首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
With a clear understanding of the drilling fluid techniques and the cutting-taking mechanism, a new advanced model is set up for analyzing field data and quantitative forecast of cutting-taking mechanism. Therefore, a number of values affecting the drilling rate and the hole cleaning are studied over a wide range of parameters. Drilling data obtained under high-borehole-pressure conditions are analyzed to determine the causes of the reduction in rate of penetration (ROP) as the borehole pressure increases, which in some cases is caused by the buildup of rock debris under the bit. The theoretical achievement and testing conclusions can be very instructional for horizontal well drilling. Much higher annular velocities are required for effective hole cleaning in directional wells than in vertical wells. Highviscosity muds are observed to provide better transport than low-viscosity muds.  相似文献   

2.
Reservoir porosity is a critical parameter for the process of unconventional oil and gas resources assessment. It is difficult to determine the porosity of a gas shale reservoir, and any large deviation will directly reduce the credibility of any shale gas resources evaluation. However, there is no quantitative explanation for the accuracy of porosity measurement. In this paper, measurement uncertainty, an internationally recognized index, was used to evaluate the results of porosity measurement of gas shale plugs, and its impact on the credibility of shale gas resources assessment was determined. The following conclusions are drawn:(1) the measurement uncertainty of porosity of a shale plug is 1.76%–3.12% using current measurement methods, the upper end of which is too large to be acceptable. It is suggested that the measurement uncertainty should be factored into the standard helium gas injection porosity determination experiment, and the uncertainty should be less than 2.00% when using a high-precision pressure gauge;(2) in order to reduce the risk for exploration and decision-making, attention should be paid to the large uncertainty(30% at least) of shale gas resource assessment results, sometimes with corrections being made based on the practical considerations;(3) a pressure gauge with an accuracy of 0.25% of the full scal cannot meet the requirements of porosity measurement, and a high-precision plug cutting method or high-precision bulk volume measurement method such as one using 3 D scanning, is recommended to effectively reduce porosity uncertainty;(4) the method and process for evaluating the measurement uncertainty of gas shale porosity could also be referred for assessment of experimental quality by other laboratories.  相似文献   

3.
Knowledge of pore-water pressure(PWP)variation is fundamental for slope stability.A precise prediction of PWP is difficult due to complex physical mechanisms and in situ natural variability.To explore the applicability and advantages of recurrent neural networks(RNNs)on PWP prediction,three variants of RNNs,i.e.,standard RNN,long short-term memory(LSTM)and gated recurrent unit(GRU)are adopted and compared with a traditional static artificial neural network(ANN),i.e.,multi-layer perceptron(MLP).Measurements of rainfall and PWP of representative piezometers from a fully instrumented natural slope in Hong Kong are used to establish the prediction models.The coefficient of determination(R^2)and root mean square error(RMSE)are used for model evaluations.The influence of input time series length on the model performance is investigated.The results reveal that MLP can provide acceptable performance but is not robust.The uncertainty bounds of RMSE of the MLP model range from 0.24 kPa to 1.12 k Pa for the selected two piezometers.The standard RNN can perform better but the robustness is slightly affected when there are significant time lags between PWP changes and rainfall.The GRU and LSTM models can provide more precise and robust predictions than the standard RNN.The effects of the hidden layer structure and the dropout technique are investigated.The single-layer GRU is accurate enough for PWP prediction,whereas a double-layer GRU brings extra time cost with little accuracy improvement.The dropout technique is essential to overfitting prevention and improvement of accuracy.  相似文献   

4.
Prospectivity analyses are used to reduce the exploration search space for locating areas prospective for mineral deposits.The scale of a study and the type of mineral system associated with the deposit control the evidence layers used as proxies that represent critical ore genesis processes.In particular,knowledge-driven approaches(fuzzy logic)use a conceptual mineral systems model from which data proxies represent the critical components.These typically vary based on the scale of study and the type of mineral system being predicted.Prospectivity analyses utilising interpreted data to represent proxies for a mineral system model inherit the subjectivity of the interpretations and the uncertainties of the evidence layers used in the model.In the case study presented,the prospectivity for remobilised nickel sulphide(NiS)in the west Kimberley,Western Australia,is assessed with two novel techniques that objectively grade interpretations and accommodate alternative mineralisation scenarios.Exploration targets are then identified and supplied with a robustness assessment that reflects the variability of prospectivity value for each location when all models are considered.The first technique grades the strength of structural interpretations on an individual line-segment basis.Gradings are obtained from an objective measure of feature evidence,which is the quantification of specific patterns in geophysical data that are considered to reveal underlying structure.Individual structures are weighted in the prospectivity model with grading values correlated to their feature evidence.This technique allows interpreted features to contribute prospectivity proportional to their strength in feature evidence and indicates the level of associated stochastic uncertainty.The second technique aims to embrace the systemic uncertainty of modelling complex mineral systems.In this approach,multiple prospectivity maps are each generated with different combinations of confidence values applied to evidence layers to represent the diversity of processes potentially leading to ore deposition.With a suite of prospectivity maps,the most robust exploration targets are the locations with the highest prospectivity values showing the smallest range amongst the model suite.This new technique offers an approach that reveals to the modeller a range of alternative mineralisation scenarios while employing a sensible mineral systems model,robust modelling of prospectivity and significantly reducing the exploration search space for Ni.  相似文献   

5.
Landslides are one of the most common and a destructive natural hazard in mountainous terrain and thus evaluating their potential locations and the conditions under which they may occur is crucial for their hazard assessment.Shallow landslide occurrence in soil and regolith covered slopes are often modeled using the infinite slope model,which characterizes the slope stability in terms of a factor of safety(FS) value.Different approaches have been followed to also assess and propagate uncertainty through such models.Haneberg(2004) introduced the use of the First Order Second Moment(FOSM) method to propagate input uncertainty through the infinite slope model,further developing the model and implementing it in the PISA-m software package(Haneberg,2007).Here we present an ArcPy implementation of PISA-m algorithms,which can be run from ESRI ArcMap in an entirely consistent georeferenced framework,and which we call "GIS Tool for Infinite Slope Stability Analysis"(GIS-TISSA).Users can select between different input options,e.g.,following a similar input style as for PISA-m,i.e., using an ASCII.csv parameters input file,or providing each input parameter as a raster or constant value,through the program graphic user interface.Analysis outputs can include FS mean and standard deviation estimates,the probability of failure(FS <1), and a reliability index(RI) calculation for FS.Following the same seismic analysis approach as in PISA-m, the Newmark acceleration can also be done,for which raster files of the mean,standard deviation,probability of exceedance,and RI are also generated.Verification of the code is done by replicating the results obtained with the PISA-m code for different input options,within a 10-5 relative error.Monte Carlo modeling is also applied to validate GIS-TISSA outputs,showing a good overall correspondence.A case study was performed for Kannur district,Kerala,India,where an extensive landslide databa se for the year 2018 was available.81.19% of the actual landslides fell in zones identified by the model as unstable.GIS-TISSA provides a user-friendly interface,particularly for those users familiar with ESRI ArcMap,that is fully embedded in a GIS framework and which can then be used for further analysis without having to change software platforms and do data conversions.The ArcPy toolbox is provided as a.pyt file as an appendix as well as hosted at the weblink:https://pages.mtu.edu/~toommen/GeoHazard.html.  相似文献   

6.
Direct current resistivity and ground penetrating radar surveys were employed to obtain the value of the resistivity and dielectric constant in the brine near the Barrow, Alaska. The geophysical surveys were undertaken together with the permafrost drilling program for the measuring of the ground temperature regime and for the core sampling. The sampled cores were measured for their physical and chemical properties in the laboratory under different temperature conditions (-60 to 20 ℃). Laboratory results support field observations and led to the development of a technique for distinguishing freshwater taliks and brine layers in permafrost. These methods were also employed in freshwater taliks near Council,Alaska. The electrical resistivity is a powerful and sensitive parameter for brine detection. However, the resistivity is a less sensitive indicator of the soil type or water content under highly saline conditions.High frequency dielectric constant is an ideal second parameter for the indication of the soil type, liquid water content and other physical properties. The imaginary part of the dielectric constant and resistivity have a significant dependence upon salinity, i.e. upon freezing temperature. The ground temperature regime and the freezing point of the brine layer are important parameters for studying the electric properties of permafrost terrain.  相似文献   

7.
Study on tectonic fractures based on the inversion of tectonic stress fields is an effective method. In this study, a geological model was set up based on geological data from the Hudi Coal Mine, Qinshui Basin, a mechanical model was established under the condition of rock mechanics and geostress, and the finite element method was used to simulate the paleotectonic stress field. Based on the Griffith and Mohr-Coulomb criterion, the distribution of tectonic fractures in the Shanxi Formation during the Indosinian, Yanshanian, and Himalayan period can be predicted with the index of comprehensive rupture rate. The results show that the acting force of the Pacific Plate and the India Plate to the North China Plate formed the direction of principal stress is N-S, NW-SE, and NE-SW, respectively, in different periods in the study area. Changes in the direction and strength of the acting force led to the regional gradients of tectonic stress magnitude, which resulted in an asymmetrical distribution state of the stress conditions in different periods. It is suggested that the low-stress areas are mainly located in the fault zones and extend along the direction of the fault zones. Furthermore, the high-stress areas are located in the junction of fold belts and the binding site of multiple folds. The development of tectonic fractures was affected by the distribution of stress intensity and the tectonic position of folds and faults, which resulted in some developed areas with level Ⅰ and Ⅱ. There are obvious differences in the development of tectonic fractures in the fold and fault zones and the anticline and syncline structure at the same fold zones. The tectonic fractures of the Shanxi Formation during the Himalayan period are more developed than those during the Indosinian and Yanshanian period due to the superposition of the late tectonic movement to the early tectonic movement and the differences in the magnitude and direction of stress intensity.  相似文献   

8.
It is well known that the compressibility of crushable granular materials increases with the moisture content,due to the decrease of particle strength in a humid environment.An existing approach to take into account the effect of grain breakage in constitutive modeling consists in linking the evolution of the grain size distribution to the plastic work.But how the material humidity can affect this relationship is not clear,and experimental evidence is quite scarce.Based on compression tests on dry and saturated crushable sand recently reported by the present authors,a new non-linear relationship is proposed between the amount of particle breakage and the plastic work.The expression contains two parameters:(1)a material constant dependent on the grain characteristics and(2)a constant depending on the wetting condition(in this study,dry or saturated).A key finding is that the relationship does not depend on the stress path and,for a given wetting condition,only one set of parameters is necessary to reproduce the results of isotropic,oedometric,and triaxial compression tests.The relationship has been introduced into an elastoplastic constitutive model based on the critical state concept with a double yield surface for plastic sliding and compression.The breakage ratio is introduced into the expression of the elastic stiffness,the critical state line and the hardening compression pressure.Incremental stress-strain computations with the model allow the plastic work to be calculated and,therefore,the evolution of particle crushing can be predicted through the proposed non-linear relationship and reintroduced into the constitutive equations.Accurate predictions of the experimental results in terms of both stress-strain relationships and breakage ratio were obtained.  相似文献   

9.
The calculation of a maximum depositional age(MDA)from a detrital zircon sample can provide insight into a variety of geological problems.However,the impact of sample size and calculation method on the accuracy of a resulting MDA has not been evaluated.We use large populations of synthetic zircon dates(N≈25,000)to analyze the impact of varying sample size(n),measurement uncertainty,and the abundance of neardepositional-age zircons on the accuracy and uncertainty of 9 commonly used MDA calculation methods.Furthermore,a new method,the youngest statistical population is tested.For each method,500 samples of n synthetic dates were drawn from the parent population and MDAs were calculated.The mean and standard deviation of each method ove r the 500 trials at each n-value(50-1000,in increments of 50)were compa red to the known depositional age of the synthetic population and used to compare the methods quantitatively in two simulation scenarios.The first simulation scenario varied the proportion of near-depositional-age grains in the synthetic population.The second scenario varied the uncertainty of the dates used to calculate the MDAs.Increasing sample size initially decreased the mean residual error and standard deviation calculated by each method.At higher n-values(>~300 grains),calculated MDAs changed more slowly and the mean resid ual error increased or decreased depending on the method used.Increasing the p roportion of near-depositional-age grains and lowering measurement uncertainty decreased the number of measurements required for the calculated MDAs to stabilize and decreased the standard deviation in calculated MDAs of the 500 samples.Results of the two simulation scenarios show that the most successful way to increase the accuracy of a calculated M DA is by acquiring a large number of low-uncertainty measurements(300300)approach is used if the calculation of accurate MDAs are key to research goals.Other acquisition method s,such as high-to moderate-precision measurement methods(e.g.,1%-5%,2σ)acquiring low-to moderate-n datasets(50300).Additionally,they are most susceptible to producing erroneous MDAs due to contamination in the field or laboratory,or through disturbances of the youngest zircon’s U-Pb systematics(e.g.,lead loss).More conservative methods that still produce accurate MDAs and are less susceptible to contamination or lead loss include:youngest grain cluster at 1σunce rtainty(YGC 1σ),youngest grain clusterat 2σuncertainty(YGC 2σ),and youngest statistical population(YSP).The ages calculated by these methods may be more useful and appealing when fitting calculated MDAs in to pre-existing chronostratigraphic frameworks,as they are less likely to be younger than the true depositional age.From the results of our numerical models we illustrate what geologic processes(i.e.,tectonic or sedimentary)can be resolved using MDAs derived from strata of different ages.  相似文献   

10.
Groundwater is important for managing the water supply in agricultural countries like Bangladesh. Therefore, the ability to predict the changes of groundwater level is necessary for jointly planning the uses of groundwater resources. In this study, a new nonlinear autoregressive with exogenous inputs(NARX) network has been applied to simulate monthly groundwater levels in a well of Sylhet Sadar at a local scale. The Levenberg-Marquardt(LM) and Bayesian Regularization(BR) algorithms were used to train the NARX network, and the results were compared to determine the best architecture for predicting monthly groundwater levels over time. The comparison between LM and BR showed that NARX-BR has advantages over predicting monthly levels based on the Mean Squared Error(MSE), coefficient of determination(R~2), and Nash-Sutcliffe coefficient of efficiency(NSE). The results show that BR is the most accurate method for predicting groundwater levels with an error of ± 0.35 m. This method is applied to the management of irrigation water source, which provides important information for the prediction of local groundwater fluctuation at local level during a short period.  相似文献   

11.
吴翔 《地质与勘探》2012,48(4):835-839
[摘 要] 定向钻进中,实钻轨迹与设计控制目标之间往往存在误差,误差的定量分析对轨迹调整 与精度控制至关重要。论文依据定向钻进矢量控制原理,分析研究了造斜工具实钻矢量与设计轨迹控 制矢量之间的误差,根据实际钻进轨迹参数,得出了一种误差定量化分析、产生误差综合作用方向角度 和强度的简便计算方法。如果可以确知误差产生于地层自然造斜作用,该方法还可用于地层的各向异 性分析和自然造斜作用分析。该方法在地质勘探多回次、短钻程定向钻进工程实践中取得了很好的应 用效果,在随钻测量大钻程定向钻进轨迹的快速准确调整中也具有应用价值。  相似文献   

12.
基于EXCEL的定向钻井应用程序及其工程应用   总被引:1,自引:0,他引:1       下载免费PDF全文
定向钻井轨迹设计及控制软件较多,为方便工程现场应用,采用EXCEL计算公式及绘图功能,编制了EX—CEL在定向对接井的应用程序,通过工程实例,说明EXCEL能满足定向对接连通井计算精度要求。该程序简单易用,通过与地层信息相联,可及时判断轨迹穿过地层情况,大大地减少水平落平点失误。其EXCEL在定向对接连通井方面的应用,对长距离水平定向井、定向井和非开挖工程精确设计和施工具有指导意义。  相似文献   

13.
姚爱国  高辉  方小红 《探矿工程》2012,39(Z1):62-65
定向钻进技术已有近百年的历史,随着的资源钻采井孔深度的不断增加,近几年该技术发展很快。讨论定向钻进技术包括基本内涵与最新拓展,对于更好的理解与推广应用这项技术具有重要意义。论文讨论了定向钻进的定义,概述了钻孔设计、测斜技术、测斜数据计算、测斜数据传输,特别是纠斜新技术的发展如自动垂直与自动导向钻进新技术等。简要介绍了目前定向钻进技术的应用领域与钻孔类型。提出了适用于深部地质钻探的定向钻进全孔轨迹主动控制的概念与实施措施。  相似文献   

14.
随着矿产资源的不断勘探和开采,浅部矿产资源已开采殆尽,深部找矿已经是我国地质找矿事业的发展方向,而深部钻探技术是深部找矿的主要技术手段。在阐述国内外深部地质钻探技术现状的基础上,分析了我国深部钻探技术面临的井身结构较复杂、岩心钻机提升能力受限钻孔易斜和钻进效率低等难题,提出了优化简配石油钻机设施、上覆地层快速全面钻进、配套绳索取心工艺技术和实施定向钻探技术等对策,为深部找矿钻探指出了方向。结合ZJ40钻机施工慈页1井成功实例,说明了深部钻探技术在实践的应用。  相似文献   

15.
在深孔、定向孔钻进过程中,对钻孔轨迹的控制十分重要。电磁随钻测量系统能够监测钻孔状态参数并通过无线电磁波实时传输至地面,具有信号传输速率高、不受钻井液影响等优势。详细阐述了一种自主研发的电磁随钻测量系统及试验情况,试验最大孔深为609 m,此时地面接收信号高达200 mV。试验研究表明:该系统性能可靠,完全能够满足随钻测量近钻头处钻孔状态及环空压力、温度等参数的需求。  相似文献   

16.
徐深21-平1井完钻井深4955 m。在火山岩储层中横向穿行905 m,井眼轨迹控制精度要求高,并在登二泥岩段岩石可钻性达8级的情况下裸眼侧钻成功,为后续施工奠定了基础。简述了井身结构及轨迹剖面设计,分析了井眼轨迹控制难点,详细介绍了增斜段、侧钻段、水平段井眼轨迹控制情况。该井的成功钻探,为该区块水平井施工积累了宝贵经验。  相似文献   

17.
本文介绍渤海辽东湾实验区AI平台丛式定向井最后钻完的3口侧钻绕障井。在有邻井和本井套管磁干扰情况下,特别是与邻井间距最小仅为0.6m,采用陀螺定向侧钻以及导向钻井技术相结合,安全顺利的钻完了这3口井。总结和介绍了侧钻、防碰的工艺特声,以及安全措施。研究和分析了使用陀螺定向侧钻,钻速与造斜率,井眼轨迹合理控制等问题。  相似文献   

18.
回顾了"十一五"期间我国在科学钻探、天然气水合物勘探、深部钻探、钻探技术装备、高精度定向对接井钻井技术、绳索取心液动锤钻具、新型金刚石钻头系列、新型冲洗液技术、地质灾害监测防治钻探技术、人才培养以及体制改革等方面取得的成绩和发展;提出了"十二五"期间的主要工作方向。  相似文献   

19.
地面驱动的带弯角或偏轴的不同轴式导向钻具和防斜钻具组合已经广泛应用于水平井、大斜度井、大位移井、分支井和直井钻进中。由于对该类钻具的动态特性和轨道控制理论研究不足,使得应用效果不稳定。欲较好地解决该类钻具的轨道控制问题,必须深入研究该类下部钻具组合的稳定性判别、钻具各点的运动状态判别和参数分析、钻具动力学分析的数学模型和井眼轨道预测方法。本文仅从问题的性质、可能遇到的问题和解决问题的可选途径等方面进行了初步探讨。  相似文献   

20.
鸭儿峡油田白垩系油藏鸭西背斜,地层倾角大、夹层多、研磨性强、可钻性差。钻进中直井段易斜;PDC钻头选型难度大,定向钻井时,工具面稳定性差、“托压”严重;钻井液性能要求高,常因与地层配伍性差,导致井下复杂情况发生,严重制约钻速提高。本文针对制约钻速提高的难点,通过现场试验效果分析来阐述鸭西背斜鸭K区块钻井提速措施,包括直井段防斜打直技术、水力振荡器试验、PDC钻头个性化试验、钻具组合选择和优化钻井液性能等,通过现场试验,为鸭西背斜钻井提速积累了成功经验。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号