首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary  The fluctuations of intensity of the Tropical Easterly Jet (TEJ) and its association with the Indian summer monsoon rainfall have been examined using the diagnostics from NCEP/NCAR (National Centre for Environmental Prediction/National Centre for Atmospheric Research) reanalyses project for the period 1986 to 1994. The intensity of TEJ is found to be well correlated with India summer monsoon rainfall. The TEJ is weaker/stronger during the El Ni?o/La Ni?a year of 1987/1988 and is associated with deficient (excess) summer monsoon rainfall over India. A numerical study was carried out for the same period using the Centre for Ocean-Land-Atmosphere studies General Circulation Model (COLA GCM, T30L18) with observed Sea-Surface Temperature (SST). The GCM simulates the TEJ with reasonable accuracy. The strong interannual variability of TEJ during the El Ni?o/La Ni?a years of 1987/1988 are well simulated in the GCM. Like observations, the intensity of the TEJ is positively correlated with the summer monsoon rainfall over India in the model simulation. The intensity of Tibetan anticyclone and diabatic heating over the Tibetan Plateau diminished during the El Ni?o-year of 1987. The divergence centre in the upper troposphere associated with Asian monsoon becomes weaker and shifts eastward during the weak monsoon season of 1987. However, the opposite happens for the strong monsoon season of 1988. Also the middle and upper tropospheric meridional temperature gradient between the Tibetan High and Indian Ocean region decreased (increased) during the weak(strong) monsoon season of 1987 (1988). Received May 27, 1999/Revised March 20, 2000  相似文献   

2.
In this paper, a diagnostic study is carried out with global analysis data sets to determine how the large scale atmospheric circulation affecting the anomalous drought of the Indian summer monsoon 2002. The daily analysis obtained from National Centre for Environmental Prediction/National Centre for Atmospheric Research (NCEP/NCAR) for the month of July is used to investigate the mean circulation characteristics and the large scale energetics over the Indian monsoon domain. Examination of rainfall revealed that the summer monsoon (JJAS) rainfall of 2002 over India is 22% below normal in which the large deficit of 56% below normal rainfall in July. The recent past drought during summer season of 2004 and 2009 are 12 and 23%, respectively, below normal rainfall. The large deficit of rainfall in 2009 is from the June month with 48% below normal rainfall, where as 2004 drought contributed from July (19%) and August (24%). Another significant facet of the rainfall in July 2002 is lowest ever recorded in the past 138 years (1871–2008). The circulation features illustrated weak low level westerly wind at 850 hPa (Somali Jet) in July during large deficit rainfall years of 1987 and 2002 with a reduction of about 30% when compared with the excess and normal rainfall years of 1988 and 2003. Also, tropical easterly jet at 150 hPa reduced by 15% during the deficit rainfall year of 2002 against the excess rainfall year of 1988. Both the jet streams are responsible for low level convergence and upper level divergence leading to build up moisture and convective activity to sustain the strength of the monsoon circulation. These changes are well reflected in reduction of tropospheric moisture profile considerably. It is found that the maximum number of west pacific cyclonic system during July 2002 is also influenced for large deficit rainfall over India. The dynamic, thermodynamic and energetic clearly show the monsoon break type situation over India in the month of July 2002 resulting less convective activity and the reduction of moisture. The large diabatic heating, flux convergence of heat and moisture over south east equatorial Indian Ocean are also responsible for drought situation in July 2002 over the Indian region.  相似文献   

3.
Summary The kinetic energy budget of the Asian summer monsoon is examined making use of the daily averaged (0000 and 1200 UTC) reanalysis data for forty-year (1960–99) period produced by the National Centres for Environmental Prediction-National Centre for Atmospheric Research (NCEP-NCAR). Especially, the features associated with evolution and established phases of the monsoon are elucidated. Some features are typical during both phases. The lower tropospheric balance is governed by adiabatic generation and frictional dissipation. On the other hand, the upper tropospheric balance is regulated by adiabatic generation and flux divergence. The adiabatic generation of kinetic energy within the boundary layer is mostly due to the meridional component. Contrasting characteristics during both phases are summarized as follows. Subtropical westerly jet controls the balance of kinetic energy during the evolution period. On the other hand, Tropical easterly jet and Somali jet modulate the balance during the established period. The adiabatic generation of kinetic energy is predominantly driven by the zonal component during the evolution phase and by the meridional component during the established phase of monsoon, respectively. This aspect essentially delineates the roles of zonal and meridional regimes during the evolution and established phases of the monsoon.  相似文献   

4.
The sensitivity of the East Asian summer monsoon to soil moisture anomalies over China was investigated based on ensembles of seasonal simulations(March–September) using the NCEP GCM coupled with the Simplified Simple Biosphere Model(NCEP GCM/SSi B). After a control experiment with free-running soil moisture, two ensembles were performed in which the soil moisture over the vast region from the lower and middle reaches of the Yangtze River valley to North China(YRNC) was double and half that in the control, with the maximum less than the field capacity. The simulation results showed significant sensitivity of the East Asian summer monsoon to wet soil in YRNC. The wetter soil was associated with increased surface latent heat flux and reduced surface sensible heat flux. In turn, these changes resulted in a wetter and colder local land surface and reduced land–sea temperature gradients, corresponding to a weakened East Asian monsoon circulation in an anomalous anticyclone over southeastern China, and a strengthened East Asian trough southward over Northeast China. Consequently, less precipitation appeared over southeastern China and North China and more rainfall over Northeast China. The weakened monsoon circulation and strengthened East Asian trough was accompanied by the convergence of abnormal northerly and southerly flow over the Yangtze River valley, resulting in more rainfall in this region.In the drier soil experiments, less precipitation appeared over YRNC. The East Asian monsoon circulation seems to show little sensitivity to dry soil anomalies in NCEP GCM/SSi B.  相似文献   

5.
The summer monsoon of 1988   总被引:1,自引:0,他引:1  
Summary Time averaged, monthly mean fields of a number of climate parameters such as sea surface temperature anomalies, outgoing longwave radiation anomalies, 200 mb velocity potential field, streamfunction anomaly at the lower and the upper troposphere and percentage rainfall amounts are presented, for the summer of 1988 over the regions of Asian summer monsoon. Above normal rainfall occurred over most of the Indian subcontinent, southeast Asia and eastern China during 1988. In comparison, 1987 was a drought year. This paper presents a comparison of some of the salient aforementioned parameters. The evolution of the planetary scale divergent motions and the streamfunction anomaly exhibit prominent differences during the life cycle of the monsoon in these two years. The velocity potential field exhibits a pronounced planetary scale geometry with the divergent outflows emanating from the monsoon region during 1988. The descending branches of these time averaged circulations are found over the Atlantic ocean to the west and over the eastern Pacific and North America to the east. The immense size of this circulation is indicative of an above normal monsoon activity. During 1987, the outflow center was located much further to the southeast over the western Pacific ocean. The longitudinal extent of the monsoonal divergent circulations were much smaller in 1987.The positive sea surface temperature anomaly of the El Nino year 1987 is seen to move westwards to the western Pacific in 1988, a warm anomaly also appears over the eastern equatorial Indian ocean and the Bay of Bengal at this time. The latter contributes to the supply of moisutre during the active monsoon season of 1988. The outgoing long wave radiation anomalies evolve with a westward propagation of strong positive anomalies from the central Pacific ocean consistent with the evolution of divergent circulation. The streamfunction anomalies basically show westerly zonal wind anomalies being replaced by easterly anomalies during 1988 over the upper troposphere of the monsoon region.The lower tropospheric streamfunction anomaly during the drought year 1987 showed a pronounced counter monsoon circulation. That feature was absent in 1988.With 11 Figures  相似文献   

6.
The Largest longitudinal heating gradients in the tropics exist between the African desert and Asian convective regions during summer once the South Asian monsoon is established. The heating gradients are anchored by the la-tent heat release and net radiative flux convergence over the monsoon region, and by the dominant net radiative flux divergence over the desert.An apparent relationship is found between the intensity of the Asian summer monsoon circulation and the longitudinal healing gradients mentioned, in addition to the latitudinal heating gradients cross the monsoon region. The monsoon circulation measured in terms of the zonal wind component is stronger when the longitudinal heating gradients are large, and vice versa. Thus, we claim that the longitudinal heating gradient may be another important factor which influences the intensity of the Asian summer monsoon circulation. There is little evidence that the interannual variability of the longitudinal heating gradients between Africa and Asia and, thus, the intensity of the Asian summer monsoon circulation, is a strong function of the El Nino / Southern Oscillation cycle.  相似文献   

7.
This study provides a detailed analysis of the mid-Holocene to present-day precipitation change in the Asian monsoon region. We compare for the first time results of high resolution climate model simulations with a standardised set of mid-Holocene moisture reconstructions. Changes in the simulated summer monsoon characteristics (onset, withdrawal, length and associated rainfall) and the mechanisms causing the Holocene precipitation changes are investigated. According to the model, most parts of the Indian subcontinent received more precipitation (up to 5 mm/day) at mid-Holocene than at present-day. This is related to a stronger Indian summer monsoon accompanied by an intensified vertically integrated moisture flux convergence. The East Asian monsoon region exhibits local inhomogeneities in the simulated annual precipitation signal. The sign of this signal depends on the balance of decreased pre-monsoon and increased monsoon precipitation at mid-Holocene compared to present-day. Hence, rainfall changes in the East Asian monsoon domain are not solely associated with modifications in the summer monsoon circulation but also depend on changes in the mid-latitudinal westerly wind system that dominates the circulation during the pre-monsoon season. The proxy-based climate reconstructions confirm the regional dissimilarities in the annual precipitation signal and agree well with the model results. Our results highlight the importance of including the pre-monsoon season in climate studies of the Asian monsoon system and point out the complex response of this system to the Holocene insolation forcing. The comparison with a coarse climate model simulation reveals that this complex response can only be resolved in high resolution simulations.  相似文献   

8.
The Northwest Pacific (NWP) circulation (subtropical high) is an important component of the East Asian summer monsoon system. During summer (June–August), anomalous lower tropospheric anticyclonic (cyclonic) circulation appears over NWP in some years, which is an indicative of stronger (weaker) than normal subtropical high. The anomalous NWP cyclonic (anticyclonic) circulation years are associated with negative (positive) precipitation anomalies over most of Indian summer monsoon rainfall (ISMR) region. This indicates concurrent relationship between NWP circulation and convection over the ISMR region. Dry wind advection from subtropical land regions and moisture divergence over the southern peninsular India during the NWP cyclonic circulation years are mainly responsible for the negative rainfall anomalies over the ISMR region. In contrast, during anticyclonic years, warm north Indian Ocean and moisture divergence over the head Bay of Bengal-Gangetic Plain region support moisture instability and convergence in the southern flank of ridge region, which favors positive rainfall over most of the ISMR region. The interaction between NWP circulation (anticyclonic or cyclonic) and ISMR and their predictability during these anomalous years are examined in the present study. Seven coupled ocean–atmosphere general circulation models from the Asia-Pacific Economic Cooperation Climate Center and their multimodel ensemble mean skills in predicting the seasonal rainfall and circulation anomalies over the ISMR region and NWP for the period 1982–2004 are assessed. Analysis reveals that three (two) out of seven models are unable to predict negative (positive) precipitation anomalies over the Indian subcontinent during the NWP cyclonic (anticyclonic) circulation years at 1-month lead (model is initialized on 1 May). The limited westward extension of the NWP circulation and misrepresentation of SST anomalies over the north Indian Ocean are found to be the main reasons for the poor skill (of some models) in rainfall prediction over the Indian subcontinent. This study demonstrates the importance of the NWP circulation variability in predicting summer monsoon precipitation over South Asia. Considering the predictability of the NWP circulation, the current study provides an insight into the predictability of ISMR. Long lead prediction of the ISMR associated with anomalous NWP circulation is also discussed.  相似文献   

9.
l.Intr0ducti0nInitially,monsoonwasreferredtotheseasonalreversal0fwinddirectionovertheIndian0cean,especiallyalongthecoastalbeltoftheArabianSea(Webster,l987).Withthein-creasedunderstandingofmonsoonbehavi0rs,itsdefinitionandimplicationhavebeenaug-mentCd.BasedonpreviousstudiesandwindveeringinJanuaryandJulyasthecritCri0nofitsdefinition,Ramage(l97l)showedthatthemonsoonregionincludesAsiantropics/subtropics,Australia,Africaandtheiradjacentseas.Withadvancesinmonsoonre-search,metCorologistshaveexp…  相似文献   

10.
Summary The global nature of the Madden-Julian Oscillations (MJOs) have been investigated by applying a frequency filter to daily data for the summer monsoon months (June to September) during two contrasting years—1987, a deficient monsoon year and 1988, an excess monsoon year. Several meteorological parameters at five levels in the troposphere have been examined. Regions with large amplitude of these oscillations are isolated for each year. The results indicate that the global spatial distribution of these oscillations is more in a deficient year than in an excess year, in particular over the Indian subcontinent and the EI Niño Southern Oscillation (ENSO) regions. The principal modes of variability during these two years have been investigated through Empirical Orthogonal Functions (EOFs). The first two eigenmodes of 850 hPa zonal wind explain nearly 50% of the variance. The dipole type of structure between the Indian and the Pacific region is more apparent in 1987 than in 1988. Time-longitude cross sections of the filtered zonal wind over the equatorial regions clearly show that eastward propagation is detected in 1987, but is virtually absent in 1988. It is also seen that the 30–60 day filtered winds are stronger during the monsoon of 1987 than in 1988.  相似文献   

11.
The influences of the wintertime AO (Arctic Oscillation) on the interdecadal variation of summer monsoon rainfall in East Asia were examined. An interdecadal abrupt change was found by the end of the 1970s in the variation of the AO index and the leading principal component time series of the summer rainfall in East Asia, The rainfall anomaly changed from below normal to above normal in central China, the southern part of northeastern China and the Korean peninsula around 1978. However,the opposite interdecadal variation was found in the rainfall anomaly in North China and South China.The interdecadal variation of summer rainfall is associated with the weakening of the East Asia summer monsoon circulation. It is indicated that the interdecadal variation of the AO exerts an influence on the weakening of the monsoon circulation. The recent trend in the AO toward its high-index polarity during the past two decades plays important roles in the land-sea contrast anomalies and wintertime precipitation anomaly. The mid- and high-latitude regions of the Asian continent are warming, while the low-latitude regions are cooling in winter and spring along with the AO entering its high-index polarity after the late 1970s. In the meantime, the precipitation over the Tibetan Plateau and South China is excessive, implying an increase of soil moisture. The cooling tendency of the land in the southern part of Asia will persist until summer because of the memory of soil moisture. So the warming of the Asian continent is relatively slow in summer. Moreover, the Indian Ocean and Pacific Ocean which are located southward and eastward of the Asian land, are warming from winter to summer. This suggests that the contrast between the land and sea is decreased in summer. The interdecadal decrease of the land-sea heat contrast finally leads to the weakening of the East Asia summer monsoon circulation.  相似文献   

12.
The temporal variations during 1948-2010 and vertical structures of the summer Somali and Australia cross-equatorial flows(CEFs) and the implications for the Asian summer monsoon were explored in this study.The strongest southerly and northerly CEFs exist at 925 hPa and 150 hPa level,respectively.The low-level Somali(LLS) CEFs were significantly connected with the rainfall in most regions of India(especially the monsoon regions),except in a small area in southwest India.In comparison to the climatology,the lowlevel Australia(LLA) CEFs exhibited stronger variations at interannual time scale and are more closely connected to the East Asian summer monsoon circulation than to the LLS CEFs.The East Asian summer monsoon circulation anomalies related to stronger LLA CEFs were associated with less water vapor content and less rainfall in the region between the middle Yellow River and Yangtze River and with more water vapor and more rainfall in southern China.The sea-surface temperature anomalies east of Australia related to summer LLA CEFs emerge in spring and persist into summer,with implications for the seasonal prediction of summer rainfall in East Asia.The connection between the LLA CEFs and East Asian summer monsoon rainfall may be partly due to its linkage with El Nino-Southern Oscillation.In addition,both the LLA and LLS CEFs exhibited interdecadal shifts in the late 1970s and the late 1990s,consistent with the phase shifts of Pacific Decadal Oscillation(PDO).  相似文献   

13.
In this paper, a 5-level spectral AGCM is used to examine the sensitivity of simulated East Asian summer monsoon circulation and rainfall to cumulus parameterization schemes. From the simulated results of East Asian monsoon circulations and rainfalls during the summers of 1987 and 1995, it is shown that the Kuo’s convective parameterization scheme is more suitable for the numerical simulation of East Asian summer monsoon rainfall and circulation. This may be due to that the cumulus in the rainfall system is not strong in the East Asian monsoon region. This paper is supported by the National Key Progranmme “96-908”.  相似文献   

14.
Summary The temperature and moisture data from TIROS operational vertical sounder (TOVS) are examined to obtain humidity parameters like, mid and upper tropospheric water vapour, and scale height of water vapour. Their usefulness in characterizing the onset of south-west (SW) monsoon over India is studied. The NOAA satellite data (finished product) with a resolution of 2.5° lat/lon are used to obtain these parameters during and prior to the SW monsoon season over selected regions during 1979 to 1985. The pentad averaged values in the western Indian Ocean showed an increase in scale height of water vapour and mid-tropospheric moisture (700–500 mb) over about 8 to 10 days prior to the onset over Kerala coast. The association of the moisture flux across the Indian Ocean and the rainfall over Kerala coast has also been examined. Results showed that the gradient of middle level moisture is stronger in the case of rainfall deficit years.With 13 Figures  相似文献   

15.
Summary The air-sea interaction processes over the tropical Indian Ocean region are studied using sea surface temperature data from the Advanced Very High Resolution Radiometer sensor onboard the NOAA series of satellites. The columnar water-vapour content, low-level atmospheric humidity, precipitation, wind speed, and back radiation from the Special Sensor Microwave Imager on board the U.S. Defense Meteorological Satellite Program are all examined for two contrasting monsoon years, namely 1987 (deficit rainfall) and 1988 (excess rainfall). From these parameters the longwave radiative net flux at the sea surface and the ocean-air moisture flux are derived for further analysis of the air-sea interaction in the Arabian Sea, the Bay of Bengal, the south China Sea and the southern Indian Ocean. An analysis of ten-day and monthly mean evaporation rates over the Arabian Sea and Bay of Bengal shows that the evaporation was higher in these areas during the low rainfall year (1987) indicating little or no influence of this parameter on the ensuing monsoon activity over the Indian subcontinent. On the other hand, the evaporation in the southern Indian Ocean was higher during July and September 1988 when compared with the same months of 1987. The evaporation rate over the south Indian Ocean and the low-level cross-equatorial moisture flux seem to play a major role on the ensuing monsoon activity over India while the evaporation over the Arabian Sea is less important. Since we have only analysed one deficit/ excess monsoon cycle the results presented here are of preliminary nature. Received November 5, 1997 Revised March 20, 1998  相似文献   

16.
Using the NCEP/NCAR reanalysis wind and temperature data (1948–2011) and India Meteorological Department (IMD) rainfall data, a long-term trend in the tropical easterly jet stream and its effect on Indian summer monsoon rainfall has been explained in the present study. A decreasing trend in zonal wind speed at 100 mb (maximum decrease), 150 mb, and 200 mb (minimum) is observed. The upper-level (100, 150, and 200 mb) zonal wind speed has been correlated with the surface air temperature anomaly index (ATAI) in the month of May, which is taken as the difference in temperature anomaly over land (22.5°N–27.5°N, 80°E–90°E) and Ocean (5°S–0°S, 75°E–85°E). Significant high correlation is observed between May ATAI and tropical easterly jet stream (TEJ) which suggests that the decreasing land–sea temperature contrast could be one major reason behind the decreasing trend in TEJ. The analysis of spatial distribution of rainfall over India shows a decreasing trend in rainfall over Jammu and Kashmir, Arunachal Pradesh, central Indian region, and western coast of India. Increasing trend in rainfall is observed over south peninsular and northeastern part of India. From the spatial correlation analysis of zonal wind with gridded rainfall, it is observed that the correlation of rainfall is found to be high with the TEJ speed over the regions where the decreasing trend in rainfall is observed. Similarly, from the analysis of spatial correlation between rainfall and May ATAI, positive spatial correlation is observed between May ATAI and summer monsoon rainfall over the regions such as south peninsular India where the rainfall trend is positive, and negative correlation is observed over the places such as Jammu and Kashmir where negative rainfall trend is observed. The decreased land–sea temperature contrast in the pre-monsoon month could be one major reason behind the decreased trend in TEJ as well as the observed spatial variation in the summer monsoon rainfall trend. Thus, the study explained the long-term trend in TEJ and its relation with May month temperature over the Indian Ocean and land region and its effect on the trend and spatial distribution of Indian summer monsoon rainfall.  相似文献   

17.
Weakening of Indian summer monsoon in recent decades   总被引:13,自引:3,他引:10  
The analysis of 43 years of NCEP-NCAR reanalysis data and station observations reveals the connections between tropospheric temperature variations and the weakening of the Indian summer monsoon circulation. The Indian summer monsoon variation is strongly linked to tropospheric temperature over East Asia, showing significant positive correlations of mean tropospheric temperature with all-Indian summer rainfall and the monsoon circulation intensity. The result shows that Indian summer monsoon circulation underwent two weakening processes in recent decades. The first occurred in circa the mid-1960s, and the other occurred in circa the late 1970s. The finding indicates that the mean tropospheric temperature may play a crucial role in the weakening of the Indian summer monsoon intensity via changing land-sea thermal contrast. The role of the tropospheric temperature contrast between East Asia and the tropical area from the eastern Indian Ocean to the tropical western Pacific is to weaken the Indian summer monsoon circulation.  相似文献   

18.
In this paper, we have compared and contrasted competing influences of greenhouse gases (GHG) warming and aerosol forcing on Asian summer monsoon circulation and rainfall based on CMIP5 historical simulations. Under GHG-only forcing, the land warms much faster than the ocean, magnifying the pre-industrial climatological land-ocean thermal contrast and hemispheric asymmetry, i.e., warmer northern than southern hemisphere. A steady increasing warm-ocean-warmer-land (WOWL) trend has been in effect since the 1950’s substantially increasing moisture transport from adjacent oceans, and enhancing rainfall over the Asian monsoon regions. However, under GHG warming, increased atmospheric stability due to strong reduction in mid-tropospheric and near surface relative humidity coupled to an expanding subsidence areas, associated with the Deep Tropical Squeeze (DTS, Lau and Kim, 2015b) strongly suppress monsoon convection and rainfall over subtropical and extratropical land, leading to a weakening of the Asian monsoon meridional circulation. Increased anthropogenic aerosol emission strongly masks WOWL, by over 60% over the northern hemisphere, negating to a large extent the rainfall increase due to GHG warming, and leading to a further weakening of the monsoon circulation, through increasing atmospheric stability, most likely associated with aerosol solar dimming and semi-direct effects. Overall, we find that GHG exerts stronger positive rainfall sensitivity, but less negative circulation sensitivity in SASM compared to EASM. In contrast, aerosols exert stronger negative impacts on rainfall, but less negative impacts on circulation in EASM compared to SASM.  相似文献   

19.
Monsoon depressions (MDs) constitute a large fraction of the total rainfall during the Indian summer monsoon season. In this study, the impact of high-resolution land state is addressed by assessing the evolution of inland moving depressions formed over the Bay of Bengal using a mesoscale modeling system. Improved land state is generated using High Resolution Land Data Assimilation System employing Noah-MP land-surface model. Verification of soil moisture using Soil Moisture and Ocean Salinity (SMOS) and soil temperature using tower observations demonstrate promising results. Incorporating high-resolution land state yielded least root mean squared errors with higher correlation coefficient in the surface and mid tropospheric parameters. Rainfall forecasts reveal that simulations are spatially and quantitatively in accordance with observations and provide better skill scores. The improved land surface characteristics have brought about the realistic evolution of surface, mid-tropospheric parameters, vorticity and moist static energy that facilitates the accurate MDs dynamics in the model. Composite moisture budget analysis reveals that the surface evaporation is negligible compared to moisture flux convergence of water vapor, which supplies moisture into the MDs over land. The temporal relationship between rainfall and moisture convergence show high correlation, suggesting a realistic representation of land state help restructure the moisture inflow into the system through rainfall-moisture convergence feedback.  相似文献   

20.
梅雨前后亚洲季风区平均散度风环流和水汽输送的研究   总被引:1,自引:0,他引:1  
费建芳  乔全明 《气象学报》1994,52(4):452-459
分析了1983年江淮流域梅雨期及其前后亚洲季风区平均散度风环流和垂直积分水汽输送的辐散分量。在入梅前强水汽辐合中心位于华南,出梅后则位于印度季风区,梅雨期这两地区都存在着强水汽辐合中心,并且强水汽辐合区和中国东部雨带的位置变化及热源分布有着密切关系。同时指出,江谁流域梅雨与大尺度辐散环流的变化、热源的配置及水汽辐合的位置有着较好的对应关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号