首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have performed new simulations of two different scenarios for the excitation and depletion of the primordial asteroid belt, assuming Jupiter and Saturn on initially circular orbits as predicted by the Nice Model of the evolution of the outer Solar System [Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A., 2005. Nature 435, 466-469; Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F., 2005. Nature 435, 459-461; Morbidelli, A., Levison, H.F., Tsiganis, K., Gomes, R., 2005. Nature 435, 462-465]. First, we study the effects of sweeping secular resonances driven by the depletion of the solar nebula. We find that these sweeping secular resonances are incapable of giving sufficient dynamical excitation to the asteroids for nebula depletion timescales consistent with estimates for solar-type stars, and in addition cannot cause significant mass depletion in the asteroid belt or produce the observed radial mixing of different asteroid taxonomic types. Second, we study the effects of planetary embryos embedded in the primordial asteroid belt. These embedded planetary embryos, combined with the action of jovian and saturnian resonances, can lead to dynamical excitation and radial mixing comparable to the current asteroid belt. The mass depletion driven by embedded planetary embryos alone, even in the case of an eccentric Jupiter and Saturn, is roughly 10-20× less than necessary to explain the current mass of the main belt, and thus a secondary depletion event, such as that which occurs naturally in the Nice Model, is required. We discuss the implications of our new simulations for the dynamical and collisional evolution of the main belt.  相似文献   

2.
The origin of Saturn's massive ring system is still unknown. Two popular scenarios—the tidal splitting of passing comets and the collisional destruction of a satellite—rely on a high cometary flux in the past. In the present paper we attempt to quantify the cometary flux during the Late Heavy Bombardment (LHB) to assess the likelihood of both scenarios. Our analysis relies on the so-called “Nice model” of the origin of the LHB [Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F., 2005. Nature 435, 459-461; Morbidelli, A., Levison, H.H., Tsiganis, K., Gomes, R., 2005. Nature 435, 462-465; Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A., 2005. Nature 435, 466-469] and on the size distribution of the primordial trans-neptunian planetesimals constrained in [Charnoz, S., Morbidelli, A., 2007. Icarus 188, 468-480]. We find that the cometary flux on Saturn during the LHB was so high that both scenarios for the formation of Saturn rings are viable in principle. However, a more detailed study shows that the comet tidal disruption scenario implies that all four giant planets should have comparable ring systems whereas the destroyed satellite scenario would work only for Saturn, and perhaps Jupiter. This is because in Saturn's system, the synchronous orbit is interior to the Roche Limit, which is a necessary condition for maintaining a satellite in the Roche Zone up to the time of the LHB. We also discuss the apparent elimination of silicates from the ring parent body implied by the purity of the ice in Saturn's rings. The LHB has also strong implications for the survival of the saturnian satellites: all satellites smaller than Mimas would have been destroyed during the LHB, whereas Enceladus would have had from 40% to 70% chance of survival depending on the disruption model. In conclusion, these results suggest that the LHB is the “sweet moment” for the formation of a massive ring system around Saturn.  相似文献   

3.
Matija ?uk  Brett J. Gladman 《Icarus》2006,183(2):362-372
The passage of Jupiter and Saturn through mutual 1:2 mean-motion resonance has recently been put forward as explanation for their relatively high eccentricities [Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F., 2005. Nature 435, 459-461] and the origin of Jupiter's Trojans [Morbidelli, A., Levison, H.F., Tsiganis, K., Gomes, R., 2005. Nature 435, 462-465]. Additional constraints on this event based on other small-body populations would be highly desirable. Since some outer satellite orbits are known to be strongly affected by the near-resonance of Jupiter and Saturn (“the Great Inequality”; ?uk, M., Burns, J.A., 2004b. Astron. J. 128, 2518-2541), the irregular satellites are natural candidates for such a connection. In order to explore this scenario, we have integrated 9200 test particles around both Jupiter and Saturn while they went through a resonance-crossing event similar to that described by Tsiganis et al. [Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F., 2005. Nature 435, 459-461]. The test particles were positioned on a grid in semimajor axes and inclinations, while their initial pericenters were put at just 0.01 AU from their parent planets. The goal of the experiment was to find out if short-lived bodies, spiraling into the planet due to gas drag (or alternatively on orbits crossing those of the regular satellites), could have their pericenters raised by the resonant perturbations. We found that about 3% of the particles had their pericenters raised above 0.03 AU (i.e. beyond Iapetus) at Saturn, but the same happened for only 0.1% of the particles at Jupiter. The distribution of surviving particles at Saturn has strong similarities to that of the known irregular satellites. If saturnian irregular satellites had their origin during the 1:2 resonance crossing, they present an excellent probe into the early Solar System's evolution. We also explore the applicability of this mechanism for Uranus, and find that only some of the uranian irregular satellites have orbits consistent with resonant pericenter lifting. In particular, the more distant and eccentric satellites like Sycorax could be stabilized by this process, while closer-in moons with lower eccentricity orbits like Caliban probably did not evolve by this process alone.  相似文献   

4.
We study the possibility that the mutual interactions between Jupiter and Saturn prevented Type II migration from driving these planets much closer to the Sun. Our work extends previous results by Masset and Snellgrove [Masset, F., Snellgrove, M., 2001. Mon. Not. R. Astron. Soc. 320, L55-L59], by exploring a wider set of initial conditions and disk parameters, and by using a new hydrodynamical code that properly describes for the global viscous evolution of the disk. Initially both planets migrate towards the Sun, and Saturn's migration tends to be faster. As a consequence, they eventually end up locked in a mean motion resonance. If this happens in the 2:3 resonance, the resonant motion is particularly stable, and the gaps opened by the planets in the disk may overlap. This causes a drastic change in the torque balance for the two planets, which substantially slows down the planets' inward migration. If the gap overlap is substantial, planet migration may even be stopped or reversed. As the widths of the gaps depend on disk viscosity and scale height, this mechanism is particularly efficient in low viscosity, cool disks. The initial locking of the planets in the 2:3 resonance is a likely outcome if Saturn formed at the edge of Jupiter's gap, but also if Saturn initially migrated rapidly from further away. We also explore the possibility of trapping in other resonances, and the subsequent evolutions. We discuss the compatibility of our results with the initial conditions adopted in Tsiganis et al. [Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F., 2005. Nature 435, 459-461] and Gomes et al. [Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A., 2005. Nature 435, 466-469] to explain the current orbital architecture of the giant planets and the origin of the Late Heavy Bombardment of the Moon.  相似文献   

5.
We explore the origin and orbital evolution of the Kuiper belt in the framework of a recent model of the dynamical evolution of the giant planets, sometimes known as the Nice model. This model is characterized by a short, but violent, instability phase, during which the planets were on large eccentricity orbits. It successfully explains, for the first time, the current orbital architecture of the giant planets [Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F., 2005. Nature 435, 459-461], the existence of the Trojans populations of Jupiter and Neptune [Morbidelli, A., Levison, H.F., Tsiganis, K., Gomes, R., 2005. Nature 435, 462-465], and the origin of the late heavy bombardment of the terrestrial planets [Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A., 2005. Nature 435, 466-469]. One characteristic of this model is that the proto-planetary disk must have been truncated at roughly 30 to 35 AU so that Neptune would stop migrating at its currently observed location. As a result, the Kuiper belt would have initially been empty. In this paper we present a new dynamical mechanism which can deliver objects from the region interior to ∼35 AU to the Kuiper belt without excessive inclination excitation. In particular, we show that during the phase when Neptune's eccentricity is large, the region interior to its 1:2 mean motion resonance becomes unstable and disk particles can diffuse into this area. In addition, we perform numerical simulations where the planets are forced to evolve using fictitious analytic forces, in a way consistent with the direct N-body simulations of the Nice model. Assuming that the last encounter with Uranus delivered Neptune onto a low-inclination orbit with a semi-major axis of ∼27 AU and an eccentricity of ∼0.3, and that subsequently Neptune's eccentricity damped in ∼1 My, our simulations reproduce the main observed properties of the Kuiper belt at an unprecedented level. In particular, our results explain, at least qualitatively: (1) the co-existence of resonant and non-resonant populations, (2) the eccentricity-inclination distribution of the Plutinos, (3) the peculiar semi-major axis—eccentricity distribution in the classical belt, (4) the outer edge at the 1:2 mean motion resonance with Neptune, (5) the bi-modal inclination distribution of the classical population, (6) the correlations between inclination and physical properties in the classical Kuiper belt, and (7) the existence of the so-called extended scattered disk. Nevertheless, we observe in the simulations a deficit of nearly-circular objects in the classical Kuiper belt.  相似文献   

6.
Tsiganis et al. [Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F., 2005. Nature 435, 459-461] have proposed that the current orbital architecture of the outer Solar System could have been established if it was initially compact and Jupiter and Saturn crossed the 2:1 orbital resonance by divergent migration. The crossing led to close encounters among the giant planets, but the orbital eccentricities and inclinations were damped to their current values by interactions with planetesimals. Brunini [Brunini, A., 2006. Nature 440, 1163-1165] has presented widely publicized numerical results showing that the close encounters led to the current obliquities of the giant planets. We present a simple analytic argument which shows that the change in the spin direction of a planet relative to an inertial frame during an encounter between the planets is very small and that the change in the obliquity (which is measured from the orbit normal) is due to the change in the orbital inclination. Since the inclinations are damped by planetesimal interactions on timescales much shorter than the timescales on which the spins precess due to the torques from the Sun, especially for Uranus and Neptune, the obliquities should return to small values if they are small before the encounters. We have performed simulations using the symplectic integrator SyMBA, modified to include spin evolution due to the torques from the Sun and mutual planetary interactions. Our numerical results are consistent with the analytic argument for no significant remnant obliquities.  相似文献   

7.
The core accretion theory of planet formation has at least two fundamental problems explaining the origins of Uranus and Neptune: (1) dynamical times in the trans-saturnian solar nebula are so long that core growth can take >15 Myr and (2) the onset of runaway gas accretion that begins when cores reach ∼10M necessitates a sudden gas accretion cutoff just as Uranus and Neptune’s cores reach critical mass. Both problems may be resolved by allowing the ice giants to migrate outward after their formation in solid-rich feeding zones with planetesimal surface densities well above the minimum-mass solar nebula. We present new simulations of the formation of Uranus and Neptune in the solid-rich disk of Dodson-Robinson et al. (Dodson-Robinson, S.E., Willacy, K., Bodenheimer, P., Turner, N.J., Beichman, C.A. [2009]. Icarus 200, 672-693) using the initial semimajor axis distribution of the Nice model (Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A. [2005]. Nature 435, 466-469; Morbidelli, A., Levison, H.F., Tsiganis, K., Gomes, R. [2005]. Nature 435, 462-465; Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F. [2005]. Nature 435, 459-461), with one ice giant forming at 12 AU and the other at 15 AU. The innermost ice giant reaches its present mass after 3.8-4.0 Myr and the outermost after 5.3-6 Myr, a considerable time decrease from previous one-dimensional simulations (e.g. Pollack, J.B., Hubickyj, O., Bodenheimer, P., Lissauer, J.J., Podolak, M., Greenzweig, Y. [1996]. Icarus 124, 62-85). The core masses stay subcritical, eliminating the need for a sudden gas accretion cutoff.Our calculated carbon mass fractions of 22% are in excellent agreement with the ice giant interior models of Podolak et al. (Podolak, M., Weizman, A., Marley, M. [1995]. Planet. Space Sci. 43, 1517-1522) and Marley et al. (Marley, M.S., Gómez, P., Podolak, M. [1995]. J. Geophys. Res. 100, 23349-23354). Based on the requirement that the ice giant-forming planetesimals contain >10% mass fractions of methane ice, we can reject any Solar System formation model that initially places Uranus and Neptune inside of Saturn’s orbit. We also demonstrate that a large population of planetesimals must be present in both ice giant feeding zones throughout the lifetime of the gaseous nebula. This research marks a substantial step forward in connecting both the dynamical and chemical aspects of planet formation. Although we cannot say that the solid-rich solar nebula model of Dodson-Robinson et al. (Dodson-Robinson, S.E., Willacy, K., Bodenheimer, P., Turner, N.J., Beichman, C.A. [2009]. Icarus 200, 672-693) gives exactly the appropriate initial conditions for planet formation, rigorous chemical and dynamical tests have at least revealed it to be a viable model of the early Solar System.  相似文献   

8.
P. Lamy  I. Toth 《Icarus》2009,201(2):674-713
We present new color results of cometary nuclei obtained with the Hubble Space Telescope (HST) whose superior resolution enables us to accurately isolate the nucleus signals from the surrounding comae. By combining with scrutinized available data obtained with ground-based telescopes, we accumulated a sample of 51 cometary nuclei, 44 ecliptic comets (ECs) and 7 nearly-isotropic comets (NICs) using the nomenclature of Levison [Levison, H.F., 1996. In: Rettig, T.W., Hahn, J.M. (Eds.), Completing the Inventory of the Solar System. In: ASP Conf. Ser., vol. 107, pp. 173-192]. We analyze color distributions and color-color correlations as well as correlations with other physical parameters. We present our compilation of colors of 232 outer Solar System objects—separately considering the different dynamical populations, classical KBOs in low and high-inclination orbits (respectively CKBO-LI and CKBO-HI), resonant KBOs (practically Plutinos), scattered-disk objects (SDOs) and Centaurs—of 12 candidate dead comets, and of 85 Trojans. We perform a systematic analysis of all color distributions, and conclude by synthesizing the implications of the dynamical evolution and of the colors for the origin of the minor bodies of the Solar System. We find that the color distributions are remarkably consistent with the scenarios of the formation of TNOs by Gomes [Gomes, R.S., 2003. Icarus 161, 404-418] generalized by the “Nice” model [Levison, H.F., Morbidelli, A., VanLaerhoven, Ch., Gomes, R., Tsiganis, L., 2008. Icarus 196, 258-273], and of the Trojans by Morbidelli et al. [Morbidelli, A., Levison, H.F., Tsiganis, K., Gomes, R., 2005. Nature 435, 462-465]. The color distributions of the Centaurs are globally similar to those of the CKBO-HI, the Plutinos and the SDOs. However the potential bimodality of their distributions allows to possibly distinguish two groups based on their (BR) index: Centaur I with (BR)>1.7 and Centaurs II with (BR)<1.4. Centaurs I could be composed of TNOs (prominently CKBO-LI) and ultra red objects from a yet unstudied family. Centaurs II could consist in a population of evolved objects which have already visited the inner Solar System, and which has been scattered back beyond Jupiter. The diversity of colors of the ECs, in particular the existence of very red objects, is consistent with an origin in the Kuiper belt. Candidate dead comets represent an ultimate state of evolution as they appear more evolved than the Trojans and Centaurs II.  相似文献   

9.
It has been claimed [Canup, R.M., Ward, W.R., 2002. Astron. J. 124, 3404-3423; Ward, W.R., 2003. In: AGU, Fall Meeting 2003] that a long-lived minimum mass circumplanetary gas disk is inconsistent with Jupiter's low obliquity. Here we find that while Jupiter's obliquity may constrain its characteristics it does not rule out a long-lived massive (compared to the mass of the Galilean satellites) disk. This is because the argument assumes a Solar System much like that of the present day with the one exception of a circumjovian disk which is then allowed to dissipate on a long timescale (106-107 yr). Given that the sequence of events in Solar System history that fit known constraints is non-unique, we choose for the sake of clarity of exposition the orbital architecture framework of Tsiganis et al. [Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F., 2005. Nature 435, 459-461], in which Jupiter and Saturn were once in compact, nearly coplanar orbits, and show that in this case Jupiter's low obliquity is consistent with the SEMM (solids-enhanced minimum mass) satellite formation model of Mosqueira and Estrada [Mosqueira, I., Estrada, P.R., 2003a. Icarus 163, 198-231; Mosqueira, I., Estrada, P.R., 2003b. Icarus 163, 232-255]. We suggest that a low inclination starting condition may apply, but stress that our SEMM satellite formation model could be compatible with Jupiter's obliquity even for mutually inclined giant planets.  相似文献   

10.
The final stage in the formation of terrestrial planets consists of the accumulation of ∼1000-km “planetary embryos” and a swarm of billions of 1-10 km “planetesimals.” During this process, water-rich material is accreted by the terrestrial planets via impacts of water-rich bodies from beyond roughly 2.5 AU. We present results from five high-resolution dynamical simulations. These start from 1000-2000 embryos and planetesimals, roughly 5-10 times more particles than in previous simulations. Each simulation formed 2-4 terrestrial planets with masses between 0.4 and 2.6 Earth masses. The eccentricities of most planets were ∼0.05, lower than in previous simulations, but still higher than for Venus, Earth and Mars. Each planet accreted at least the Earth's current water budget. We demonstrate several new aspects of the accretion process: (1) The feeding zones of terrestrial planets change in time, widening and moving outward. Even in the presence of Jupiter, water-rich material from beyond 2.5 AU is not accreted for several millions of years. (2) Even in the absence of secular resonances, the asteroid belt is cleared of >99% of its original mass by self-scattering of bodies into resonances with Jupiter. (3) If planetary embryos form relatively slowly, then the formation of embryos in the asteroid belt may have been stunted by the presence of Jupiter. (4) Self-interacting planetesimals feel dynamical friction from other small bodies, which has important effects on the eccentricity evolution and outcome of a simulation.  相似文献   

11.
Jade C. Bond  Dante S. Lauretta 《Icarus》2010,205(2):321-19170
No terrestrial planet formation simulation completed to date has considered the detailed chemical composition of the planets produced. While many have considered possible water contents and late veneer compositions, none have examined the bulk elemental abundances of the planets produced as an important check of formation models. Here we report on the first study of this type. Bulk elemental abundances based on disk equilibrium studies have been determined for the simulated terrestrial planets of O’Brien et al. [O’Brien, D.P., Morbidelli, A., Levison, H.F., 2006. Icarus 184, 39-58]. These abundances are in excellent agreement with observed planetary values, indicating that the models of O’Brien et al. [O’Brien, D.P., Morbidelli, A., Levison, H.F., 2006. Icarus 184, 39-58] are successfully producing planets comparable to those of the Solar System in terms of both their dynamical and chemical properties. Significant amounts of water are accreted in the present simulations, implying that the terrestrial planets form “wet” and do not need significant water delivery from other sources. Under the assumption of equilibrium controlled chemistry, the biogenic species N and C still need to be delivered to the Earth as they are not accreted in significant proportions during the formation process. Negligible solar photospheric pollution is produced by the planetary formation process. Assuming similar levels of pollution in other planetary systems, this in turn implies that the high metallicity trend observed in extrasolar planetary systems is in fact primordial.  相似文献   

12.
Evidence has mounted for some time that planet migration is an important part of the formation of planetary systems, both in the Solar System [Malhotra, R., 1993. Nature 365, 819-821] and in extrasolar systems [Mayor, M., Queloz, D., 1995. Nature 378, 355-359; Lin, D.N.C., Bodenheimer, P., Richardson, D.C., 1996. Nature 380, 606-607]. One mechanism that produces migration (the change in a planet's semi-major axis a over time) is the scattering of comet- and asteroid-size bodies called planetesimals [Fernandez, J.A., Ip, W.-H., 1984. Icarus 58, 109-120]. Significant angular momentum exchange can occur between the planets and the planetesimals during local scattering, enough to cause a rapid, self-sustained migration of the planet [Ida, S., Bryden, G., Lin, D.N.C., Tanaka, H., 2000. Astrophys. J. 534, 428-445]. This migration has been studied for the particular case of the four outer planets of the Solar System (as in Gomes et al. [Gomes, R.S., Morbidelli, A., Levison, H.F., 2004. Icarus 170, 492-507]), but is not well understood in general. We have used the Miranda [McNeil, D., Duncan, M., Levison, H.F., 2005. Astron. J. 130, 2884-2899] computer simulation code to perform a broad parameter-space survey of the physical variables that determine the migration of a single planet in a planetesimal disk. Migration is found to be predominantly inwards, and the migration rate is found to be independent of planet mass for low-mass planets in relatively high-mass disks. Indeed, a simple scaling relation from Ida et al. [Ida, S., Bryden, G., Lin, D.N.C., Tanaka, H., 2000. Astrophys. J. 534, 428-445] matches well with the dependencies of the migration rate:
(1)  相似文献   

13.
J.A. Fernández  W.-H. Ip 《Icarus》1984,58(1):109-120
The final stage of the accretion of Uranus and Neptune is numerically investigated. The four Jovian planets are considered with Jupiter and Saturn assumed to have reached their present sizes, whereas Uranus and Neptune are taken with initial masses 0.2 of their present ones. Allowance is made for the orbital variation of the Jovian planets due to the exchange of angular momentum with interacting bodies (“planetesimals”). Two possible effects that may have contributed to the accretion of Uranus and Neptune are incorporated in our model: (1) an enlarged cross section for accretion of incoming planetesimals due to the presence of extended gaseous envelopes and/or circumplanetary swarms of bodies; and (2) intermediate protoplanets in mid-range orbits between the Jovian planets. Significant radial displacements are found for Uranus and Neptune during their accretion and scattering of planetesimals. The orbital angular momentum budgets of Neptune, Uranus, and Saturn turn out to be positive; i.e., they on average gain orbital angular momentum in their interactions with planetesimals and hence they are displaced outwardly. Instead, Jupiter as the main ejector of bodies loses orbital angular momentum so it moves sunward. The gravitational stirring of planetesimals caused by the introduction of intermediate protoplanets has the effect that additional solid matter is injected into the accretion zones of Uranus and Neptune. For moderate enlargements of the radius of the accretion cross section (2–4 times), the accretion time scale of Uranus and Neptune are found to be a few 108 years and the initial amount of solid material required to form them of a few times their present masses. Given the crucial role played by the size of the accretion cross section, questions as to when Uranus and Neptune acquired their gaseous envelopes, when the envelopes collapsed onto the solid cores, and how massive they were are essential in defining the efficiency and time scale of accretion of the two outer Jovian planets.  相似文献   

14.
We present results from a suite of N-body simulations that follow the formation and accretion history of the terrestrial planets using a new parallel treecode that we have developed. We initially place 2000 equal size planetesimals between 0.5 and 4.0 AU and the collisional growth is followed until the completion of planetary accretion (>100 Myr). A total of 64 simulations were carried out to explore sensitivity to the key parameters and initial conditions. All the important effect of gas in laminar disks are taken into account: the aerodynamic gas drag, the disk-planet interaction including Type I migration, and the global disk potential which causes inward migration of secular resonances as the gas dissipates. We vary the initial total mass and spatial distribution of the planetesimals, the time scale of dissipation of nebular gas (which dissipates uniformly in space and exponentially in time), and orbits of Jupiter and Saturn. We end up with 1-5 planets in the terrestrial region. In order to maintain sufficient mass in this region in the presence of Type I migration, the time scale of gas dissipation needs to be 1-2 Myr. The final configurations and collisional histories strongly depend on the orbital eccentricity of Jupiter. If today’s eccentricity of Jupiter is used, then most of bodies in the asteroidal region are swept up within the terrestrial region owing to the inward migration of the secular resonance, and giant impacts between protoplanets occur most commonly around 10 Myr. If the orbital eccentricity of Jupiter is close to zero, as suggested in the Nice model, the effect of the secular resonance is negligible and a large amount of mass stays for a long period of time in the asteroidal region. With a circular orbit for Jupiter, giant impacts usually occur around 100 Myr, consistent with the accretion time scale indicated from isotope records. However, we inevitably have an Earth size planet at around 2 AU in this case. It is very difficult to obtain spatially concentrated terrestrial planets together with very late giant impacts, as long as we include all the above effects of gas and assume initial disks similar to the minimum mass solar nebular.  相似文献   

15.
Isotopic and chemical compositions of meteorites, coupled with dynamical simulations, suggest that the main belt of asteroids between Mars and Jupiter contains objects formed in situ as well as a population of interlopers. These interlopers are predicted to include the building blocks of the terrestrial planets as well as objects that formed beyond Neptune ( [Bottke et al., 2006] , [Levison et al., 2009] and [Walsh et al., 2011] ). Here we report that the main belt asteroid (21) Lutetia – encountered by the Rosetta spacecraft in July 2010 – has spectral (from 0.3 to 25 μm) and physical (albedo, density) properties quantitatively similar to the class of meteorites known as enstatite chondrites. The chemical and isotopic compositions of these chondrites indicate that they were an important component of the formation of Earth and other terrestrial planets. This meteoritic association implies that Lutetia is a member of a small population of planetesimals that formed in the terrestrial planet region and that has been scattered in the main belt by emerging protoplanets (Bottke et al. 2006) and/or by the migration of Jupiter (Walsh et al. 2011) early in its history. Lutetia, along with a few other main-belt asteroids, may contains part of the long-sought precursor material (or closely related materials) from which the terrestrial planets accreted.  相似文献   

16.
We have performed N -body numerical simulations of the exchange of angular momentum between a massive planet and a 3D Keplerian disc of planetesimals. Our interest is directed at the study of the classical analytical expressions of the lineal theory of density waves, as representative of the dynamical friction in discs 'dominated by the planet' and the orbital migration of the planets with regard to this effect. By means of a numerical integration of the equations of motion, we have carried out a set of numerical experiments with a large number of particles  ( N ≥10 000)  , and planets with the mass of Jupiter, Saturn and one core mass of the giant planets in the Solar system  ( M c=10 M)  . The torque, measured in a phase in which a 'steady forcing' is clearly measurable, yields inward migration in a minimum-mass solar disc  (Σ∼10 g cm-2  ), with a characteristic drift time of ∼ a few 106 yr. The planets predate the disc, but the orbital decay rate is not sufficient to allow accretion in a time-scale relevant to the formation of giant planets. We found reductions of the measured torque on the planet, with respect to the linear theory, by a factor of 0.38 for M c, 0.04 for Saturn and 0.01 for Jupiter, due to the increase in the perturbation on the disc. The behaviour of planets whose mass is larger than M c is similar to the one of type II migrators in gaseous discs. Our results suggest that, in a minimum mass, solar planetesimals disc, type I migrations occur for masses smaller than M c, whereas for this mass value it could be a transition zone between the two types of migration.  相似文献   

17.
Junko Kominami  Shigeru Ida 《Icarus》2004,167(2):231-243
We have performed N-body simulations on final accretion stage of terrestrial planets, including the eccentricity and inclination damping effect due to tidal interaction with a gas disk. We investigated the dependence on a depletion time scale of the disk, and the effect of secular perturbations by Jupiter and Saturn. In the final stage, terrestrial planets are formed through coagulation of protoplanets of about the size of Mars. They would collide and grow in a decaying gas disk. Kominami and Ida [Icarus 157 (2002) 43-56] showed that it is plausible that Earth-sized, low-eccentricity planets are formed in a mostly depleted gas disk. In this paper, we investigate the formation of planets in a decaying gas disk with various depletion time scales, assuming disk surface density of gas component decays exponentially with time scale of τgas. Fifteen protoplanets with are initially distributed in the terrestrial planet regions. We found that Earth-sized planets with low eccentricities are formed, independent of initial gas surface density, when the condition (τcross+τgrowth)/2?τgas?τcross is satisfied, where τcross is the time scale for initial protoplanets to start orbit crossing in a gas-free case and τgrowth is the time scale for Earth-sized planets to accrete during the orbit crossing stage. In the cases satisfying the above condition, the final masses and eccentricities of the largest planets are consistent with those of Earth and Venus. However, four or five protoplanets with the initial mass remain. In the final stage of terrestrial planetary formation, it is likely that Jupiter and Saturn have already been formed. When Jupiter and Saturn are included, their secular perturbations pump up eccentricities of protoplanets and tend to reduce the number of final planets in the terrestrial planet regions. However, we found that the reduction is not significant. The perturbations also shorten τcross. If the eccentricities of Jupiter and Saturn are comparable to or larger than present values (∼0.05), τcross become too short to satisfy the above condition. As a result, eccentricities of the planets cannot be damped to the observed value of Earth and Venus. Hence, for the formation of terrestrial planets, it is preferable that the secular perturbations from Jupiter and Saturn do not have significant effect upon the evolution. Such situation may be reproduced by Jupiter and Saturn not being fully grown, or their eccentricities being smaller than the present values during the terrestrial planets' formation. However, in such cases, we need some other mechanism to eliminate the problem that numerous Mars-sized planets remain uncollided.  相似文献   

18.
To date, no accretion model has succeeded in reproducing all observed constraints in the inner Solar System. These constraints include: (1) the orbits, in particular the small eccentricities, and (2) the masses of the terrestrial planets - Mars’ relatively small mass in particular has not been adequately reproduced in previous simulations; (3) the formation timescales of Earth and Mars, as interpreted from Hf/W isotopes; (4) the bulk structure of the asteroid belt, in particular the lack of an imprint of planetary embryo-sized objects; and (5) Earth’s relatively large water content, assuming that it was delivered in the form of water-rich primitive asteroidal material. Here we present results of 40 high-resolution (N = 1000-2000) dynamical simulations of late-stage planetary accretion with the goal of reproducing these constraints, although neglecting the planet Mercury. We assume that Jupiter and Saturn are fully-formed at the start of each simulation, and test orbital configurations that are both consistent with and contrary to the “Nice model”. We find that a configuration with Jupiter and Saturn on circular orbits forms low-eccentricity terrestrial planets and a water-rich Earth on the correct timescale, but Mars’ mass is too large by a factor of 5-10 and embryos are often stranded in the asteroid belt. A configuration with Jupiter and Saturn in their current locations but with slightly higher initial eccentricities (e = 0.07-0.1) produces a small Mars, an embryo-free asteroid belt, and a reasonable Earth analog but rarely allows water delivery to Earth. None of the configurations we tested reproduced all the observed constraints. Our simulations leave us with a problem: we can reasonably satisfy the observed constraints (except for Earth’s water) with a configuration of Jupiter and Saturn that is at best marginally consistent with models of the outer Solar System, as it does not allow for any outer planet migration after a few Myr. Alternately, giant planet configurations which are consistent with the Nice model fail to reproduce Mars’ small size.  相似文献   

19.
We present the results of an extensive study of the final stage of terrestrial planet formation in disks with different surface density profiles and for different orbital configurations of Jupiter and Saturn. We carried out simulations in the context of the classical model with disk surface densities proportional to \({r^{-0.5}}, {r^{-1}}\) and \({r^{-1.5}}\), and also using partially depleted, non-uniform disks as in the recent model of Mars formation by Izidoro et al. (Astrophys J 782:31, 2014). The purpose of our study is to determine how the final assembly of planets and their physical properties are affected by the total mass of the disk and its radial profile. Because as a result of the interactions of giant planets with the protoplanetary disk, secular resonances will also play important roles in the orbital assembly and properties of the final terrestrial planets, we will study the effect of these resonances as well. In that respect, we divide this study into two parts. When using a partially depleted disk (Part 1), we are particularly interested in examining the effect of secular resonances on the formation of Mars and orbital stability of terrestrial planets. When using the disk in the classical model (Part 2), our goal is to determine trends that may exist between the disk surface density profile and the final properties of terrestrial planets. In the context of the depleted disk model, results of our study show that in general, the \(\nu _5\) resonance does not have a significant effect on the dynamics of planetesimals and planetary embryos, and the final orbits of terrestrial planets. However, \(\nu _6\) and \(\nu _{16}\) resonances play important roles in clearing their affecting areas. While these resonances do not alter the orbits of Mars and other terrestrial planets, they strongly deplete the region of the asteroid belt ensuring that no additional mass will be scattered into the accretion zone of Mars so that it can maintain its mass and orbital stability. In the context of the classical model, the effects of these resonances are stronger in disks with less steep surface density profiles. Our results indicate that when considering the classical model (Part 2), the final planetary systems do not seem to show a trend between the disk surface density profile and the mean number of the final planets, their masses, time of formation, and distances to the central star. Some small correlations were observed where, for instance, in disks with steeper surface density profiles, the final planets were drier, or their water contents decreased when Saturn was added to the simulations. However, in general, the final orbital and physical properties of terrestrial planets seem to vary from one system to another and depend on the mass of the disk, the spatial distribution of protoplanetary bodies (i.e., disk surface density profile), and the initial orbital configuration of giant planets. We present results of our simulations and discuss their implications for the formation of Mars and other terrestrial planets, as well as the physical properties of these objects such as their masses and water contents.  相似文献   

20.
E. Nogueira  R. Gomes 《Icarus》2011,214(1):113-130
The origin of Neptune’s large, circular but retrograde satellite Triton has remained largely unexplained. There is an apparent consensus that its origin lies in it being captured, but until recently no successful capture mechanism has been found. Agnor and Hamilton (Agnor, C.B., Hamilton, D.P. [2006]. Nature 441, 192-194) demonstrated that the disruption of a trans-neptunian binary object which had Triton as a member, and which underwent a very close encounter with Neptune, was an effective mechanism to capture Triton while its former partner continued on a hyperbolic orbit. The subsequent evolution of Triton’s post-capture orbit to its current one could have proceeded through gravitational tides (Correia, A.C.M. [2009]. Astrophys. J. 704, L1-L4), during which time Triton was most likely semi-molten (McKinnon, W.B. [1984]. Nature 311, 355-358). However, to date, no study has been performed that considered both the capture and the subsequent tidal evolution. Thus it is attempted here with the use of numerical simulations. The study by Agnor and Hamilton (Agnor, C.B., Hamilton, D.P. [2006]. Nature 441, 192-194) is repeated in the framework of the Nice model (Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F. [2005]. Nature 435, 459-461) to determine the post-capture orbit of Triton. After capture Triton is then subjected to tidal evolution using the model of Mignard (Mignard, F. [1979]. Moon Planets 20, 301-315; Mignard, F. [1980]. Moon Planets 23, 185-201). The perturbations from the Sun and the figure of Neptune are included. The perturbations from the Sun acting on Triton just after its capture cause it to spend a long time in its high-eccentricity phase, usually of the order of 10 Myr, while the typical time to circularise to its current orbit is some 200 Myr, consistent with earlier studies. The current orbit of Triton is consistent with an origin through binary capture and tidal evolution, even though the model prefers Triton to be closer to Neptune than it is today. The probability of capturing Triton in this manner is approximately 0.7%. Since the capture of Triton was at most a 50% event - since only Neptune has one, but Uranus does not - we deduce that in the primordial trans-neptunian disc there were some 100 binaries with at least one Triton-sized member. Morbidelli et al. (Morbidelli, A., Levison, H.F., Bottke, W.F., Dones, L., Nesvorný, D. [2009]. Icarus 202, 310-315) concludes there were some 1000 Triton-sized bodies in the trans-neptunian proto-planetary disc, so the primordial binary fraction with at least one Triton-sized member is 10%. This value is consistent with theoretical predictions, but at the low end. If Triton was captured at the same time as Neptune’s irregular satellites, the far majority of these, including Nereid, would be lost. This suggests either that Triton was captured on an orbit with a small semi-major axisa ? 50RN (a rare event), or that it was captured before the dynamical instability of the Nice model, or that some other mechanism was at play. The issue of keeping the irregular satellites remains unresolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号