首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We calculate new estimates of ground-ice stability and the depth distribution of the ice table (the depth boundary between ice-free soil above and ice-cemented soil below) and compare these theoretical estimates of the distribution of ground ice with the observed distribution of leakage neutrons measured by the Neutron Spectrometer instrument of the Mars Odyssey spacecraft's Gamma Ray Spectrometer instrument suite. Our calculated ground-ice distribution contains improvements over previous work in that we include the effects of the high thermal conductivity of ice-cemented soil at and below the ice table, we include the surface elevation dependence of the near-surface atmospheric humidity, and we utilize new high resolution maps of thermal inertia, albedo, and elevation from Mars Global Surveyor observations. Results indicate that ground ice should be about 5 times shallower than in previous predictions. While results are dependent on the atmospheric humidity, depths are generally between a few millimeters and a few meters with typical values of a few centimeters. Results are also geographically similar to previous predictions with differences due to the higher resolution of thermal inertia and the inclusion of elevation effects on humidity. Comparison with the measured epithermal-neutron count rates in the southern hemisphere indicate that the geographic distribution of the count rate is best correlated with ground ice in equilibrium with 10 to 20 pr μm (precipitable micrometers) column abundance of atmospheric water, assuming a uniform distribution with CO2; however, given the uncertainties, 5 to 30 pr μm also may be viable. This water abundance represents a longer-term average over 100 to 1000 yr. There is a high degree of correlation between the depth of the ice table and the epithermal count rate that agrees remarkably well with predicted count rates as a function of ice-table depth. These results indicate that ground ice in the upper meter of the martian soil is in diffusive equilibrium with the atmosphere. Since ground ice in this depth zone is expected to undergo saturation/desiccation cycles with orbital variations, this ice should be younger than about 500 kyr and was emplaced under similar cold and dry climate conditions of today. Remaining differences between the predicted depths of the ice table and those inferred from the neutron data are likely to be due to subpixel heterogeneity in the martian surface including the presence of rocks, slopes, and patches of soil with varying thermophysical properties.  相似文献   

2.
We combine thermal simulations of ground ice stability near small rocks with extrapolations of the abundance of rocks at the Phoenix landing site based on HiRISE rock counts to estimate the degree of ice table depth variability within the 3.8 m2 workspace that can be excavated during the mission. Detailed predictions of this kind are important both to test current ground-ice theory and to optimize soil investigations after landing. We find that Phoenix will very likely have access to at least one rock in the diameter range 5 cm to 1 m. Our simulations, which assume the ice to be in diffusive equilibrium with atmospheric water vapor, indicate that all rocks in this size range are associated with an annulus of deep ice-free soil. Ice table depth variability of 1-5 cm is very likely at the landing site due to the presence of small rocks. Further, there are scenarios in which Phoenix might exploit the presence of individual large rocks and/or the arrangement of small rocks to sample soils at depths >10 cm below the average depth predicted from orbit (∼4 cm). Scale analysis to constrain uncertainties in simulation results indicates that estimates of maximum depths may be somewhat conservative and that ice table depressions associated with individual rocks could be deeper and laterally more extended than indicated by formal predictions by mm to cm.  相似文献   

3.
Michael D Smith 《Icarus》2004,167(1):148-165
We use infrared spectra returned by the Mars Global Surveyor Thermal Emission Spectrometer (TES) to retrieve atmospheric and surface temperature, dust and water ice aerosol optical depth, and water vapor column abundance. The data presented here span more than two martian years (Mars Year 24, Ls=104°, 1 March 1999 to Mars Year 26, Ls=180°, 4 May 2003). We present an overview of the seasonal (Ls), latitudinal, and longitudinal dependence of atmospheric quantities during this period, as well as an initial assessment of the interannual variability in the current martian climate. We find that the perihelion season (Ls=180°-360°) is relatively warm, dusty, free of water ice clouds, and shows a relatively high degree of interannual variability in dust optical depth and atmospheric temperature. On the other hand, the aphelion season (Ls=0°-180°) is relatively cool, cloudy, free of dust, and shows a low degree of interannual variability. Water vapor abundance shows a moderate amount of interannual variability at all seasons, but the most in the perihelion season. Much of the small amount of interannual variability that is observed in the aphelion season appears to be caused by perihelion-season planet-encircling dust storms. These dust storms increase albedo through deposition of bright dust on the surface causing cooler daytime surface and atmospheric temperatures well after dust optical depth returns to prestorm values.  相似文献   

4.
Thermal contraction crack polygons are complex landforms that have begun to be deciphered on Earth and Mars by the combined investigative efforts of geomorphology, environmental monitoring, physical models, paleoclimate reconstruction, and geochemistry. Thermal contraction crack polygons are excellent indicators of the current or past presence of ground ice, ranging in ice content from weakly cemented soils to debris-covered massive ice. Relative to larger topographic features, polygons may form rapidly, and reflect climate conditions at the time of formation—preserving climate information as relict landforms in the geological record. Polygon morphology and internal textural characteristics can be used to distinguish surfaces modified by the seasonal presence of a wet active layer or dry active layer, and to delimit subsurface ice conditions. Analysis of martian polygon morphology and distribution indicates that geologically-recent thermal contraction crack polygons on Mars form predominantly in an ice-rich latitude-dependent mantle, more likely composed of massive ice deposited by precipitation than by cyclical vapor diffusion into regolith. Regional and local heterogeneities in polygon morphology can be used to distinguish variations in ice content, deposition and modification history, and to assess microclimate variation on timescales of ka to Ma. Analyses of martian polygon morphology, guided by investigations of terrestrial analog thermal contraction crack polygons, strongly suggest the importance of excess ice in the formation and development of many martian thermal contraction crack polygons—implying the presence of an ice-rich substrate that was fractured during and subsequent to obliquity-driven depositional periods and continually modified by ongoing vapor equilibration processes.  相似文献   

5.
Michael D. Smith 《Icarus》2009,202(2):444-452
We use infrared images obtained by the Thermal Emission Imaging System (THEMIS) instrument on-board Mars Odyssey to retrieve the optical depth of dust and water ice aerosols over more than 3.5 martian years between February 2002 (MY 25, Ls=330°) and December 2008 (MY 29, Ls=183°). These data provide an important bridge between earlier TES observations and recent observations from Mars Express and Mars Reconnaissance Orbiter. An improvement to our earlier retrieval [Smith, M.D., Bandfield, J.L., Christensen, P.R., Richardson, M.I., 2003. J. Geophys. Res. 108, doi:10.1029/2003JE002114] to include atmospheric temperature information from THEMIS Band 10 observations leads to much improved retrievals during the largest dust storms. The new retrievals show moderate dust storm activity during Mars Years 26 and 27, although details of the strength and timing of dust storms is different from year to year. A planet-encircling dust storm event was observed during Mars Year 28 near Southern Hemisphere Summer solstice. A belt of low-latitude water ice clouds was observed during the aphelion season during each year, Mars Years 26 through 29. The optical depth of water ice clouds is somewhat higher in the THEMIS retrievals at ∼5:00 PM local time than in the TES retrievals at ∼2:00 PM, suggestive of possible local time variation of clouds.  相似文献   

6.
Radar observations in the Deuteronilus Mensae region by Mars Reconnaissance Orbiter have constrained the thickness and dust concentration found within mid-latitude ice deposits, providing an opportunity to more accurately estimate the rheology of ice responsible for the formation of lobate debris aprons based on their apparent age of ∼100 Myr. We developed a numerical model simulating ice flow under martian conditions using results from ice deformation experiments, theory of ice grain growth based on terrestrial ice cores, and observational constraints from radar profiles and laser altimetry. By varying the ice grain size, the ice temperature, the subsurface slope, and the initial ice volume we determine the combination of parameters that best reproduce the observed LDA lengths and thicknesses over a period of time comparable to the apparent ages of LDA surfaces (90-300 Myr). We find that an ice temperature of 205 K, an ice grain size of 5 mm, and a flat subsurface slope give reasonable ages for many LDAs in the northern mid-latitudes of Mars. Assuming that the ice grain size is limited by the grain boundary pinning effect of incorporated dust, these results limit the dust volume concentration to less than 4%. However, assuming all LDAs were emplaced by a single event, we find that there is no single combination of grain size, temperature, and subsurface slope which can give realistic ages for all LDAs, suggesting that some or all of these variables are spatially heterogeneous. Based on our model we conclude that the majority of northern mid-latitude LDAs are composed of clean (?4 vol%), coarse (?1 mm) grained ice, but regional differences in either the amount of dust mixed in with the ice, or in the presence of a basal slope below the LDA ice must be invoked. Alternatively, the ice temperature and/or timing of ice deposition may vary significantly between different mid-latitude regions. Either eventuality can be tested with future observations.  相似文献   

7.
A new model of albedo and emissivity of the martian seasonal caps represented as porous CO2 slabs containing spherical voids and dust particles is described. In the model, a radiative transfer model is coupled with a microphysical model in order to link changes in albedo and emissivity to changes in porosity caused by ice metamorphism. The coupled model is capable of reproducing temporal changes in the spectra of the caps taken by the Thermal Emission Spectrometer onboard the Mars Global Surveyor and it can be used as the forward model in the retrievals of the caps' physical properties (porosity, dust abundance, void and dust grain size) from the spectra. Preliminary results from such inversion studies are presented.  相似文献   

8.
Recent observations of the surface of Mars have shown several fresh mid-latitude craters. Some of these craters show exposed ice (Byrne, S. et al. [2009]. Science 325, 1674-1676.). In some craters, albedo of ice slowly decreases, while in others, it remains nearly constant. We attempt to determine influence of the regolith structure on the rate of sublimation of ice. For this purpose we performed numerical simulations describing evolution of the exposed ice in model craters located at middle latitudes.We consider a new model for the structure and evolution of the material at- and beneath the crater floors. In contrast to the previous study by Dundas and Byrne (Dundas, C.M., Byrne, S. [2010]. Icarus 206, 716-728.) we do not investigate sublimation of dirty ice, and the related formation of a sublimation lag. Instead, we consider sublimation of a pure ice layer on top of layered regolith. In our model the observed reflectivity decreases due to the sublimation-driven changes of the optical properties of thinning clean ice. This offers an alternative to the deposition of the dust embedded in ice (sublimation lag).We have shown that in our model among many parameters affecting ice sublimation rate, volumetric fraction of water ice in the subsurface beneath the crater has the strongest influence. Hence observed darkening of the ice patch on the crater floor might be sufficient to determine the content of water ice in the subsurface. Our calculations show that an albedo decrease of fresh ice patches in mid-latitude craters can be explained by either strong dust sedimentation or, if this is excluded, by sublimation of a thin layer of water ice from the regolith with large thermal inertia. This is consistent with a large volumetric fraction of water ice beneath the crater floor and contributes to evidence for an extended subsurface water reservoir on Mars.The overall conclusion of our work is that a thin post-impact surface ice coating over ice-rich ground beneath the crater floors is consistent with the observations.  相似文献   

9.
Mars General Circulation Model (GCM) simulations are presented to illustrate the importance of the ice emissivity of the seasonal CO2 polar caps in regulating the effects of airborne dust on the martian CO2 cycle. Simulated results show that atmospheric dust suppresses CO2 condensation when the CO2 ice emissivity is high but enhances it when the CO2 ice emissivity is low. This raises the possibility that the reason for the repeatable nature of the CO2 cycle in the presence of a highly variable dust cycle is that the CO2 ice emissivity is “neutral” - the value that leads to no change in CO2 condensation with changing atmospheric dust. For this GCM, the “neutral” emissivity is approximately 0.55, which is low compared to observed cap emissivities. This inconsistency poses a problem for this hypothesis. However, it is clear that the CO2 ice emissivity is a critical physical parameter in determining how atmospheric dust affects the CO2 cycle on Mars.  相似文献   

10.
The Short Wavelength Channel of the Planetary Fourier Spectrometer (PFS) covers the 8333-1750 cm−1 (1.2-5.7 μm) spectral range, that is well suited to study the reflectance properties of the martian soil. These properties vary with time due to the dust dynamics in the martian environment. Wind can blow off dust exposing soil and fresh rocks and can support grain mobility inducing local dust settling. We have analyzed PFS data from January 2004 to April 2005. A detailed photometric study of the radiance acquired from the planet has been performed in order to compare correctly measurements obtained at different viewing geometries and to produce a mosaic image of the planet. The results show good agreement with data from the Thermal Emission Spectrometer (on-board NASA Mars Global Surveyor orbiter), although some variations are observed. Some albedo changes could be due to small to medium scale dust storms. A very accurate estimation of the limb-darkening parameter has been computed from the analyzed data. The obtained values are compared with a surface roughness and a thermal inertia map in order to assess the relation between the limb-darkening parameter and the physical properties of surface.  相似文献   

11.
H.M. Böttger  S.R. Lewis  F. Forget 《Icarus》2005,177(1):174-189
This paper describes General Circulation Model (GCM) simulations of the martian water cycle focusing on the effects of an adsorbing regolith. We describe the 10-layer regolith model used in this study which has been adapted from the 1-D model developed by Zent, A.P., Haberle, R.M., Houben, H.C., Jakosky, B.M. [1993. A coupled subsurface-boundary layer model of water on Mars. J. Geophys. Res. 98 (E2), 3319-3337, February]. Even with a 30-min timestep and taking into account the effect of surface water ice, our fully implicit scheme compares well with the results obtained by Zent, A.P., Haberle, R.M., Houben, H.C., Jakosky, B.M. [1993. A coupled subsurface-boundary layer model of water on Mars. J. Geophys. Res. 98 (E2), 3319-3337, February]. This means, however, that the regolith is not able to reproduce the diurnal variations in column water vapour abundance of up to a factor of 2-3 as seen in some observations, with only about 10% of the atmospheric water vapour column exchanging with the subsurface on a daily basis. In 3-D simulations we find that the regolith adsorbs water preferentially in high latitudes. This is especially true in the northern hemisphere, where perennial subsurface water ice builds up poleward of 60° N at depths which are comparable to the Odyssey observations. Much less ice forms in the southern high latitudes, which suggests that the water ice currently present in the martian subsurface is not stable under present conditions and is slowly subliming and being deposited in the northern hemisphere. When initialising the model with an Odyssey-like subsurface water ice distribution the model is capable of forcing the simulated water cycle from an arbitrary state close to the Mars Global Surveyor Thermal Emission Spectrometer observations. Without the actions of the adsorbing regolith the equilibrated water cycle is found to be a factor of 2-4 too wet. The process by which this occurs is by adsorption of water during northern hemisphere summer in northern mid and high latitudes where it remains locked in until northern spring when the seasonal CO2 ice cap retreats. At this time the water diffuses out of the regolith in response to increased temperature and is returned to the residual water ice cap by eddie transport.  相似文献   

12.
David Horne  Michael D. Smith 《Icarus》2009,200(1):118-128
The Mars Global Surveyor Thermal Emission Spectrometer (TES) instrument has returned over 200 million thermal infrared spectra of Mars taken between March 1999 and August 2004. This represents one of the most complete records of spatial and temporal changes of the martian atmosphere ever recorded by an orbiting spacecraft. Previous reports of the standard TES retrieval of aerosol optical depth have been limited to those observations taken over surfaces with temperatures above 210 K, limiting the spatiotemporal coverage of Polar Regions with TES. Here, we present an extension to the standard TES retrieval that better models the effects of cold surfaces below 200 K. This modification allows aerosol optical depth to be retrieved from TES spectra over a greater spatiotemporal range than was previously possible, specifically in Polar Regions. This new algorithm is applied to the Polar Regions to show the seasonal variability in dust and ice optical depth for the complete temporal range of the TES database (Mars Year 24, Ls=104°, 1 March 1999 to Mars Year 24, Ls=82°, 31 August 2004).  相似文献   

13.
K.E. Williams  O.B. Toon  C. McKay 《Icarus》2008,196(2):565-577
Christensen [2003. Nature 422, 45-48] suggested that runoff from melting snowpacks on martian slopes might be responsible for carving gullies. He also suggested that snowpacks currently exist on Mars, for example on the walls of Dao Valles (approximately 33° S). Such snowpacks were presumably formed during the last obliquity cycle, which occurred about 70,000 years ago. In this paper we investigate a specific scenario under conditions we believe are favorable for snowpack melting. We model the rate at which a snowpack located at 33° S on a poleward-facing slope sublimates and melts on Mars, as well as the temperature profile within the snowpack. Our model includes the energy and mass balance of a snowpack experiencing diurnal variations in insolation. Our results indicate that a dirty snowpack would quickly sublimate and melt under current martian climate conditions. For example a 1 m thick dusty snowpack of moderate density (550 kg/m3) and albedo (0.39) would sublimate in less than two seasons, producing a small amount of meltwater runoff. Similarly, a cleaner snowpack (albedo 0.53) would disappear in less than 9 seasons. These results suggest that the putative snowpack almost certainly could not have survived for 70,000 years. For most of the parameter settings snowpack interior temperatures at this latitude and slope do reach the melting point. Under most conditions melting occurs when the snowpack is less than 10 cm thick. The modeled snowpack will not melt if it is covered by a 1 cm dust lag. In general, these findings raise interesting possibilities regarding gully formation, but perhaps mostly during a past climate regime when snowfall was expected to have occurred. If there currently are exposed snowpacks on martian mid-latitude slopes, then these ice sheets cannot last long. Hence they might be time variable features on Mars and should be searched for.  相似文献   

14.
This work is devoted to the analysis of the variation of albedo measured by orbiting instruments with atmospheric opacity on Mars. The study has been conduced by analysing Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) data from martian regions with different surface albedo.In support of these data, synthetic spectra with different surface albedo and atmospheric opacities have been computed, so that a comparison has been performed. The synthetic spectra have been retrieved by using two different grain sizes for suspended dust (0.5 and 1.2 μm), allowing a comparison between the two models and the observations.Using the DCI, a parameter describing the quantity of dust deposited on the surface, the effectiveness of the single scattering approximation has been tested for low atmospheric opacity by analysing the quality of the linear fit up to different atmospheric opacity.For more opaque conditions two kinds of fits have been applied to the data, linear and second-order degree polynomial. In this case, we found that the polynomial fit better describes the observations.The analysis of these data made it possible to notice a peculiar trend, already reported by Christensen (1988), of the albedo over Syrtis Major after the occurrence of dust storms, but, differently from that work, now the study of DCI together with atmospheric opacity and albedo allowed us to robustly confirm the hypothesis made by Christensen.Finally, the comparison between observations and synthetic spectra computed with models with different particles grain sizes indicates that dust particles of 0.5 μm diameter are the most effective to change the aerosol atmospheric opacity on Mars.  相似文献   

15.
If the recently observed young gullies on Mars represent seeps or outflows of aqueous fluid, that fluid must be highly concentrated brine to be even moderately stable under current martian surface conditions. Such brines are to be expected in the megaregolith if an initial saline hydrosphere underwent evapoconcentration via water escape from the atmosphere, evolved into subsurface CaCl2-enriched brines by chemical interaction with mafic rocks, and then froze until eutectic compositions were reached. Although most such brines would tend to sink deep into the megaregolith, they could be preserved locally at relatively high elevations as aquifers (or frozen paleoaquifers) perched between ground ice and crystalline salts.  相似文献   

16.
The time variations of spectral properties of dark martian surface features are investigated using the OMEGA near-IR dataset. The analyzed period covers two Mars years, spanning from early 2004 to early 2008 (includes the 2007 global dust event). Radiative transfer modeling indicates that the apparent albedo variations of low to mid-latitude dark regions are consistent with those produced by the varying optical depth of atmospheric dust as measured simultaneously from the ground by the Mars Exploration Rovers. We observe only a few significant albedo changes that can be attributed to surface phenomena. They are small-scaled and located at the boundaries between bright and dark regions. We then investigate the variations of the mean particle size of aerosols using the evolution of the observed dark region spectra between 1 and 2.5 μm. Overall, we find that the observed changes in the spectral slope are consistent with a mean particle size of aerosols varying with time between 1 and 2 μm. Observations with different solar zenith angles make it possible to characterize the aerosol layer at different altitudes, revealing a decrease of the particle size of aerosols as altitude increases.  相似文献   

17.
We present an application of a multivariate analyses technique on data returned by the Planetary Fourier Spectrometer (PFS) instrument on board the ESA’s Mars Express (MEX) spacecraft in order to separate the atmospheric contribution from the observed radiation. We observe that Thermal/Far Infrared spectra returned from Mars, covering almost a whole martian year, can be represented by a linear model using a limited set of end-member spectra. We identify the end-members as the suspended mineral dust and water ice clouds, but no surface signature was found. We improve previous studies performed with data from the Thermal Emission Spectrometer (TES) thanks to the higher spectral resolution of PFS. This allows for distinguishing narrow gaseous bands present in the martian atmosphere. Furthermore, the comparison of results from PFS and TES with data collected in 1971 by the Mariner 9 Infrared Interferometer Spectrometer (IRIS) shows an atmospheric dust component with similar spectral behavior. This might indicate homogeneity of the dust source regions over a time period of more than 30 years.  相似文献   

18.
Over the last few decades, General Circulation Models (GCM) have been used to simulate the current martian climate. The calibration of these GCMs with the current seasonal cycle is a crucial step in understanding the climate history of Mars. One of the main climatic signals currently used to validate GCMs is the annual atmospheric pressure cycle. It is difficult to use changes in seasonal deposits on the surface of Mars to calibrate the GCMs given the spectral ambiguities between CO2 and H2O ice in the visible range. With the OMEGA imaging spectrometer covering the near infra-red range, it is now possible to monitor both types of ice at a spatial resolution of about 1 km. At global scale, we determine the change with time of the Seasonal South Polar Cap (SSPC) crocus line, defining the edge of CO2 deposits. This crocus line is not symmetric around the geographic South Pole. At local scale, we introduce the snowdrop distance, describing the local structure of the SSPC edge. Crocus line and snowdrop distance changes can now be used to calibrate GCMs. The albedo of the seasonal deposits is usually assumed to be a uniform and constant parameter of the GCMs. In this study, albedo is found to be the main parameter controlling the SSPC recession at both global and local scale. Using a defrost mass balance model (referred to as D-frost) that incorporates the effect of shadowing induced by topography, we show that the global SSPC asymmetry in the crocus line is controlled by albedo variations. At local scale, we show that the snowdrop distance is correlated with the albedo variability. Further GCM improvements should take into account these two results. We propose several possibilities for the origin of the asymmetric albedo control. The next step will be to identify and model the physical processes that create the albedo differences.  相似文献   

19.
Following the work of Kieffer and Titus (2001, Icarus 154, 162-180), we present results of thermal IR observations of Korolev crater, located at ∼73° latitude in the martian northern polar region. Similar to techniques employed by Titus et al. (2003, Science 299, 1048-1050), we use infrared images from the Thermal Emission Imaging System (THEMIS) aboard Mars Odyssey to identify several regions within the crater basin with distinct thermal properties that correlate with topography. The THEMIS results show these regions exhibit temperature variations, spatially within the crater and throughout the martian year. In addition to the variations identified in the THEMIS observations, Mars Global Surveyor Thermal Emission Spectrometer (TES) observations show differences in albedo and temperature of these regions on both daily and seasonal cycles. Modeling annual temperature variations of the surface, we use TES observations to examine the thermal properties of these regions. This analysis reveals the crater interior deposits are likely thick layers (several meters) of high thermal inertia material (water ice, or extremely ice-rich regolith). Spatial variations of the physical properties of these regions are likely due to topography and possibly variations in the subsurface material itself. The nature of these deposits may help constrain polar processes, as well as provide context for the polar lander mission, Phoenix.  相似文献   

20.
We jointly analyze data from the High-Energy Neutron Detector (HEND) onboard the NASA Mars Odyssey spacecraft and data from the Mars Orbiter Laser Altimeter (MOLA) onboard the Mars Global Surveyor spacecraft. The former instrument measures the content of hydrogen (in the form of H2O or OH) in the subsurface layer of soil and the latter instrument measures the surface albedo with respect to the flux of solar energy. We have checked the presence of a correlation between these two data sets in various Martian latitude bands. A significant correlation has been found between these data at latitudes poleward of 40° in the northern hemisphere and at latitudes 40°–60° in the southern hemisphere. This correlation is interpreted as evidence for the presence of stable water ice in these regions under a dry layer of soil whose thickness is determined by the condition for equilibrium between the condensation of water from the atmosphere and its sublimation when heated by solar radiation. For these regions, we have derived an empirical relation between the flux of absorbed solar radiation and the thickness of the top dry layer. It allows the burial depth of the water ice table to be predicted with a sub-kilometer resolution based on near-infrared albedo measurements. We have found no correlation in the southern hemisphere at latitudes >60°, although neutron data also suggest that water ice is present in this region under a layer of dry soil. We conclude that the thickness of the dry layer in this region does not correspond to the equilibrium condition between the water ice table and the atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号