectite with minor quartz and calcite at 1800 m. Shallow samples (1350 m) from the northern section are rich in smectite, illite/smectite with some discrete illite and chlorite. This assemblage is progressively replaced by discrete illite and chlorite with increasing burial depth so that only these two minerals are found at depths greater than 4300 m. The initial alteration process involved replacement of glass and volcanic lithics by smectite and zeolites in both margins of the basin. Increased depth of burial in the northern margin resulted in the progressive isochemical alteration of smectite to discrete illite and chlorite. Diagenesis of clay assemblages occurred essentially in a closed system. Solute products of glass hydrolysis reactions were retained in highly alkaline, saline ground waters from which zeolites, carbonates and oxides precipitated as cements. It is unlikely that these sediments were ever significantly leached by meteoric waters or by organic acids generated during burial diagenesis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
四川广安地区侏罗系粘土矿物类型主要为绿泥石、高岭石、伊蒙混层和伊利石;同一口井随着深度的增加,伊利石、绿泥石含量增加,伊蒙混层中的蒙脱石混层比降低。粘土矿物特征与储集层物性的相关性分析认为:伊蒙混层含量、伊利石含量均与储集层孔渗性能呈负相关,绿泥石与高岭石含量与储集层孔渗性呈正相关;通过对伊蒙混层中蒙脱石的混层比的计算,大多数为有序混层,说明该区凉高山组处于生油高峰期,这与岩石中TOC(%)介于0.8与1.3,Ro(%)介于0.7与1.2相吻合。  相似文献   

6.
砂岩成岩作用及储层质量是油气勘探的重要研究内容,不同地区砂岩成岩作用及储层质量的主要控制因素各不相同。本文以鄂尔多斯盆地东部延河露头剖面延长组长7上部—长4+5中部三角洲前缘—三角洲平原沉积为例,重点讨论三级层序界面(长16底)上下不同基准面半旋回中砂岩自生矿物、储集空间类型、储集性能和含油性差异及造成这些差异的原因。指出层序界面之下的下降半旋回中浊沸石和早期钙质砂岩结核的发育阻止了绿泥石等粘土矿物及自生石英和自生钠长石的发育,而界面之上的上升半旋回中因凝灰质不足以及地层温度较低造成浊沸石发育有限,加之受湖水影响较小而缺乏早期方解石胶结物,因而绿泥石等自生粘土矿物及自生石英和自生钠长石较为发育,并保留了一部分原生孔隙。层序界面及紧邻其上大规模发育的长16砂体成为流体运移的优势通道,是界面之上浊沸石、方解石胶结物及长石颗粒被酸性流体溶蚀形成次生孔隙的重要因素,也是石油的重要运移通道和储集体。  相似文献   

7.
In this study, we report the characteristics of clay minerals present in the Chelung-pu fault in Taiwan. In the 1999 Chi-Chi earthquake, different slip motions were recorded along the Chelung-pu fault in the northern and southern parts of the fault. The characteristics of clay minerals present in the fault zones can be attributed to the differences in motion. We analyzed the shallow drill core samples obtained from the northern and southern sites penetrating the fault. The clay minerals identified in most of the samples from both the sites are smectite, illite, and chlorite. There are illite–smectite mixed layers with a high illite content and no chlorite–smectite mixed layer. In some samples, no smectite is detected. We also examined the iron content and symmetry of iron and magnesium in the silicate and hydroxide layers in chlorite. At the northern site, the total iron content in chlorite of gouge is larger than that of the host rocks. On the other hand, at the southern site, the total iron content varies widely. It is hypothesized that the smectite consumption and differences in the characteristics of chlorite may be controlled by the differences in the lithology, fluid chemistry, fluid temperature, or fault activities (heating or breakage) between the northern and southern sites.  相似文献   

8.
Abstract: Characterization of Neogene magmatism in the Ryuo mine area in the Kitami metallogenic province was carried out on the basis of K-Ar data for felsic–to–mafic terrestrial extrusive and intrusive volcanism from Late Miocene to Early Pliocene. The Ryuo epithermal gold-silver deposit occurs primarily in the felsic volcaniclastic rocks of the Ikutahara Formation and in Ryuo Rhyolite. The Ryuo mineralization age of 7. 7 – 8. 1 Ma coincides well with the hydrothermal alteration age (7. 7 Ma) of Ryuo Rhyolite hosting ore veins. It is concluded that the Ryuo mineralization was essentially accompanied by felsic volcanic activity during the sedimentation of the Ikutahara Formation, and was closely related both temporally and spatially to the intrusive activity of Ryuo Rhyolite. Hydrothermal alteration related to the epithermal gold-silver mineralization of the Ryuo deposit is primarily characterized by early regional and vein-related alterations, and late steam-heated alteration. Early regional alteration consists of a smectite halo (smectite+pyrite±quartz±opal–CT±mordenite°Clinoptilolite–heulandite series mineral). Early vein-related alteration is primarily marked by potassic alteration. This alteration halo can be subdivided into a K-feldspar halo (quartz+adular–ia+pyrite±illite±interstratified illite/smectite±smectite), an illite halo (quartz+illite + chlorite + pyrite ± interstratified illite/smec–tite±smectite) and an interstratified illite/smectite halo (quartz + interstratified illite/smectite+pyrite±smectite). Late steam-heated alteration characterized by kaolinite or alunite locally overprints the early K-feldspar halo. The style of the Ryuo gold-silver deposit is a low-sulfidation epithermal type. The gold–silver–bearing quartz vein precipitates during boiling of ore fluid. The origin of the ore fluid might be meteoric water. The temperature and sulfur fugacity conditions during precipitation of electrum and acanthite are estimated to be 206°– 238°C and 10-13.5 – 10-11.6 atm, respectively.  相似文献   

9.
The metamorphic conditions of the Upper Permian Yangjiagou Formation in eastern Changchun, China, were evaluated based on the mineral assemblage, illite crystallinity, illite polytypism,the b dimension of illite, and the chemical composition of chlorite. The pelitic rocks in the Yangjiagou Formation are characterized by illite + kaolinite + chlorite ± mixed-layer chlorite/smectite and detrital quartz + plagioclase. Illite in the formation has a crystallinity of 0.38-0.55 and comprises mixed 2 M_1 and1 M_d polytypes, indicating a metamorphic temperature of 200℃. Based on the chemical composition of chlorite and the chlorite geothermometer, we estimated diagenetic to very low-grade metamorphic conditions with temperatures of 185℃~204℃. The b dimension of illite varies from 8.992 A to 9.005 A.We used a mathematical algorithm to extend Guidotti and Sassi's(1986) diagram relating illite b dimension with temperature and pressure, and used this diagram, together with illite crystallinity and chlorite chemical composition, to semi-quantitatively estimate the formation pressure at1.2 kbar. These reveal that the Yangjiagou Formation has experienced very low-grade metamorphism.  相似文献   

10.
The Lower Palaeozoic low-grade metamorphic rocks of the Brabant Massif are largely buried below a thick cover of post-Palaeozoic strata. Along the top of the subcrop, they comprise remnants of Cretaceous to Tertiary weathering profiles that represent the lower part of thick saprolites. The alteration of the chlorite- and muscovite-dominated Palaeozoic rocks was characterized by the destruction of chlorite, accompanied by the formation of kaolinite and iron oxides and/or iron hydroxides. The first product of chlorite weathering seems to have been regularly interstratified chlorite-vermiculite or chlorite-smectite, which is now represented by interstratified chlorite-muscovite with regular ordering. Outside the thin transitional zones in which this mineral occurs, the rubefied intervals show only little variation in composition, which is due to the replacement of chlorite by kaolinite over short vertical distances and the stability of muscovite throughout the preserved parts of the saprolite. The rubefied rocks do have a somewhat different composition along the top of some profiles, which is related to an interaction with groundwater after burial, resulting in smectite formation, feldspar weathering and iron dissolution. Groundwater interaction is also responsible for the occurrence of weathering without rubefaction, outside the areas with saprolite remnants, which resulted in vermiculite, smectite and kaolinite formation. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
Abstract In well NJ-15 of the Nesjavellir geothermal field, Iceland, the transition of discrete smectite into discrete chlorite has been studied from drill cuttings recovered at depths of less than 1714 m and over a continuous range of temperatures between 60 and 300° C. At temperatures below 180° C, the clay fractions contain mixtures of di- and trioctahedral smectites, whose layer charge increases with depth. Between 200 and 240° C, discrete smectites have transformed into smectite-rich, randomly interstratified chlorite and smecite ( R 0 C/S). Because the abundance of chlorite interlayers in this C/S is generally <20%, its presence can be detected only by electron microprobe techniques and not by X-ray diffraction. Between 245 and 265° C, both regularly ( R 1) and randomly interstratified C/S are the predominant layer silicates. Discrete chlorite first appears at approximately 270° C and coexists with minor amounts of R 0 C/S at higher temperatures.
R 0 and R 1 C/S form a nearly complete compositional series between trioctahedral saponite and discrete chlorite end-members. The interlayer cation and Si content of smectites and C/S decrease with increasing temperature. The Mg/(Mg + Fe) content of smectite, C/S, and chlorite is unrelated to temperature. The percentage of chlorite in C/S, as determined by electron microprobe analyses, increases continuously with increasing temperature, except for occurrences of smectite-rich C/S in fresh basaltic dykes which have not thermally equilibrated with the higher grade country rocks.  相似文献   

12.
The transformation from smectite to chlorite has been interpreted as involving either a disequilibrium chlorite/smectite mixed‐layering sequence, or an equilibrated discontinuous sequence involving smectite–corrensite–chlorite. Here, analysis of the smectite to chlorite transition in different geothermal systems leads us to propose that the transformation proceeds via three contrasting reaction pathways involving (i) a continuous mixed‐layer chlorite/smectite series; (ii) a discontinuous smectite–corrensite–chlorite series and (iii) a direct smectite to chlorite transition. Such contrasting pathways are not in accord with an equilibrium mineral reaction series, suggesting that these pathways record kinetically controlled reaction progress. In the geothermal systems reviewed the style of reaction pathway and degree of reaction progress is closely correlated with intensity of recrystallization, and not to differences in thermal gradients or clay grain size. This suggests a kinetic effect linked to variation in fluid/rock ratios and/or a contrast between advective or diffusive fluid transport. The mode of fluid transport provides a means by which the rates of dissolution/nucleation/growth can control the reaction style and the reaction progress of the smectite to chlorite transition. Slow rates of growth are linked to the first reaction pathway involving mixed‐layering, while increasing rates of growth, relative to nucleation, promote the generation of more ordered structures and ultimately lead to the direct smectite to chlorite transition, representative of the third pathway.  相似文献   

13.
The study area covers volcanic-volcanosedimentary units of Eocene age in the Sivas-Ula? area from Turkey. The pyroclastic (tuffaceous claystone/siltsone/sandstone, crystal ash tuff) and volcanic (basalt, basaltic andesite, andesite) rocks of the Karacalar member from the Kaleköy Formation include volcanogenic (plagioclase, augite, hornblende, biotite), diagenetic (K-feldspar, mixed-layered chlorite-smectite/C-S, chlorite, analcime) and post-volcanic (calcite, dolomite, quartz) minerals. The volcanogenic (plagioclase), diagenetic (K-feldspar, C-S, chlorite), postvolcanic (quartz, calcite, dolomite) and detrital (illite) minerals were observed in the epiclastic (shale, siltstone, calcareous siltstone, sandstone, calcareous sandstone) and chemical (limestone, gypsum) rocks of the Yapali member from this formation. C-S + K-feldspar zoning is widely developed by due to the interaction between sea-water and volcanic glass in basic-intermediate composition, on the basis of optic and electron microscopes and also X-rays data. This zone corresponds to the deeper parts of the Sivas basin in the Eocene period and show vertically a transition into zeolite zone in approximately northern parts of the basin (Yavu area).  相似文献   

14.
刘云 《沉积学报》1985,3(4):131-140
松辽盆地晚白垩世地层是由一套砂泥岩组成,储集了丰富的石油资源。过去一般认为这是一个内陆湖泊,为陆相沉积。近年来不少研究者从古生物、岩矿等方面提出与海有关的成因观点。本文根据对该区上白垩统泥岩粘土矿物进行了研究后认为,晚白垩世松辽盆地是个近海陆盆,气候温暖干燥,间转湿润,以淡水-半咸水碱性介质为主,青山口组及嫩江组沉积时,水域扩大,水体含盐度、碱性、还原性增强,可能遭受海侵。这些分析对含油地层的成因研究具有一定的意义。  相似文献   

15.
The Basal Salina Formation is a lower Eocene transgressive sequence consisting of interbedded shales, siltstones, and conglomeratic sandstones. This formation occurs in the Talara basin of northwestern Peru and is one of a series of complexly faulted hydrocarbon-producing formations within this extensional forearc basin. These sediments were probably deposited in a fan-delta complex that developed along the ancestral Amotape Mountains during the early Eocene. Most of the sediment was derived from the low-grade metamorphic and plutonic rocks that comprise the Amotape Mountains, and their sedimentary cover. Detrital modes of these sandstones reflect the complex tectonic history of the area, rather than the overall forearc setting. Unlike most forearc sediments, these are highly quartzose, with only minor percentages of volcanic detritus. This sand is variably indurated and cemented by chlorite, quartz, calcite, and kaolinite. Clay-mineral matrix assemblages show gradational changes with depth, from primarily detrital kaolinite to diagenetic chlorite and mixed-layered illite/smectite. Basal Salina sandstones exhibit a paragenetic sequence that may be tied to early meteoric influx or late-stage influx of thermally driven brines associated with hydrocarbon migration. Much of the porosity is secondary, resulting from a first-stage dissolution of silicic constituents (volcanic lithic fragments, feldspar, and fibrous quartz) and a later dissolution of surrounding carbonate cement. Types of pores include skeletal grains, grain molds, elongate pores, and fracture porosity. Measured porosity values range up to 24% and coarser samples tend to be more porous. Permeability is enhanced by fractures and deterred by clay-mineral cements and alteration residues.  相似文献   

16.
Thirty-three black shale samples from four locations on the onland Kachchh basin, western India were analyzed to characterize organic carbon (OC), thermal maturity and to determine the hydrocarbon potential of the basin. Upper Jurassic black shales from the Jhuran Formation (Dhonsa and Kodki areas) are characterized by the presence of chlorite, halloysite, high \(T_{\mathrm{max}}\), low OC, low hydrogen index and high oxygen index. These parameters indicate the OC as type IV kerogen, formed in a marine environment. The rocks attained thermal maturity possibly during Deccan volcanism. Early Eocene samples of the Naredi Formation (Naliya-Narayan Sarovar Road (NNSR) and the Matanomadh areas) are rich in TOC, smectite, chlorite and framboidal pyrite, but have low \(T_{\mathrm{max}}\). These indicate deposition of sediments in a reducing condition, probably in a lagoonal/marsh/swamp environment. Organic carbon of the Naredi Formation of NNSR may be considered as immature type III to IV kerogen, prone to generate coal. Core samples from the Naredi Formation of the Matanomadh area show two fold distribution in terms of kerogen. Organic carbon of the upper section is immature type III to IV kerogen, but the lower section has type II to III kerogen having potential to generate oil and gas after attaining appropriate thermal maturity.  相似文献   

17.
Clays associated with the Precambrian unconformity-related (sensu lato) uranium mineralization that occur along fractures of Rohini carbonate, Bandai sandstone and clay-organic rich black carbonaceous Gorakalan shale of the Sonrai Formation from Bijawar Group is significant. Nature and structural complexity of these clays have been studied to understand depositional mechanism and palaeoenvironmental conditions responsible for the restricted enrichment of uranium in the Sonrai basin. Clays (<2 μm fraction) separated from indurate sedimentary rocks by disaggregation, chemical treatment and centrifugation were examined using X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Presence of tv-1M type illite is inferred from the Rohini and Bandai Members of the Sonrai Formation, indicative of high fluid/rock interaction and super-saturation state of the fluids available in proximity with the uranium mineralization. It is observed that the Sonrai Formation is characterized by kaolinite > chlorite > illite > smectite mineral assemblages, whereas, Solda Formation contains kaolinite > illite > chlorite clays. It has been found that the former mineral assemblage resulted from the alteration process is associated with the uranium mineralization and follow progressive reaction series, indicating palaeoenvironmental (cycles of tropical humid to semi-arid/arid) changes prevailed during maturation of the Sonrai basin. The hydrothermal activity possibly associated with Kurrat volcanics is accountable for the clay mineral alterations.  相似文献   

18.
Transmission and scanning electron microscopy were utilized to investigate the nature and mechanisms of alteration of abundant detrital biotite of volcanic origin and progressive modification of phyllosilicate aggregates in a prograde sequence of pelitic rocks (illite crystallinity index = 0.19–0.58λ2θ) from the Gaspé Peninsula in Quebec.
Detrital biotite has been diagenetically altered to form corrensite and chlorite through two mechanisms; (1) layer-by-layer replacement gave rise to interstratification of packets of layers and complex mixed layering via several kinds of layer transitions between biotite and chlorite, corrensite or smectite; (2) dissolution-transport-precipitation resulted in the formation of relatively coarse-grained aggregates of randomly orientated, corrensite-rich flakes and fine-grained corrensite intergrown with chlorite and illite in the matrix.
The data show that stacks consisting of alternating packets of trioctahedral and dioctahedral phyllosilicates originated during early diagenesis when lenticular fissures in strained altering biotite were filled by dioctahedral clays. Subsequent prograde evolution of dioctahedral clays occurred through deformation, dissolution and crystallization, and overgrowth. Illite evolved to muscovite, with K in part provided through biotite alteration, and corrensite/chlorite to homogeneous chlorite. The alteration of detrital biotite is closely related to the formation of titanite and magnetite in diagenetic rocks, and pyrite, calcite and anatase or rutile in the higher grade rocks.
The observations demonstrate that detrital biotite of volcanic origin may be the principal precursor of chlorite in chlorite-rich metapelites originating in marginal basins. The mineral parageneses suggest that the transitions from corrensite to chlorite and illite to muscovite may be a function of local chemistry and time.  相似文献   

19.
The smectite-to-chlorite conversion is investigated through long-duration experiments (up to 9 years) conducted at 300 °C. The starting products were the Wyoming bentonite MX80 (79 % smectite), metallic iron and magnetite in contact with a Na–Ca chloride solution. The predominant minerals in the run products were an iron-rich chlorite (chamosite like) and interstratified clays interpreted to be chlorite/smectite and/or corrensite/smectite, accompanied by euhedral crystals of quartz, albite and zeolite. The formation of pure corrensite was not observed in the long-duration experiments. The conversion of smectite into chlorite over time appears to take place in several steps and through several successive mechanisms: a solid-state transformation, significant dissolution of the smectite and direct precipitation from the solution, which is over-saturated with respect to chlorite, allowing the formation of a chamosite-like mineral. The reaction mechanisms are confirmed by X-ray patterns and data obtained on the experimental solutions (pH, contents of Si, Mg, Na and Ca). Because of the availability of some nutrients in the solution, total dissolution of the starting smectite does not lead to 100 % crystallization of chlorite but to a mixture of two dominant clays: chamosite and interstratified chlorite/smectite and/or corrensite/smectite poor in smectite. The role of Fe/(Fe + Mg) in the experimental medium is highlighted by chemical data obtained on newly formed clay particles alongside previously published data. The newly formed iron-rich chlorite has the same composition as that predicted by the geothermometer for diagenetic to low-grade metamorphic conditions, and the quartz + Fe-chlorite + albite experimental assemblage in the 9-year experiment is close to that fixed by water–rock equilibrium.  相似文献   

20.
程成  李双应  赵万为  彭亮 《地质学报》2016,90(6):1208-1219
安徽宿松坐山剖面中二叠世地层发育,栖霞组、孤峰组和武穴组连续出露,为下扬子地区中二叠统的典型剖面之一。其中栖霞组主要为碳酸盐岩,其次为硅质岩和碎屑岩。栖霞组碳酸盐岩中共识别出9种微相类型,分别可以与Flügel整理的7种标准微相对比。栖霞组主要为斜坡沉积,其次为台地沉积,而斜坡相又可以进一步分为上斜坡相和下斜坡相。其中,上斜坡相主要出现在臭灰岩段的中部,该层位以产砾屑灰岩为特征,微相类型以MF3为主。其次出现在本部灰岩段的中偏上部,该处微相类型为MF3、MF8和MF9。此外,顶部灰岩上部发育灰岩砾石的层位中的微相类型主要为MF3和MF9,也属于上斜坡相。下斜坡相主要发育于上、下硅质岩段和本部灰岩段的顶部,主要特征为发育薄层硅质岩或长条状硅质结核,微相类型主要为MF4和MF5。台地相主要出现在本部灰岩中下部,其次出现在臭灰岩段的下部和上部及顶部灰岩段的下部,且其微相类型以MF1为主,其次为MF2、MF6和MF7,表明台地相整体属于开阔海台地。微相分析表明栖霞组整体形成于一个海侵过程中,期间经历了4次较明显的海退。黏土矿物分析显示栖霞组碳酸盐岩的黏土矿物以伊利石为主(平均含量为61.97%),高岭石次之(平均含量为27.25%),伊蒙混层(平均含量为9.43%)和绿泥石(平均含量为1.36%)较少。高岭石/(伊利石+绿泥石)的比值与伊利石的相对含量变化共同表明栖霞期由早期的相对干冷变为晚期的相对暖湿,期间发生了3次较为明显的气候变化周期。同时,栖霞期气候整体变暖湿、海平面整体上升的趋势与晚古生代冰川(LPIA)消融的时间对应,则暗示古气候变化导致的冰川消融事件控制了栖霞期的整体海平面变化。而沉积相变化所反映的栖霞期4次相对海平面变化与3次明显的气候波动能够较好的吻合,则显示出气候对海平面变化和沉积记录的控制作用。表现在气候变暖湿导致冰体融化,海平面上升,风化指数(WI)升高,主要发育碳酸盐斜坡相。气候变干冷、冰体增大导致海平面和风化指数(WI)的下降,以碳酸盐台地沉积为主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号