首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Zamama, Culann, and Tupan Patera are three large, persistent volcanic centers on the jovian moon Io. As part of an ongoing project to quantify contributions from individual volcanic centers to Io’s thermal budget, we have quantified the radiant flux from all suitable observations made by the Galileo Near Infrared Mapping Spectrometer (NIMS) of these volcanoes, in some cases filling omissions in previous analyses. At Zamama, after a long period of cooling, we see a peak in thermal emission that corresponds with new plume activity. Subsequently, toward the end of the Galileo epoch, thermal emission from Zamama drops off in a manner consistent with a greatly reduced eruption rate and the cooling of emplaced flows. Culann exhibits possible episodic activity. We present the full Tupan Patera NIMS dataset and derive new estimates of thermal output and temporal behavior. Eruption rates at these three volcanoes are on the order of 30 m3 s−1, consistent with a previous analysis of NIMS observations of Prometheus, and nearly an order of magnitude greater than Kilauea volcano, Hawai’i, Earth’s most active volcano. We propose that future missions to the jovian system could better constrain activity at these volcanoes and others where similar styles of activity are taking place by obtaining data on a time scale of, ideally, at least one observation per day. Observations at similar or even shorter timescales are desirable during initial waxing phases of eruption episodes. These eruptions are identifiable from their characteristic spectral signatures and temporal behavior.  相似文献   

2.
We have studied data from the Galileo spacecraft's three remote sensing instruments (Solid-State Imager (SSI), Near-Infrared Mapping Spectrometer (NIMS), and Photopolarimeter-Radiometer (PPR)) covering the Zamama-Thor region of Io's antijovian hemisphere, and produced a geomorphological map of this region. This is the third of three regional maps we are producing from the Galileo spacecraft data. Our goal is to assess the variety of volcanic and tectonic materials and their interrelationships on Io using planetary mapping techniques, supplemented with all available Galileo remote sensing data. Based on the Galileo data analysis and our mapping, we have determined that the most recent geologic activity in the Zamama-Thor region has been dominated by two sites of large-scale volcanic surface changes. The Zamama Eruptive Center is a site of both explosive and effusive eruptions, which emanate from two relatively steep edifices (Zamama Tholi A and B) that appear to be built by both silicate and sulfur volcanism. A ∼100-km long flow field formed sometime after the 1979 Voyager flybys, which appears to be a site of promethean-style compound flows, flow-front SO2 plumes, and adjacent sulfur flows. Larger, possibly stealthy, plumes have on at least one occasion during the Galileo mission tapped a source that probably includes S and/or Cl to produce a red pyroclastic deposit from the same vent from which silicate lavas were erupted. The Thor Eruptive Center, which may have been active prior to Voyager, became active again during the Galileo mission between May and August 2001. A pillanian-style eruption at Thor included the tallest plume observed to date on Io (at least 500 km high) and new dark lava flows. The plume produced a central dark pyroclastic deposit (probably silicate-rich) and an outlying white diffuse ring that is SO2-rich. Mapping shows that several of the new dark lava flows around the plume vent have reoccupied sites of earlier flows. Unlike most of the other pillanian eruptions observed during the Galileo mission, the 2001 Thor eruption did not produce a large red ring deposit, indicating a relative lack of S and/or Cl gases interacting with the magma during that eruption. Between these two eruptive centers are two paterae, Thomagata and Reshef. Thomagata Patera is located on a large shield-like mesa and shows no signs of activity. In contrast, Reshef Patera is located on a large, irregular mesa that is apparently undergoing degradation through erosion (perhaps from SO2-sapping or chemical decomposition of sulfur-rich material) from multiple secondary volcanic centers.  相似文献   

3.
Galileo's Solid State Imager (SSI) observed Tvashtar Catena four times between November 1999 and October 2001, providing a unique look at a distinctive high latitude volcanic complex on Io. The first observation (orbit I25, November 1999) resolved, for the first time, an active extraterrestrial fissure eruption; the brightness temperature was at least 1300 K. The second observation (orbit I27, February 2000) showed a large (∼500 km2) region with many, small, hot, regions of active lava. The third observation was taken in conjunction with Cassini imaging in December 2000 and showed a Pele-like, annular plume deposit. The Cassini images revealed an ∼400 km high Pele-type plume above Tvashtar Catena. The final Galileo SSI observation of Tvashtar (orbit I32, October 2001), revealed that obvious (to SSI) activity had ceased, although data from Galileo's Near Infrared Mapping Spectrometer (NIMS) indicated that there was still significant thermal emission from the Tvashtar region. In this paper, we primarily analyze the style of eruption during orbit I27 (February 2000). Comparison with a lava flow cooling model indicates that the behavior of the Tvashtar eruption during I27 does not match that of simple advancing lava flows. Instead, it may be an active lava lake or a complex set of lava flows with episodic, overlapping eruptions. The highest reliable color temperature is ∼1300 K. Although higher temperatures cannot be ruled out, they do not need to be invoked to fit the observed data. The total power output from the active lavas in February 2000 was at least 1011 W.  相似文献   

4.
Magellan radar image data of Sapas Mons, a 600 km diameter volcano located on the flanks of the Arla Rise, permit the distinction of widespread volcanic units on the basis of radar properties, morphology, and spatial and inferred temporal relations, each representing a stage or phase in the evolution of the volcano. Six flow units were identified and are arranged asymmetrically about the volcano. Although there is some evidence for overlapping of units, the stratigraphy clearly indicates a younging upwards sequence. The estimated volume of this 2.4 km high volcano is 3.1 × 104 km3, which is comparable to the largest Hawaiian shield (Mauna Loa, 4.25 × 104 km3), but it is significantly less than an estimated volume for the entire Hawaiian-Emperor chain (1.08 × 106 km3) and less than the lower diameter (100 × 150 km) island of Hawaii (11.3 × 104 km3). Although it is difficult to clearly identify a single lava flow, estimates of apparent single flow volumes range from 4 km3 (for an average unit 5 flow of 3.4 km width, 10 m thickness, and 121 km length) to almost 59 km3 (for a 17.8 km wide, l0 m thick, 330 km long unit 1 flow). Estimates of total volumes for the units show that four of the six flow units have volumes that are within a factor of 1.2 of each other, one unit is approximately three times more voluminous, and the latest unit has a very small volume. Flows within a given unit are very distinct relative to flows in other units with respect to average lengths, aspect ratio, radar brightness, and planimetric outline. There is a weak distinction in rms slope between units and emissivity is correlated with altitude, not unit boundaries. A pair of 25 km diameter scalloped-margin domes occur at the summit and are the source of the last stage of eruptions on Sapas; steep fronts and high aspect ratios suggest that associated flows may have had a high viscosity. Graben form a circumferential structure 75–100 km in diameter surrounding the summit domes and are interpreted to be indicative of subsidence over a central magma reservoir. Radial fractures with associated small edifices cut the lower flanks of the edifice but are not observed within the summit ring of graben; these are interpreted to be the expression of near-surface dykes and may have been emplaced during a period of enhanced activity that correlates with the most voluminous flow unit. Unlike at Hawaii, however, these dykes and small edifices do not seem to be the source of significant flank eruptions. Although some effusive activity may have accompanied their emplacement, the majority of lava flows at Sapas appear to be radial to a single, near-summit point located between the two summit domes.Calculated effusion rates range from 1.5 × 103 m3/s to 3.1 × 105 m3/s; these values suggest that rates were high compared with the Earth and decreased with time. These rates, and the volumes calculated, give eruption durations for the various units that range from 18 days to over 20 years. If eruption is caused by the influx of magma from depth and rupture of an overpressurized chamber, this suggests a variable flux over the history of the volcano. The late-stage eruptions which formed the summit domes are interpreted to be the result of fractional crystallization and/or volatile build-up in the chamber, following a period of decreased supply from depth.Local topography and gravity, as well as regional geology support the presence of a mantle plume at Sapas. The similar properties of large volumes of magma over the total history of the volcano, as well as the prolonged period of magma supply and gradual waning, are consistent with a plume origin. These inferences and the observations allow us to characterise the history of the volcano as follows: arrival of the mantle plume caused uplift of topography and surrounding plains formation: continued supply of smaller volumes of material permitted construction of the edifice; development of a magma reservoir (predicted by theory to form at shallow depths) modified eruption characteristics by permitting storage and homogenization of magma; unbuffered conditions prevailed for the majority of eruptions, producing flows of similar volumes but decreasing flow lengths; a period early on of enhanced supply led to buffered chamber conditions, resulting in the eruption of the voluminous flow unit and the emplacement of many lateral dykes; evacuations from the chamber and cooling towards the last stages caused distributed summit collapse and formation of the ring graben; and finally the gradual waning of supply allowed evolution of the magma which produced the late-stage, possibly viscous flows and dome construction. Preliminary observation of Sapas and two other volcanoes at different elevations suggests that altitude-dependent chamber development and growth may influence the complexity of lava flows and determine the existence of collapse calderas. Many features at Sapas are representative of large volcanoes on Venus and thus Sapas Mons is a good example of a typical plume-associated edifice. Sapas differs in many ways from Kilauea, a terrestrial type shield volcano, but these differences can be understood in the context of the Venus environment.  相似文献   

5.
Giovanni Leone  Lionel Wilson 《Icarus》2011,211(1):623-635
We solve numerically the equations describing the transfer of heat through the lithosphere of Io by a mixture of conduction and volcanic advection as proposed by O’Reilly and Davies (O’Reilly, T.C., Davies, G.F. [1981]. Geophys. Res. Lett. 8, 313-316), removing the requirement that average material properties must be used. As expected, the dominance of advective heat transfer by volcanic eruptions means that Io’s geothermal gradient well away from volcanic centres is very small, of order 1 K km−1. This result is independent of any reasonable assumptions about the radiogenic heating rate in the lithosphere. The lithosphere temperature does not increase greatly above the surface temperature until the base of the lithosphere is approached, except in limited areas around shallow magma bodies. As a consequence, solid volatile sulphur compounds mobilized by volcanic processes and re-deposited on the surface of Io commonly remain solid until they reach great depths as they are progressively buried by ongoing activity. For current estimates of the volcanic heat transfer rate, melting of SO2 does not begin until a depth of ∼20 km and sulphur remains solid to a depth of ∼26 km in a 30 km thick lithosphere. Rising magmas can incorporate fluids from these deep sulphur compound aquifers, and we quantify the major influence that this can have on the bulk density of the magma and hence the resulting possible intrusion and eruption styles.  相似文献   

6.
Volcanic plumes on the Jovian satellite Io may be a visible manifestation of a plasma-arc discharge phenomenon. The amount of power in the plasma arc (1011 W) is not enough to account for all the energy dissipated by the volcanoes. However, once a volcano is initiated by tidal and geologic processes, the dynamics of the volcanic plumes can be influenced by the plasma arcs. As initially pointed out by Gold (1979), plasma arcs are expected because of 106 A currents and 400 kV potentials generated by the flow past Io of a torus of relatively dense magnetospheric plasma. We utilize our experience with laboratory plasma arcs to investigate the plume dynamics. The filamentation in the plume of the volcano Prometheus and its cross-sectional shape is quantitatively consistent with theories developed from laboratory observation.Paper dedicated to Professor Hannes Alfvén on the occasion of his 80th birthday, 30 May 1988.  相似文献   

7.
We produced a regional geologic map of the Zal region of Io's antijovian hemisphere using Galileo mission data. We discuss the geologic features, summarize the map units and structures that are present, discuss the nature of volcanic activity, and present an analysis of the volcanic, tectonic, and gradational processes that affect the region. The Zal region consists of five primary types of geologic materials: plains, mountains, paterae floors, flows, and diffuse deposits. The flows and patera floors are similar, but are subdivided based on uncertainties regarding emplacement environments and mechanisms. The Zal region includes two hotspots detected by Galileo: one along the western scarp of the Zal Patera volcano and one at the Rustam Patera volcano (name submitted to IAU). A third hotspot at the nearby At'am Patera volcano (name submitted to IAU) is the source of diffuse and pyroclastic materials that blanket north Zal Mons. The western bounding scarp of Zal Patera is the location of a fissure vent that is the source of multiple silicate lava flows. The floor of Zal Patera has been partially resurfaced by dark lava flows, although portions of the patera floor appear bright and unchanged during the Galileo mission. This suggests that the floor did not undergo complete resurfacing as a flooding lava lake but does contain a compound flow field. Mountain materials exhibit stages of degradation; lineated material degrades into mottled material. We have explored the possibility that north and south Zal Mons were originally one structure. We propose that strike-slip faulting and subsequent rifting separated the mountain units, opened a fissure which serves as a vent for lava flow, and created a depression which, by further extension during the rifting event, became Zal Patera. With comparison to other regional maps of Io, this work provides insight into the general geologic evolution of Io.  相似文献   

8.
Polar brightness temperatures on Io are higher than expected for any passive surface heated by absorbed sunlight. This discrepancy implies large scale volcanic activity from which we derive a new component of Io's heat flow. We present a ‘Three Component’ thermal background, infrared emission model for Io that includes active polar regions. The widespread polar activity contributes an additional ∼0.6 W m−2 to Io's heat flow budget above the ∼2.5 W m−2 from thermal anomalies. Our estimate for Io's global average heat flow increases to ∼3±1 W m−2 and ∼1.3±0.4×1014 watts total.  相似文献   

9.
We produced the first geologic map of the Amirani-Gish Bar region of Io, the last of four regional maps generated from Galileo mission data. The Amirani-Gish Bar region has five primary types of geologic materials: plains, mountains, patera floors, flows, and diffuse deposits. The flows and patera floors are thought to be compositionally similar, but are subdivided based on interpretations regarding their emplacement environments and mechanisms. Our mapping shows that volcanic activity in the Amirani-Gish Bar region is dominated by the Amirani Eruptive Center (AEC), now recognized to be part of an extensive, combined Amirani-Maui flow field. A mappable flow connects Amirani and Maui, suggesting that Maui is fed from Amirani, such that the post-Voyager designation “Maui Eruptive Center” should be revised. Amirani contains at least four hot spots detected by Galileo, and is the source of widespread bright (sulfur?) flows and active dark (silicate?) flows being emplaced in the Promethean style (slowly emplaced, compound flow fields). The floor of Gish Bar Patera has been partially resurfaced by dark lava flows, although other parts of its floor are bright and appeared unchanged during the Galileo mission. This suggests that the floor did not undergo complete resurfacing as a lava lake as proposed for other ionian paterae. There are several other hot spots in the region that are the sources of both active dark flows (confined within paterae), and SO2- and S2-rich diffuse deposits. Mapped diffuse deposits around fractures on mountains and in the plains appear to serve as the source for gas venting without the release of magma, an association previously unrecognized in this region. The six mountains mapped in this region exhibit various states of degradation. In addition to gaining insight into this region of Io, all four maps are studied to assess the best methodology to use to produce a new global geologic map of Io based on the newly released, combined Galileo-Voyager global mosaics. To convey the complexity of ionian surface geology, we find that a new global geologic map of Io should include a map sheet displaying the global abundances and types of surface features as well as a complementary GIS database as a means to catalog the record of surface changes observed since the Voyager flybys and during the Galileo mission.  相似文献   

10.
The modeling of thermal emission from active lava flows must account for the cooling of the lava after solidification. Models of lava cooling applied to data collected by the Galileo spacecraft have, until now, not taken this into consideration. This is a flaw as lava flows on Io are thought to be relatively thin with a range in thickness from ∼1 to 13 m. Once a flow is completely solidified (a rapid process on a geological time scale), the surface cools faster than the surface of a partially molten flow. Cooling via the base of the lava flow is also important and accelerates the solidification of the flow compared to the rate for the ‘semi-infinite’ approximation (which is only valid for very deep lava bodies). We introduce a new model which incorporates the solidification and basal cooling features. This model gives a superior reproduction of the cooling of the 1997 Pillan lava flows on Io observed by the Galileo spacecraft. We also use the new model to determine what observations are necessary to constrain lava emplacement style at Loki Patera. Flows exhibit different cooling profiles from that expected from a lava lake. We model cooling with a finite-element code and make quantitative predictions for the behavior of lava flows and other lava bodies that can be tested against observations both on Io and Earth. For example, a 10-m-thick ultramafic flow, like those emplaced at Pillan Patera in 1997, solidifies in ∼450 days (at which point the surface temperature has cooled to ∼280 K) and takes another 390 days to cool to 249 K. Observations over a sufficient period of time reveal divergent cooling trends for different lava bodies [examples: lava flows and lava lakes have different cooling trends after the flow has solidified (flows cool faster)]. Thin flows solidify and cool faster than flows of greater thickness. The model can therefore be used as a diagnostic tool for constraining possible emplacement mechanisms and compositions of bodies of lava in remote-sensing data.  相似文献   

11.
We report the discovery of the forbidden electronic a1Δ→X3Σ transition of the SO radical on Io at 1.7 μm with the W. M. Keck II telescope on 24 September 1999 (UT), while the satellite was eclipsed by Jupiter. The shape of the SO emission band suggests a rotational temperature of ∼1000 K; i.e., the gas is extremely hot. We interpret the observed emission rate of ∼2×1027 photons s−1 to be caused by SO molecules in the excited a1Δ state being directly ejected from the vent at a thermodynamic quenching temperature of ∼1500 K, assuming a SO/SO2 abundance ratio of ∼0.1 and a total venting rate of ∼1031 molecules s−1 (Strobel and Wolven 2001, Astrophys. Space Sci. 277, 1-17). The shape of our complete (1.6-2.5 μm) spectrum suggests that the volcano Loki contains a small (∼2 km2) hot spot at 960±12 K, as well as a larger (∼50 km2) area at 640±5 K.  相似文献   

12.
We present results regarding the dynamical meteorology of Jupiter’s White Ovals at different points in their evolution. Starting from the era with three White Ovals FA, BC, and DE (Galileo), continuing to the post-merger epoch with only one Oval BA (Cassini), and finally to Oval BA’s current reddened state (New Horizons), we demonstrate that the dynamics of their flow have similarly evolved along with their appearance. In the Galileo epoch, Oval DE had an elliptical shape with peak zonal wind speeds of ∼90 m s−1 in both its northern and southern peripheries. During the post-merger epoch, Oval BA’s shape was more triangular and less elliptical than Oval DE; in addition to widening in the north-south direction, its northern periphery was 20 m s−1 slower, and its southern periphery was 20 m s−1 faster than Oval DE’s flow during the Galileo era. Finally, in the New Horizons era, the reddened Oval BA had evolved back to a classical elliptical form. The northern periphery of Oval BA increased in speed by 20 m s−1 from Cassini to New Horizons, ending up at a speed nearly identical to that of the northern periphery of Oval DE during Galileo. However, the peak speeds along the southern rim of the newly formed Oval BA were consistently faster than the corresponding speeds in Oval DE, and they increased still further between Cassini and New Horizons, ending up at ∼140-150 m s−1. Relative vorticity maps of Oval BA reveal a cyclonic ring surrounding its outer periphery, similar to the ring present around the Great Red Spot. The cyclonic ring around Oval BA in 2007 appears to be moderately stronger than observed in 1997 and 2001, suggesting that this may be associated with the coloration of the vortex. The modest strengthening of the winds in Oval BA, the appearance of red aerosols, and the appearance of a turbulent, cyclonic feature to Oval BA’s northwest create a strong resemblance with the Great Red Spot from both a dynamical and morphological perspective.In addition to the White Ovals, we also measure the winds within two compact cyclonic regions, one in the Galileo data set and one in the Cassini data set. In the images, these cyclonic features appear turbulent and filamentary, but our wind field reveals that the flow manifests as a coherent high-speed collar surrounding relatively quiescent interiors. Our relative vorticity maps show that the vorticity likewise concentrates in a collar near the outermost periphery, unlike the White Ovals which have peak relative vorticity magnitudes near the center of the vortex. The cyclones contain several localized bright regions consistent with the characteristics of thunderstorms identified in other studies. Although less studied than their anticyclonic cousins, these cyclones may offer crucial insights into the planet’s cloud-level energetics and dynamical meteorology.  相似文献   

13.
We present a Monte Carlo (MC) model of [OI] 6300 Å and [SII] 6716 Å emission from Io entering eclipse. The simulation accounts for the 3-D distribution of SO2, O, SO, S, and O2 in Io’s atmosphere, several volcanic plumes, and the magnetic field around Io. Thermal electrons from the jovian plasma torus are input along the simulation domain boundaries and move along the magnetic field lines distorted by Io, occasionally participating in collisions with neutrals. We find that the atmospheric asymmetry resulting from varying degrees of atmospheric collapse across Io (due to eclipse ingress) and the presence of volcanoes contributes significantly to the unique morphology of the [OI] 6300 Å emission. The [OI] radiation lifetime of ∼134 s limits the emission to regions that have a sufficiently low neutral density so that intermolecular collisions are rare. We find that at low altitudes (typically <40 km) and in volcanic plumes (Pele, Prometheus, etc.) the number density is large enough (>4 × 109 cm−3) to collisionally quench nearly all (>95%) of the excited oxygen for reasonable quenching efficiencies. Upstream (relative to the plasma flow), Io’s perturbation of the jovian magnetic field mirrors electrons with high pitch angles, while downstream collisions can trap the electrons. This magnetic field perturbation is one of the main physical mechanisms that results in the upstream/downstream brightness asymmetry in [OI] emission seen in the observation by Trauger et al. (Trauger, J.T., Stapelfeldt, K.R., Ballester, G.E., Clarke, J.I., 1997. HST observations of [OI] emissions from Io in eclipse. AAS-DPS Abstract (1997DPS29.1802T)). There are two other main causes for the observed brightness asymmetry. First, the observation’s viewing geometry of the wake spot crosses the dayside atmosphere and therefore the wake’s observational field of view includes higher oxygen column density than the upstream side. Second, the phased entry into eclipse results in less atmospheric collapse and thus higher collisional quenching on the upstream side relative to the wake. We compute a location (both in altitude and latitude) for the intense wake emission feature that agrees reasonably well with this observation. Furthermore, the peak intensity of the simulated wake feature is less than that observed by a factor of ∼3, most likely because our model does not include direct dissociation-excitation of SO2 and SO. We find that the latitudinal location of the emission feature depends not so much on the tilt of the magnetic field as on the relative north/south flux tube depletion that occurs due to Io’s changing magnetic latitude in the plasma torus. From 1-D simulations, we also find that the intensity of [SII] 6716 and 6731 Å emission is much weaker than that of [OI] even if the [SII] excitation cross section is 103 times larger than excitation to [OI]. This is because the density of S+ is much less than that of O and because the Einstein-A coefficient of the [SII] emission is a factor of ∼10 smaller than that of [OI].  相似文献   

14.
We have examined thermal emission from 240 active or recently-active volcanic features on Io and quantified the magnitude and distribution of their volcanic heat flow during the Galileo epoch. We use spacecraft data and a geological map of Io to derive an estimate of the maximum possible contribution from small dark areas not detected as thermally active but which nevertheless appear to be sites of recent volcanic activity. We utilize a trend analysis to extrapolate from the smallest detectable volcanic heat sources to these smallest mapped dark areas. Including the additional heat from estimates for “outburst” eruptions and for a multitude of very small (“myriad”) hot spots, we account for ~62 × 1012 W (~59 ± 7% of Io’s total thermal emission). Loki Patera contributes, on average, 9.6 × 1012 W (~9.1 ± 1%). All dark paterae contribute 45.3 × 1012 W (~43 ± 5%). Although dark flow fields cover a much larger area than dark paterae, they contribute only 5.6 × 1012 W (~5.3 ± 0.6%). Bright paterae contribute ~2.6 × 1012 W (~2.5 ± 0.3%). Outburst eruption phases and very small hot spots contribute no more than ~4% of Io’s total thermal emission: this is probably a maximum value. About 50% of Io’s volcanic heat flow emanates from only 1.2% of Io’s surface. Of Io’s heat flow, 41 ± 7.0% remains unaccounted for in terms of identified sources. Globally, volcanic heat flow is not uniformly distributed. Power output per unit surface area is slightly biased towards mid-latitudes, although there is a stronger bias toward the northern hemisphere when Loki Patera is included. There is a slight favoring of the northern hemisphere for outbursts where locations were well constrained. Globally, we find peaks in thermal emission at ~315°W and ~105°W (using 30° bins). There is a minimum in thermal emission at around 200°W (almost at the anti-jovian longitude) which is a significant regional difference. These peaks and troughs suggest a shift to the east from predicted global heat flow patterns resulting from tidal heating in an asthenosphere. Global volcanic heat flow is dominated by thermal emission from paterae, especially from Loki Patera (312°W, 12°N). Thermal emission from dark flows maximises between 165°W and 225°W. Finally, it is possible that a multitude of very small hot spots, smaller than the present angular resolution detection limits, and/or cooler, secondary volcanic processes involving sulphurous compounds, may be responsible for at least part of the heat flow that is not associated with known sources. Such activity should be sought out during the next mission to Io.  相似文献   

15.
Io: Geochemistry of sulfur   总被引:1,自引:0,他引:1  
John S. Lewis 《Icarus》1982,50(1):103-114
The evidence from Voyager imaging, Earth-based spectral reflectivity studies, and thermal emission measurements combine to suggest an extremely fresh, volcanically recycled sulfur-rich crust for Io, with very shallow large-scale melting. Two present styles of volcanism are possible, depending on the thickness of local deposits of sulfur: shallow liquid sulfur magma generation with quiescent flooding, and high-temperature volcanism with violent eruption of a sulfur-iron magma driven by SO2. Evolutionary considerations preclude direct derivation of Io's lithosphere from any metal-bearing chondritic source material. Metal-free C3V- or C2M-type parent material of either primary or secondary origin is the most plausible direct antecedent of the present sulfur-rich crust. Sulfates are almost certainly important constituents of the mantle, and can participate in the recycling of reduced, dense sulfide species to prevent total extraction of sulfur into the core.  相似文献   

16.
Using the Hubble Space Telescope's Space Telescope Imaging Spectrograph we have obtained for the first time spatially resolved 2000-3000 Å spectra of Io's Prometheus plume and adjoining regions on Io's anti-jovian hemisphere in the latitude range 60° N-60° S, using a 0.1″ slit centered on Prometheus and tilted roughly 45° to the spin axis. The SO2 column density peaked at 1.25×1017 cm−2 near the equator, with an additional 5×1016 cm−2 enhancement over Prometheus corresponding to a model volcanic SO2 output of 105 kg s−1. Apart from the Prometheus peak, the SO2 column density dropped fairly smoothly away from the subsolar point, even over regions that included potential volcanic sources. At latitudes less than ±30°, the dropoff rate was consistent with control by vapor pressure equilibrium with surface frost with subsolar temperature 117.3±0.6 K, though SO2 abundance was higher than predicted by vapor pressure control at mid-latitudes, especially in the northern hemisphere. We conclude that, at least at low latitudes on the anti-jovian hemisphere where there are extensive deposits of optically-thick SO2 frost, the atmosphere is probably primarily supported by sublimation of surface frost. Although the 45° tilt of our slit prevents us from separating the dependence of atmospheric density on solar zenith angle from its dependence on latitude, the pattern is consistent with a sublimation atmosphere regardless of which parameter is the dominant control. The observed drop in gas abundance towards higher latitudes is consistent with the interpretation of previous Lyman alpha images of Io as indicating an atmosphere concentrated at low latitudes. Comparison with previous disk-resolved UV spectroscopy, Lyman-alpha images, and mid-infrared spectroscopy suggests that Io's atmosphere is denser and more widespread on the anti-jovian hemisphere than at other longitudes. SO2 gas temperatures were in the range of 150-250 K over the majority of the anti-jovian hemisphere, consistent with previous observations. SO was not definitively detected in our spectra, with upper limits to the SO/SO2 ratio in the range 1-10%, roughly consistent with previous observations. S2 gas was not seen anywhere, with an upper limit of 7.5×1014 cm−2 for the Prometheus plume, confirming that this plume is significantly poorer in S2 than the Pele plume (S2 /SO2<0.005, compared to 0.08-0.3 at Pele). In addition to the gas absorption signatures, we have observed continuum emission in the near ultraviolet (near 2800 Å) for the first time. The brightness of the observed emission was directly correlated with the SO2 abundance, strongly peaking in the equatorial region over Prometheus. Emission brightness was modestly anti-correlated with the jovian magnetic latitude, decreasing when Io intersected the torus centrifugal equator.  相似文献   

17.
If Io has a thin crust of ice [this possibility has recently been suggested by Lewis (1971)] then the electrical resistance of the satellite is determined by an outer layer of thickness ∼8 km and is higher by a factor ∼1015 than that needed to account for the modulation of Jupiter's decametric radio emission in the unipolar inductor model of Goldreich and Lynden-Bell. The modulation, however, could possibly be accounted for if the surface composition of Io is chondritic or if it has an ionosphere.  相似文献   

18.
During the Cassini-Jupiter flyby, VIMS observed Io at different phase angles, both in full sunlight and in eclipse. By using the sunlight measurements, we were able to produce phase curves in the visual through all the near infrared wavelengths covered by the VIMS instrument (0.85-5.1 μm). The phase angle spanned from ∼2° to ∼120°. The measurements, done just after Io emerged from Jupiter's shadow, show an increase of about 15% in Io's reflectance with respect to what would be predicted by the phase curve. This behavior is observed at wavelengths >1.2 μm. Moreover, just after emergence from eclipse an increase of about 25% is observed in the depth of SO2 frost bands at 4.07 and 4.35 μm. At 0.879<λ<1.04 μm the brightening is 10-24%. Below λ=0.879 μm the brightening, if present, should be less than the precision of our measurements (∼5%). Apparently, these observations are not explained neither by a diverse spatial distribution of SO2 on the Io' surface nor by atmospheric SO2 condensation on the surface during the eclipse.  相似文献   

19.
We obtained time-resolved, near-infrared spectra of Io during the 60-90 min following its reappearance from eclipse by Jupiter on five occasions in 2004. The purpose was to search for spectral changes, particularly in the well-known SO2 frost absorption bands, that would indicate surface-atmosphere exchange of gaseous SO2 induced by temperature changes during eclipse. These observations were a follow-on to eclipse spectroscopy observations in which Bellucci et al. [Bellucci et al., 2004. Icarus 172, 141-148] reported significant changes in the strengths of two strong SO2 bands in data acquired with the VIMS instrument aboard the Cassini spacecraft. One of the bands (4.07 μm [ν1 + ν3]) observed by Bellucci et al. is visible from ground-based observatories and is included in our data. We detected no changes in Io’s spectrum at any of the five observed events during the approximately 60-90 min during which spectra were obtained following Io’s emergence from Jupiter’s shadow. The areas of the three strongest SO2 bands in the region 3.5-4.15 μm were measured for each spectrum; the variation of the band areas with time does not exceed that which can be explained by the Io’s few degrees of axial rotation during the intervals of observation, and in no case does the change in band strength approach that seen in the Cassini VIMS data. Our data are of sufficient quality and resolution to show the weak 2.198 μm (4549.6 cm−1) 4ν1 band of SO2 frost on Io for what we believe is the first time. At one of the events (June 22, 2004), we began the acquisition of spectra ∼6 min before Io reappeared from Jupiter’s shadow, during which time it was detected through its own thermal emission. No SO2 bands were superimposed on the purely thermal spectrum on this occasion, suggesting that the upper limit to condensed SO2 in the vertical column above Io’s surface was ∼4 × 10−5 g cm−2.  相似文献   

20.
The Io plasma torus, composed of mostly heavy ions of oxygen and sulfur, is sustained by an Iogenic mass loading rate of ∼1030 amu s−1 = 1.6 × 1028 SO2 s−1 or approximately 103 kg s−1(A.L. Broadfoot et al., 1979, Science 204, 979-982). We argue on the basis of available power sources, reanalysis of F. Bagenal (1997, Geophys. Res. Lett. 24, 2111-2114), HST UV remote sensing, and detailed model calculations that at most 20% of this mass leaves Io in the form of ions, i.e., ≤3 × 1027 × (ne,0/3600 cm−3) ions s−1, where ne,0 is the average torus electron density. For the Galileo spacecraft Io pass in December 1995, the ion mass loading rate was ≤3 × 1027 ions s−1, whereas for the Voyager epoch with lower ne,0 (=2000 cm−3), this rate would be ≤1.7 × 1027 ions s−1, consistent with the D.E. Shemansky (1980, Astrophys. J. 242, 1266-1277) mass loading limit of ≤1 × 1027 ions s−1. We investigate the processes that control Io’s large scale electrodynamic interaction and find that the elastic collision rate exceeds the ionization/pickup rate by at least a factor of 5 for all atmospheric column densities considered (1016-1021 m−2) and by a factor of ∼100 for the most realistic column density. Consequently, elastic collisions are mostly responsible for Io’s high conductances and thus generate Io’s large scale electrodynamic interaction such as the generation of Io’s electric current system and the slowing of the plasma flow. The electrodynamic part of Io’s interaction is thus best described as an ionosphere-like interaction rather than a comet-like interaction. An analytic expression for total electron impact rates is derived for Io’s atmosphere, which is independent of any particular model for the 3D interaction of torus electrons with its atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号