首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Black and white dolomite crystals (mm to cm width) of different isotopic composition are associated with Triassic diapirism in central Tunisia, as well as with evaporite minerals and clays. The white dolomites occur mostly in the Jabal Hadifa diapir near the contact with Cretaceous limestones, whereas the smaller black dolomites occur in the Jabal Hamra diapir. The former dolomite has a narrow range of δ18O and δ13C values (− 3.83‰ to − 6.60‰ VPDB for δ18O; − 2.11‰ to − 2.83‰ VPDB for δ13C), whereas the latter dolomite has a wider range and more depleted values (− 4.92‰ to − 9.97‰ for δ18O; − 0.55‰ to − 6.08‰ for δ13C). However, the 87Sr / 86Sr ratios of most of the samples are near Triassic seawater values. Dolomite formation is due to at least two different fluids. The main fluid originated from deeper hydrothermal or basinal sources related to the Triassic saliferous rocks and ascended through faults during the diapiric intrusion. The second, less important fluid source is related to meteoric water originating from Cretaceous rocks.  相似文献   

2.
The isotopic composition of Fe was determined in water, Fe-oxides and sulfides from the Tinto and Odiel Basins (South West Spain). As a consequence of sulfide oxidation in mine tailings both rivers are acidic (1.45 < pH < 3.85) and display high concentrations of dissolved Fe (up to 420 mmol l− 1) and sulphates (up to 1190 mmol l− 1).The δ56Fe of pyrite-rich samples from the Rio Tinto and from the Tharsis mine ranged from − 0.56 ± 0.08‰ to + 0.25 ± 0.1‰. δ56Fe values for Fe-oxides precipitates that currently form in the riverbed varied from − 1.98 ± 0.10‰ to 1.57 ± 0.08‰. Comparatively narrower ranges of values (− 0.18 ± 0.08‰ and + 0.21 ± 0.14‰) were observed in their fossil analogues from the Pliocene–Pleistocene and in samples from the Gossan (the oxidized layer that formed through exposure to oxygen of the massive sulfide deposits) (− 0.36 ± 0.12‰ to 0.82 ± 0.07‰). In water, δ56Fe values ranged from − 1.76 ± 0.10‰ to + 0.43 ± 0.05‰.At the source of the Tinto River, fractionation between aqueous Fe(III) and pyrite from the tailings was less than would be expected from a simple pyrite oxidation process. Similarly, the isotopic composition of Gossan oxides and that of pyrite was different from what would be expected from pyrite oxidation. In rivers, the precipitation of Fe-oxides (mainly jarosite and schwertmannite and lesser amounts of goethite) from water containing mainly (more than 99%) Fe(III) with concentrations up to 372 mmol l− 1 causes variable fractionation between the solid and the aqueous phase (− 0.98‰ < Δ56Fesolid–water < 2.25‰). The significant magnitude of the positive fractionation factor observed in several Fe(III) dominated water may be related to the precipitation of Fe(III) sulphates containing phases.  相似文献   

3.
Elemental (C/N ratio) and C isotope composition (δ13C) of particulate organic C (POC) and organic C content (OC) of total suspended solids (TSS) were determined for two subtropical karstic tributaries of the Yangtze River, the Wujiang (the eighth largest tributary) and Yuanjiang (the third largest tributary). For the latter, two headwaters, the karstic Wuyanghe and non-karstic Qingshuijiang were studied. The Wujiang catchment is subject to intensive land use, has low forest coverage and high soil erosion rate. The δ13C of POC covered a range from −30.6‰ to −24.9‰, from −27.6‰ to −24.7‰, and from −26.2‰ to −23.3‰ at the low-water stage, while at the high-water stage varied in a span between −28.6‰ and −24.4‰, between −27.7‰ and −24.5‰, and between −27.6‰ and −24.2‰ for the Wujiang, Wuyanghe, and Qingshuijiang, respectively. The combined application of C isotopes, C/N ratio, OC, and TSS analyses indicated that catchment soil was the predominant source of POC for the Wujiang while for the Wuyanghe and Qingshuijiang, in-stream processes supplied the main part of POC in winter and summer. A significant increase in δ13C value (1.4‰) of POC was found in the Wujiang during summer, and was attributed to the enhanced soil erosion of the dry arable uplands close to the riverbanks of the main channel. Based on a conservative estimate, POC fluxes were 3.123 × 1010, 0.084 × 1010, and 0.372 × 1010 g a−1 while export rates of POC were 466, 129, and 218 mg m−2 a−1 for the Wujiang, Wuyanghe, and Qingshuijiang, respectively. The POC export rate for the karstic Wujiang, with intensive land use, was 2–3 higher than that of the karstic Wuyanghe or of the non-karstic Qingshuijiang where soil erosion was minor. Such high values imply rapid degradation of related karstic ecosystems impacted by intensive land use activities, and pose a potential threat to the health of the Three Gorges Reservoir.  相似文献   

4.
Groundwaters and surface water in the Shihongtan sandstone-hosted U ore district, Xinjiang, NW China, were sampled and analyzed for their major-, and trace element concentrations and oxygen, hydrogen, boron and strontium isotope compositions in order to assess the possible origins of the waters and water–rock interactions that occurred in the deep aquifer system. The waters in the study district have been grouped into three hydrochemical facies: Facies 1, potable spring-water, is a pH neutral (7.0), Na–Ca–HCO3 type water with low total dissolved solids (TDS; 0.2 g/l, fresh) and has δ18O of − 8.3‰, δD of − 48.2‰,δ11B of 1.5‰, and 87Sr/86Sr of 0.70627. Facies 2 groundwaters are mildly acidic to mildly alkaline (pH of 6.5–8.0, mean 7.3), Na–Ca–Mg–Cl–SO4 type waters with moderate TDS (8.2 g/l–17.2 g/l, mean 9.3 g/l, brackish) and haveδ18O values in the − 5.8‰ to − 9.3‰ range (mean − 8.1‰), δD values in the − 20.8‰ to − 85.5‰ range (mean − 47.0‰),δ11B values in the + 9.5‰ to + 39.1‰ range (mean + 17.1‰), and 87Sr/86Sr values in the 0.70595 to 0.70975 range (mean 0.70826). Facies 3, Aiting Lake water, is a mildly alkaline (pH = 7.4), Na–Ca–Mg–Cl–SO4 type water with the highest TDS (249.1 g/l, brine) and has δ18O of − 2.8‰, δD of − 45.8‰,δ11B of 21.2‰, and 87Sr/86Sr of 0.70840. The waters from the study district show a systematic increase in major, trace element and TDS concentrations and δ11B values along the pathway of groundwater migration which can only be interpreted in terms of water–rock interaction at depth and strong surface evaporation. The hydrochemical and isotopic data presented here confirm that the groundwaters in the Shihongtan ore district are the combined result of migration, water–rock interaction and mixing of meteoric water with connate waters contained in sediments.  相似文献   

5.
Twenty two samples of calcretes from seven depth-profiles in the Menindee catchment, Broken Hill region, Australia were analysed for their inorganic and organic carbon contents and inorganic carbon and oxygen isotopes. The organic carbon content is very low (from 0.06 to 0.31 wt.%) while inorganic carbon (carbonate) is up to 3.9 wt.%. Both δ13C and δ18O become more positive closer to the surface. Carbon isotopes vary from − 8.5‰ to −5.5‰ PDB. Oxygen isotopes vary from − 6‰ to − 1.8‰ V-PDB. Depth-related δ13C and δ18O variations correlate over at least 15 km and show no significant variation along the flow path. δ13C values increase by 3‰ and δ18O values increase by 4‰ with decreasing depth in a 1.40 m thick soil profile. The variation is interpreted to indicate an increasingly elevated air temperature, greater water stress and subsequently an aridification of the area through time. The Broken Hill calcrete data confirm that climatic evolution can be deduced from isotopic series and be applied successfully to the Broken Hill region.  相似文献   

6.
The Cobre–Babilonia vein system formed during a single major hydrothermal stage and is part of the Taxco district in Guerrero, southern Mexico. Homogenization and ice melting temperatures range from 160 to 290 °C and from − 11.6 to − 0.5 °C, respectively. We determined an approximate thermal gradient of 17 to 20 °C per 100 m using fluid inclusions. A thermal peak marked by the 290 °C isotherm is interpreted as a major feeder channel to the veins. The highest content of Zn + Pb in ore coincides with the 220 and 240 °C isotherms. Salinities of mineralizing fluids range from 0.8 to 15.6 wt.% NaCl equiv, and are distributed in two populations that can be related with barren or ore-bearing vein sections, with 0.8 to 6 wt.% NaCl equiv and 7 to 15.6 wt.% NaCl equiv, respectively. δ13C and δ18O water values from calcite from the Cobre–Babilonia vein system and the Esperanza Vieja and Guadalupe mantos range − 5.4‰ to − 10.4‰ and 9.9‰ to 13.4‰, respectively. δ34S values range from 0‰ to 3.2‰ and − 0.7‰ to − 4.3‰ in sphalerite, − 4‰ to 0.9‰ in pyrite, and − 1.4‰ to − 5.5‰ in galena. Both fluid inclusion and stable isotope data are compatible with magmatic and meteoric sources for mineralizing fluids. Also, sulfur isotope compositions suggest both magmatic and sedimentary sources for sulfur.  相似文献   

7.
Si stable isotopes in the Earth's surface: A review   总被引:2,自引:0,他引:2  
Silicon (Si) is the second most abundant element on Earth after oxygen. Only few studies have attempted to use stable isotopes of Si as proxies for understanding the Si cycle and its variations in the past. By using three different methods (IRMS, MC–ICP–MS and SIMS), the overall measurements show that the isotopic composition (δ30Si) of terrestrial samples ranges from − 5.7‰ to + 3.4‰. Dissolved Si in rivers and seawater is 30Si-enriched (− 0.8‰ < δ30Si < + 3.4‰) compared to Si in endogeneous rocks (− 1.1‰ < δ30Si < + 0.7‰). This global enrichment is counterbalanced by the Si-bearing phases (biogenic silica, clays, quartz) where Si is, in average, 30Si-depleted (− 5.7‰ < δ30Si < + 2.6‰). These values are the result of fractionation which have been measured or estimated from − 0.3‰ to − 3.8‰. The fractionation is modeled by two types of approaches: the Rayleigh distillation model (closed system) and the steady-state model (open system). These models have been used in the most recent studies to explain the observed δ30Si variations in continental environments and in the sub-Antarctic Ocean.  相似文献   

8.
The genesis of Lower Eocene calcite-cemented columns, “pisoid”-covered structures and horizontal interbeds, clustered in dispersed outcrops in the Pobiti Kamani area (Varna, Bulgaria) is related to fossil processes of hydrocarbon migration. Field observations, petrography and stable isotope geochemistry of the cemented structures and associated early-diagenetic veins, revealed that varying seepage rates of a single, warm hydrocarbon-bearing fluid, probably ascending along active faults, controlled the type of structure formed and its geochemical signature. Slow seepage allowed methane to oxidize within the sediment under ambient seafloor conditions (δ18O = − 1 ± 0.5‰ V-PDB), explaining columns' depleted δ13C ratios of − 43‰. Increasing seepage rates caused methane to emanate into the water column (δ13C = − 8‰) and raised precipitation temperatures (δ18O = − 8‰). Calcite-cemented conduits formed and upward migrating fluids also affected interbed cementation. Even higher-energy fluid flow and temperatures likely controlled the formation of “pisoids”, whereby sediment was whirled up and cemented.  相似文献   

9.
Sulfur and carbon contents and isotope ratios are reported for five Archean iron-formations, Helen, Nakina and Finlayson, Lumby and Bending Lake areas, distributed across 850 km of the Canadian shield all 2.7 Ga-old.A δ34S profile through a complete stratigraphic column (oxide facies excluded) of the Helen iron-formation shows a δ34S range of 30.2‰, mean δ34S value of 2.5‰ and a standard deviation (δi) of 7.3‰ In sharp contrast to the sulfide and siderite facies, the oxide facies in the column shows a uniform δ34S value close to zero. The δ34S values obtained for the other four iron-formations are again wide ranging, highly variable in the sulfide and pyrite—siderite facies, but uniform and close to zero for the oxide facies.The carbon in the oxide, siderite, chert facies has δ13C values of +2.3 to −1.1‰ in the range of Phanerozoic marine carbonates. However, the carbonates in the graphite rich sulfide facies have δ13C values as low as −7.6‰. The mixing of reduced carbon with marine carbonate is suggested to explain the light carbonate values. The reduced carbon associated with the light carbonate is also relatively light at up to δ13Corg = 33.5‰, but is in the range of other Precambrian values. Distal, high temperature, abiogenic sulfate reduction as a source of highly fractionated sulfides in the Archean iron-formations is ruled out on the basis of both isotopic and geologic evidence. It is concluded that only the bacterial reduction of sulfate at low temperatures could produce the wide ranging, highly variable δ34S values exhibited by these sulfides over large areas.  相似文献   

10.
We have measured the boron concentration and isotope composition of regionally expansive borate deposits and geothermal fluids from the Cenozoic geothermal system of the Argentine Puna Plateau in the central Andes. The borate minerals borax, colemanite, hydroboracite, inderite, inyoite, kernite, teruggite, tincalconite, and ulexite span a wide range of δ11B values from −29.5 to −0.3‰, whereas fluids cover a range from −18.3 to 0.7‰. The data from recent coexisting borate minerals and fluids allow for the calculation of the isotope composition of the ancient mineralizing fluids and thus for the constraint of the isotope composition of the source rocks sampled by the fluids. The boron isotope composition of ancient mineralizing fluids appears uniform throughout the section of precipitates at a given locality and similar to values obtained from recent thermal fluids. These findings support models that suggest uniform and stable climatic, magmatic, and tectonic conditions during the past 8 million years in this part of the central Andes. Boron in fluids is derived from different sources, depending on the drainage system and local country rocks. One significant boron source is the Paleozoic basement, which has a whole-rock isotopic composition of δ11B=−8.9±2.2‰ (1 SD); another important boron contribution comes from Neogene-Pleistocene ignimbrites (δ11B=−3.8±2.8‰, 1 SD). Cenozoic andesites and Mesozoic limestones (δ11B≤+8‰) provide a potential third boron source.  相似文献   

11.
The 1.27 Ga old Ivigtut (Ivittuut) intrusion in South Greenland is world-famous for its hydrothermal cryolite deposit [Na3AlF6] situated within a strongly metasomatised A-type granite stock. This detailed fluid inclusion study characterises the fluid present during the formation of the cryolite deposit and thermodynamic modelling allows to constrain its formation conditions.Microthermometry revealed three different types of inclusions: (1) pure CO2, (2) aqueous-carbonic and (3) saline-aqueous inclusions. Melting temperatures range between − 23 and − 15 °C for type 2 and from − 15 to − 10 °C for type 3 inclusions. Most inclusions homogenise between 110 and 150 °C into the liquid.Stable isotope compositions of CO2 and H2O were measured from crushed inclusions in quartz, cryolite, fluorite and siderite. The δ13C values of about − 5‰ PDB are typical of mantle-derived magmas. The differences between δ18O of CO2 (+ 21 to + 42‰ VSMOW) and δ18O of H2O (− 1 to − 21.7‰ VSMOW) suggest low-temperature isotope exchange. δD (H2O) ranges from − 19 to − 144‰ VSMOW. The isotopic composition of inclusion water closely follows the meteoric water line and is comparable to Canadian Shield brines. Ion chromatography revealed the fluid's predominance in Na, Cl and F. Cl/Br ratios range between 56 and 110 and may imply intensive fluid–rock interaction with the host granite.Isochores deduced from microthermometry in conjunction with estimates for the solidification of the Ivigtut granite suggest a formation pressure of approximately 1–1.5 kbar for the fluid inclusions. Formation temperatures of different types of fluid inclusions vary between 100 and 400 °C. Thermodynamic modelling of phase assemblages and the extraordinary high concentration in F (and Na) may indicate that the cryolite body and its associated fluid inclusions could have formed during the continuous transition from a volatile-rich melt to a solute-rich fluid.  相似文献   

12.
The presence of dolomite breccia patches along Wadi Batha Mahani suggests large-scale fluid flow causing dolomite formation. The controls on dolomitization have been studied, using petrography and geochemistry. Dolomitization was mainly controlled by brecciation and the nearby Hagab thrust. Breccias formed as subaerial scree deposits, with clay infill from dissolved platform limestones, during Early Cretaceous emergence. Cathodoluminescence of the dolostones indicates dolomitization took place in two phases. First, fine-crystalline planar-s dolomite replaced the breccias. Later, these dolomites were recrystallized by larger non-planar dolomites. The stable isotope trend towards depleted values (δ18O: − 2.7‰ to − 10.2‰ VPDB and δ13C: − 0.6‰ to − 8.9‰ VPDB), caused by mixing dolomite types during sampling, indicates type 2 dolomites were formed by hot fluids. Microthermometry of quartz cements and karst veins, post-dating dolomites, also yielded high temperatures. Hot formation waters which ascended along the Hagab thrust are invoked to explain type 2 dolomitization, silicification and hydrothermal karstification.  相似文献   

13.
The calcite cement in the Lower Ordovician Majiagou Formation in the Ordos basin in northern China can be subdivided into three groups based on preliminary results of oxygen and carbon isotopes and fluid inclusion microthermometry. Group 1 has low oxygen isotopes (− 14‰ to − 18‰), low Th values (92–103 °C), and low salinities (1.7–4.9 wt.% NaCl equivalent) and is interpreted to have precipitated during early burial from porewater influenced by meteoric water. Group 2 has much higher oxygen isotope values (− 5‰ to − 8‰), which, coupled with the higher Th values (136–151 °C), suggest that the calcite was precipitated from fluids that were significantly enriched in 18O, possibly resulting from fluid–rock reaction during burial. Group 3 occurring along fractures is characterized by high salinities (21–28 wt.% NaCl equivalent) and is interpreted to have been precipitated from locally preserved residual evaporitic brines. The occurrence of primary hydrocarbon inclusions and its low carbon isotopes (− 11‰ to − 15‰) suggest that precipitation of group 3 calcite took place in the presence of hydrocarbons.  相似文献   

14.
Different types of free water have been analysed for their deuterium and chemical composition in order to evaluate their source, mixing phenomena, and the underground dynamics. All types of ground water (mineral, geothermal and wellhead water) display δD values (− 82.6‰ to − 72.6‰) similar to surface waters from the studied area (− 77.1‰ to − 73.6‰). The global salt content varies from 1102 to 8707 mg/l for the groundwater, and from 46 to 392 mg/l for the surface water. From the co-variation between the δD values and the chemical composition of the waters, as well as from the seasonal variation of these two parameters, it is evident that the free water from Tuşnad Băi are meteoric in origin. The mineralization of the mineral water took place by means of an intense underground circulation, probably in the fault system developed within the Neogene magmatites.  相似文献   

15.
Turnover of C in soils is the dominant flux in the global C cycle and is responsible for transporting 20 times the quantity of anthropogenic emissions each year. This paper investigates the potential for soils to be modified with Ca-rich materials (e.g. demolition waste or basic slag) to capture some of the transferred C as geologically stable CaCO3. To test this principal, artificial soil known to contain Ca-rich minerals (Ca silicates and portlandite) was analysed from two sites across NE England, UK. The results demonstrate an average C content of 30 ± 15.3 Kg C m−2 stored as CaCO3, which is three times the expected organic C content and that it has accumulated at a rate of 25 ± 12.8 t C ha−1 a−1 since 1996. Isotopic analysis of the carbonates gave values between −6.4‰ and −27.5‰ for δ13C and −3.92‰ and −20.89‰ for δ18O, respectively (against V-PDB), which suggests that a combination of carbonate formation mechanisms are operating including the hydroxylation of gaseous CO2 in solution, and the sequestration of degraded organic C with minor remobilisation/precipitation of lithogenic carbonates. This study implies that construction/development sites may be designed with a C capture function to sequester atmospheric C into the soil matrix with a maximum global potential of 290 Mt C a−1.  相似文献   

16.
The presence of oil shows associated with fractures provides a significant opportunity to a) unravel the type, origin and evolution of fluids involved in fracture-fills, and b) examine how they relate to oil migration. Two stages of calcite cement (C1 and C2) were distinguished in the fractures of the Eocene Armàncies platform carbonates; C1 is characterised by fence-like crystals, exhibits dull red luminescence and contains abundant twin planes, inclusions and δ18O values that range from − 6.2‰ to − 4.8‰ VPDB. C2 consists of blocky clean crystals, is characterized by dark brown-red luminescence that alternates with yellow bands, and contains hydrocarbon fluid inclusions with homogenisation temperatures of approximately 120 °C. δ18O values range from − 9.6‰ to − 8.9‰ VPDB. The remaining porosity after C2 precipitation is filled with liquid oil that reached 115 °C. This would seem to indicate that free oil and fluid inclusions oil probably come from the same migration pulse. Oil migration timing was coeval with C2 and continued after calcite cementation was completed.  相似文献   

17.
The Daduhe gold field comprises several shear-zone-controlled Tertiary lode gold deposits distributed at the eastern margin of the Tibetan Plateau. The deposits are hosted in a Precambrian granite–greenstone terrane within the Yangtze Craton. The gold mineralization occurs mainly as auriferous quartz veins with minor sulphide minerals. Fluid inclusions in pyrite have 3He/4He ratios of 0.16 to 0.86 Ra, whereas their 40Ar/36Ar ratios range from 298 to 3288, indicating a mixing of fluids of mantle and crust origins. The δ34S values of pyrite are of 0.7–4.2‰ (n = 12), suggesting a mantle source or leaching from the mafic country rocks. δ18O values calculated from hydrothermal quartz are between − 1.5‰ and + 6.0‰ and δD values of the fluids in the fluid inclusions in quartz are − 39‰ and − 108‰. These ranges demonstrate a mixing of magmatic/metamorphic and meteoric fluids. The noble gas isotopic data, along with the stable isotopic data suggest that the ore-forming fluids have a dominantly crustal source with a significant mantle component.  相似文献   

18.
Coal-derived hydrocarbons from Middle–Lower Jurassic coal-bearing strata in northwestern China are distributed in the Tarim, Junggar, Qaidam, and Turpan-Harmi basins. The former three basins are dominated by coal-derived gas fields, distributed in Cretaceous and Tertiary strata. Turpan-Harmi basin is characterized by coal-derived oil fields which occur in the coal measures. Based on analysis of gas components and carbon isotopic compositions from these basins, three conclusions are drawn in this contribution: 1) Alkane gases with reservoirs of coal measures have no carbon isotopic reversal, whereas alkane gases with reservoirs not of coal measures the extent of carbon isotopic reversal increases with increasing maturity; 2) Coal-derived alkane gases with high δ13C values are found in the Tarim and Qaidam basins (δ13C1: − 19.0 to − 29.9‰; δ13C2: − 18.8 to − 27.1‰), and those with lowest δ13C values occur in the Turpan-Harmi and Junggar basins (δ13C1: − 40.1 to − 44.0‰; δ13C2: − 24.7 to − 27.9‰); and 3) Individual specific carbon isotopic compositions of light hydrocarbons (C5–8) in the coal-derived gases are lower than those in the oil-associated gases. The discovered carbon isotopic reversal of coal-derived gases is caused by isotopic fractionation during migration and secondary alteration. The high and low carbon isotopic values of coal-derived gases in China may have some significance on global natural gas research, especially the low carbon isotope value of methane may provide some information for early thermogenic gases. Coal-derived methane typically has much heavier δ13C than that of oil-associated methane, and this can be used for gas–source rock correlation. The heavy carbon isotope of coal-derived ethane is a common phenomenon in China and it shed lights on the discrimination of gas origin. Since most giant gas fields are of coal-derived origin, comparative studies on coal-derived and oil-associated gases have great significance on future natural gas exploration in the world.  相似文献   

19.
We have analysed the halogen concentrations and chlorine stable isotope composition of fluid inclusion leachates from three spatially associated Fe-oxide ± Cu ± Au mineralising systems in Norrbotten, Sweden. Fluid inclusions in late-stage veins in Fe-oxide–apatite deposits contain saline brines and have a wide range of Br/Cl molar ratios, from 0.2 to 1.1 × 10−3 and δ37Cl values from −3.1‰ to −1.0‰. Leachates from saline fluid inclusions from the Greenstone and Porphyry hosted Cu–Au prospects have Br/Cl ratios that range from 0.2 to 0.5 × 10−3 and δ37Cl values from −5.6‰ to −1.3‰. Finally, the Cu–Au deposits hosted by the Nautanen Deformation Zone (NDZ) have Br/Cl molar ratios from 0.4 to 1.1 × 10−3 and δ37Cl values that range from −2.4‰ to +0.5‰, although the bulk of the data fall within 0‰ ± 0.5‰.The Br/Cl ratios of leachates are consistent with the derivation of salinity from magmatic sources or from the dissolution of halite. Most of the isotopic data from the Fe-oxide–apatite and Greenstone deposits are consistent with a mantle derived source of the chlorine, with the exception of the four samples with the most negative values. The origin of the low δ37Cl values in these samples is unknown but we suggest that there may have been some modification of the Cl-isotope signature due to fractionation between the mineralising fluids and Cl-rich silicate assemblages found in the alteration haloes around the deposits. If such a process has occurred then a modified crustal source of the chlorine for all the samples cannot be ruled out although the amount of fractionation necessary to generate the low δ37Cl values would be significantly larger.The source of Cl in the NDZ deposits has a crustal signature, which suggests the Cl in this system may be derived from (meta-) evaporites or from input from crustal melts such as granitic pegmatites of the Lina Suite.  相似文献   

20.
Previous studies on the coal-bed methane potential of the Zonguldak basin have indicated that the gases are thermogenic and sourced by the coal-bearing Carboniferous units. In this earlier work, the origin of coal-bed gas was only defined according to the molecular composition of gases and to organic geochemical properties of the respective source rocks, since data on isotopic composition of gases were not available. Furthermore, in the western Black Sea region there also exist other source rocks, which may have contributed to the coal-bed gas accumulations. The aim of this study is to determine the origin of coal-bed gas and to try a gas-source rock correlation. For this purpose, the molecular and isotopic compositions of 13 headspace gases from coals and adjacent sediments of two wells in the Amasra region have been analyzed. Total organic carbon (TOC) measurements and Rock-Eval pyrolysis were performed in order to characterize the respective source rocks. Coals and sediments are bearing humic type organic matter, which have hydrogen indices (HI) of up to 300 mgHC/gTOC, indicating a certain content of liptinitic material. The stable carbon isotope ratios (δ13C) of the kerogen vary from −23.1 to −27.7‰. Air-free calculated gases contain hydrocarbons up to C5, carbon dioxide (<1%) and a considerable amount of nitrogen (up to 38%). The gaseous hydrocarbons are dominated by methane (>98%). The stable carbon isotope ratios of methane, ethane and propane are defined as δ13C1: −51.1 to −48.3‰, δ13C2: −37.9 to −25.3‰, δ13C3: −26.0 to −19.2 ‰, respectively. The δD1 values of methane range from −190 to −178‰. According to its isotopic composition, methane is a mixture, partly generated bacterially, partly thermogenic. Molecular and isotopic composition of the gases and organic geochemical properties of possible source rocks indicate that the thermogenic gas generation took place in coals and organic rich shales of the Westphalian-A Kozlu formation. The bacterial input can be related to a primary bacterial methane generation during Carboniferous and/or to a recent secondary bacterial methane generation. However, some peculiarities of respective isotope values of headspace gases can also be related to the desorption process, which took place by sampling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号