首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 821 毫秒
1.
A simple mixing model demonstrates that chemical variations in Cascade surface waters reflect flow from three general zones: alpine areas, forested colluvial slopes, and seasonally saturated areas. The chemistry of weathering solutions in alpine portions of the Williamson Creek catchment (North Cascade Range) results from alteration of plagioclase, hornblende, and biotite to kaolinitic material and vermiculite. Surface and shallow groundwater in forested portions of the catchment reflect these reactions, dissolution of small quantities of carbonate, and biologic activity. Both at-a-point and downstream chemical variations are explained quantitatively by the volume of water that originates in each of the hydrogeochemical source areas. Water from the forested colluvial slopes is most significant on an annual basis. However, summer low-flow is a mixture of colluvial waters and dilute solutions from the alpine zone, whereas 10 to 30 per cent of peak flow in snowmelt and rainstorms is produced from seasonally saturated areas. Poor concentration/discharge (C/Q) correlations, typical of Cascade rivers, result from mixing of significant C/Q relations for water leaving each source area. Model predictions could be substantially improved by better data for the effects of temperature, water-contact time, and biologic cycling on the chemistry of soil water from forested zones.  相似文献   

2.
3.
4.
5.
6.
7.
8.
A detailed gravity survey over the Chattolanee Baltimore Gneiss Dome in the Maryland Piedmont suggests that the dome is an arched recumbent fold. The Baltimore Gneiss, which cores the dome, has a negative density contrast with the surrounding Cambro-Ordovician marbles and schists and is coincident with a large minimum in the simple Bouguer gravity. Three north-south profiles, which cut across the east-west-trending surface exposure of the dome were modeled two-dimensionally. The models suggest that the Baltimore Gneiss is thickest and tightly folded in an inverted V shape to the east and thinner and broadly arched to the west. It is also possible to fit the gravity data with a mushroom-shaped body at the easternmost profile, which could suggest a diapiric origin for the dome, but this interpretation is not favored based on geological arguments. The Baltimore Mafic Complex, located to the south of the Chattolanee Dome, can be modeled as an approximately 1 km thick slab with a subhorizontal base, suggesting that it is a thrust sheet. By analogy with the Phoenix Baltimore Gneiss Dome, mapped by Crowley [2], the Cambro-Ordovician sediments surrounding the Chattolanee Dome may also be involved in the recumbent folding which would suggest that the dome was formed during the Ordovician Taconic orogeny.  相似文献   

9.
10.
Cenozoic volcanism in the Great Basin is characterized by an outward migration of volcanic centers with time from a centrally located core region, a gradational decrease in the initial Sr87/Sr86 ratio with decreasing age and increasing distance from the core, and a progressive change from calc-alkalic core rocks to more alkalic basin margin rocks. Generally each volcanic center erupted copious silicic ignimbrites followed by small amounts of basalt and andesite. The Sr82/Sr86 ratio for old core rocks is about 0.709 and the ratio for young basin margin rocks is about 0.705. Spatially and temporally related silicic and mafic suites have essentially the same Sr87/Sr86 ratios. The locus of older volcanism of the core region was the intersection of a north-south trending axis of crustal extension and high heat flow with the northeast trending relic thermal ridge of the Mesozoic metamorphic hinterland of the Sevier Orogenic Belt. Derivation of the Great Basin magmas directly from mantle with modification by crustal contamination seems unlikely. Initial melting of lower crustal rocks probably occurred as a response to decrease in confining pressure related to crustal extension. Volcanism was probably also a consequence of the regional increase in the geothermal gradient that is now responsible for the high heat flow of the Basin and Range Province. High Sr isotopic ratios of the older core volcanic rocks suggests that conditions suitable for the production of silicic magmas by partial fusion of the crust reached higher levels within the crust during initial volcanism than during production of later magmas with lower isotopic ratios and more alkaline chemistry. As the Great Basin became increasingly attenuated, progressively lower portions of the crust along basin margins were exposed to conditions suitable for magma genesis. The core region became exhausted in low temperature melting components, and volcanism ceased in the core before nearby areas had completed the silicic-mafic eruption cycle leading to their own exhaustion of crustal magma sources.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
A latite dome in northwest Arizona contains a rare occurrence of primary SO4-rich scapolite phenocrysts. The total phenocryst assemblage consists of plagioclase (An20?An33), hornblende, biotite, and scapolite (Me68). Microphenocrysts include allanite and oxidized low-Ti magnetite. Electron microprobe analyses show that the scapolite contains about 1.74 wt.% S, which indicates an atomic S/(S + C) of 0.58. Although scapolite occurs in xenoliths in volcanic rocks and diatremes, as well as a metamorphic mineral in granulites, its occurrence as a primary igneous mineral is extremely rare.Ca-rich scapolite has been crystallized experimentally by others from melts with a wide range of SiO2, CaO, and Na2O contents, at temperatures above 825°C and pressures ranging from 3 to 15 kbar. Comparison of scapolite from this latite with synthetic scapolite crystallized from nepheline syenite melt suggests that the Arizona phenocrysts crystallized under conditions of 850 to 900°C, 3–6 kbar total pressure, and unusually high ?CO2 and ?SO2. The rarity of scapolite as a phenocryst mineral suggests that high partial pressures of CO2 and SO2 are rare in the magmatic environment.  相似文献   

20.
A series of trenches about a metre deep, 20 to 30 m wide, and as much as 2 km in length occurs in central Wisconsin, along the east shore of proglacial Lake Wisconsin. They are interpreted to be collapse trenches formed when shore ice melted after being buried beneath an expanding outwash plain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号