首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
New impacts in the martian mid-latitudes have exposed near-surface ice. This ice is observed to slowly fade over timescales of months. In the present martian climate, exposed surface ice is unstable during summer months in the mid-latitudes and will sublimate. We model the sublimation of ice at five new impact sites and examine the implications of its persistence. Even with generally conservative assumptions, for most reasonable choices of parameters it is likely that over a millimeter of sublimation occurred in the period during which the ice was observed to fade. The persistence of visible ice through such sublimation suggests that the ice is relatively pure rather than pore-filling. Such ice could be analogous to the nearly pure ice observed by the Phoenix Lander in the “Dodo-Goldilocks” trench and suggests that the high ice contents reported by the Mars Odyssey Gamma Ray Spectrometer at high latitudes extend to the mid-latitudes. Our observations are consistent with a model of the martian ice table in which a layer with high volumetric ice content overlies pore-filling ice, although other structures are possible.  相似文献   

2.
Recent observations of the surface of Mars have shown several fresh mid-latitude craters. Some of these craters show exposed ice (Byrne, S. et al. [2009]. Science 325, 1674-1676.). In some craters, albedo of ice slowly decreases, while in others, it remains nearly constant. We attempt to determine influence of the regolith structure on the rate of sublimation of ice. For this purpose we performed numerical simulations describing evolution of the exposed ice in model craters located at middle latitudes.We consider a new model for the structure and evolution of the material at- and beneath the crater floors. In contrast to the previous study by Dundas and Byrne (Dundas, C.M., Byrne, S. [2010]. Icarus 206, 716-728.) we do not investigate sublimation of dirty ice, and the related formation of a sublimation lag. Instead, we consider sublimation of a pure ice layer on top of layered regolith. In our model the observed reflectivity decreases due to the sublimation-driven changes of the optical properties of thinning clean ice. This offers an alternative to the deposition of the dust embedded in ice (sublimation lag).We have shown that in our model among many parameters affecting ice sublimation rate, volumetric fraction of water ice in the subsurface beneath the crater has the strongest influence. Hence observed darkening of the ice patch on the crater floor might be sufficient to determine the content of water ice in the subsurface. Our calculations show that an albedo decrease of fresh ice patches in mid-latitude craters can be explained by either strong dust sedimentation or, if this is excluded, by sublimation of a thin layer of water ice from the regolith with large thermal inertia. This is consistent with a large volumetric fraction of water ice beneath the crater floor and contributes to evidence for an extended subsurface water reservoir on Mars.The overall conclusion of our work is that a thin post-impact surface ice coating over ice-rich ground beneath the crater floors is consistent with the observations.  相似文献   

3.
We report on the nature of fine particle (<150 μm) transport under simulated martian conditions, in order to better understand the Mars Science Laboratory’s (MSL) sample acquisition, processing and handling subsystem (SA/SPaH). We find that triboelectric charging due to particle movement may have to be controlled in order for successful transport of fines that are created within the drill, processed through the Collection and Handling for In situ Martian Rock Analysis (CHIMRA) sample handing system, and delivered to the Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments. These fines will be transferred from the surface material to the portioner, a 3 mm diameter, 8 mm deep distribution center where they will drop ∼2 cm to the instrument inlet funnels. In our experiments, movement of different material including terrestrial analogs and martian soil simulants (Mars Mojave Simulant - MMS) resulted in 1-7 nanocoulombs of charge to build up for several different experimental configurations. When this charging phenomenon occurs, several different results are observed including particle clumping, adherence of material on conductive surfaces, or electrostatic repulsion, which causes like-charged particles to move away from each other. This electrostatic repulsion can sort samples based upon differing size fractions, while adhesion causes particles of different sizes to bind into clods. Identifying these electrostatic effects can help us understand potential bias in the analytical instruments and to define the best operational protocols to collect samples on the surface of Mars.  相似文献   

4.
Recent detection of methane (CH4) on Mars has generated interest in possible biological or geological sources, but the factors responsible for the reported variability are not understood. Here we explore one potential sink that might affect the seasonal cycling of CH4 on Mars - trapping in ices deposited on the surface. Our apparatus consisted of a high-vacuum chamber in which three different Mars ice analogs (water, carbon dioxide, and carbon dioxide clathrate hydrates) were deposited in the presence of CH4 gas. The ices were monitored for spectroscopic evidence of CH4 trapping using transmission Fourier-Transform Infrared (FT-IR) spectroscopy, and during subsequent sublimation of the ice films the vapor composition was measured using mass spectrometry (MS). Trapping of CH4 in water ice was confirmed at deposition temperatures <100 K which is consistent with previous work, thus validating the experimental methods. However, no trapping of CH4 was observed in the ice analogs studied at warmer temperatures (140 K for H2O and CO2 clathrate, 90 K for CO2 snow) with approximately 10 mTorr CH4 in the chamber. From experimental detection limits these results provide an upper limit of 0.02 for the atmosphere/ice trapping ratio of CH4. If it is assumed that the trapping mechanism is linear with CH4 partial pressure and can be extrapolated to Mars, this upper limit would indicate that less than 1% is expected to be trapped from the largest reported CH4 plume, and therefore does not represent a significant sink for CH4.  相似文献   

5.
We use Viking and new MGS and Odyssey data to characterize the lobate deposits superimposed on aureole deposits along the west and northwest flanks of Olympus Mons, Mars. These features have previously been interpreted variously as landslide, pyroclastic, lava flow or glacial features on the basis of Viking images. The advent of multiple high-resolution image and topography data sets from recent spacecraft missions allow us to revisit these features and assess their origins. On the basis of these new data, we interpret these features as glacial deposits and the remnants of cold-based debris-covered glaciers that underwent multiple episodes of advance and retreat, occasionally interacting with extrusive volcanism from higher on the slopes of Olympus Mons. We subdivide the deposits into fifteen distinctive lobes. Typical lobes begin at a theater-like alcove in the escarpment at the base of Olympus Mons, interpreted to be former ice-accumulation zones, and extend outward as a tongue-shaped or fan-shaped deposit. The surface of a typical lobe contains (moving outward from the basal escarpment): a chaotic facies of disorganized hillocks, interpreted as sublimation till in the accumulation zone; arcuate-ridged facies characterized by regular, subparallel ridges and interpreted as the ridges of surface debris formed by the flow of underlying ice; and marginal ridges interpreted as local terminal moraines. Several lobes also contain a hummocky facies toward their margins that is interpreted as a distinctive type of sublimation till shaped by structural dislocations and preferential loss of ice. Blocky units are found extending from the escarpment onto several lobes; these units are interpreted as evidence of lava-ice interaction and imply that ice was present at a time of eruptive volcanic activity higher on the slopes of Olympus Mons. Other than minor channel-like features in association with lava-ice interactions, we find no evidence for the flow of liquid water in association with these lobate features that might suggest: (1) near-surface groundwater as a source for ice in the alcoves in the lobe source region at the base of the scarp, or (2) basal melting and drainage emanating from the lobes that might indicate wet-based glacial conditions. Instead, the array of features is consistent with cold-based glacial processes. The glacial interpretations outlined here are consistent with recent geological evidence for low-latitude ice-rich features at similar positions on the Tharsis Montes as well as with orbital dynamic and climate models indicating extensive snow and ice accumulation associated with episodes of increased obliquity during the Late Amazonian period of the history of Mars.  相似文献   

6.
In this work we estimate the minimum persistence time of subsurface ice in water rich sediment layers remaining after sublimation of a martian lake. We simulate sublimation of ice from layers of different granulations and thicknesses. Presented results assume insolation and atmospheric conditions characteristic for the present day southern Elysium, where data from Mars Express have identified surface features possibly indicating the very recent presence of a frozen body of water [Murray et al., 2005. Nature 434, 352-356]. The age of these features is estimated to be several million years. On this time scale, we find that most of the water ice must have sublimated away, however remnant ice at a few percent level cannot be excluded. This amount of water ice is sufficient for chemical cementation of the observed features and explains their relatively pristine appearance, without significant signs of erosion.  相似文献   

7.
P.C. Thomas  P.B. James  R. Haberle 《Icarus》2009,203(2):352-798
The residual south polar cap (RSPC) of Mars includes a group of different depositional units of CO2 ice undergoing a variety of erosional processes. Complete summer coverage of the RSPC by ∼6-m/pixel data of the Context Imager (CTX) on Mars Reconnaissance Orbiter (MRO) has allowed mapping and inventory of the units in the RSPC. Unit maps and estimated thicknesses indicate the total volume of the RSPC is currently <380 km3, and represents less than 3% of the total mass of the current Mars atmosphere. Scarp retreat rates in the CO2 ice derived from comparison of High Resolution Imaging Science Experiment (HiRISE) data with earlier images are comparable to those obtained for periods up to 3 Mars years earlier. These rates, combined with sizes of depressions suggest that the oldest materials were deposited more than 125 Mars years ago. Most current erosion is by backwasting of scarps 1-12 m in height. This backwasting is initiated by a series of scarp-parallel fractures. In the older, thicker unit these fractures form about every Mars year; in thinner, younger materials they form less frequently. Some areas of the older, thicker unit are lost by downwasting rather than by the scarp retreat. A surprising finding from the HiRISE data is the scarcity of visible layering of RSPC materials, a result quite distinct from previous interpretations of layers in lower resolution images. Layers ∼0.1 m thick are exposed on the upper surfaces of some areas, but their timescale of deposition is not known. Late summer albedo changes mapped by the CTX images indicate local recycling of ice, although the amounts may be morphologically insignificant. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) data show that the primary material of all the different forms of the RSPC is CO2 ice with only small admixtures of water ice and dust.  相似文献   

8.
The Dry Valleys of Antarctica are an excellent analog of the environment at the surface of Mars. Soil formation histories involving slow processes of sublimation and migration of water-soluble ions in polar desert environments are characteristic of both Mars and the Dry Valleys. At the present time, the environment in the Dry Valleys is probably the most similar to that in the mid-latitudes on Mars although similar conditions may be found in areas of the polar regions during their respective Mars summers. It is thought that Mars is currently in an interglacial period, and that subsurface water ice is sublimating poleward. Because the Mars sublimation zones seem to be the most similar to the Antarctic Dry Valleys, the Dry Valleys-type Mars climate is migrating towards the poles. Mars has likely undergone drastic obliquity changes, which means that the Dry Valleys analog to Mars may be valid for large parts of Mars, including the polar regions, at different times in geologic history. Dry Valleys soils contain traces of silicate alteration products and secondary salts much like those found in Mars meteorites. A martian origin for some of the meteorite secondary phases has been verified previously; it can be based on the presence of shock effects and other features which could not have formed after the rocks were ejected from Mars, or demonstrable modification of a feature by the passage of the meteorite through Earth's atmosphere (proving the feature to be pre-terrestrial). The martian weathering products provide critical information for deciphering the near-surface history of Mars. Definite martian secondary phases include Ca-carbonate, Ca-sulfate, and Mg-sulfate. These salts are also found in soils from the Dry Valleys of Antarctica. Results of earlier Wright Valley work are consistent with what is now known about Mars based on meteorite and orbital data. Results from recent and current Mars missions support this inference. Aqueous processes are active even in permanently frozen Antarctic Dry Valleys soils, and similar processes are probably also occurring on Mars today, especially at the mid-latitudes. Both weathering products and life in Dry Valleys soils are distributed heterogeneously. Such variations should be taken into account in future studies of martian soils and also in the search for possible life on Mars.  相似文献   

9.
We have developed a numerical model for assessing the lifetime of ice deposits in martian caves that are open to the atmosphere. Our model results and sensitivity tests indicate that cave ice would be stable over significant portions of the surface of Mars. Ice caves on Earth commonly occur in lava tubes, and Mars has been significantly resurfaced by volcanic activity during its history, including the two main volcanic provinces, the Tharsis and Elysium rises. These areas, known or suspected of having subsurface caves and related voids are among the most favorable regions for the occurrence of ice stability. The martian ice cave model predicts regions which, if caves occur, would potentially be areas of astrobiological importance as well as possible water sources for future human missions to Mars.  相似文献   

10.
Microscopic liquid layers of water can evolve via adsorption on grain and mineral surfaces at and in the soil of the surface of Mars. The upper parts of these layers will start to freeze at temperatures clearly below the freezing point of bulk water (freezing point depression). A sandwich structure with layers of ice (top), liquid water (in between) and mineral surface (bottom) can evolve. The properties of the interfacial water (of adsorption water and premelted ice) on grain surfaces are described by a sandwich-model of a layer of liquid-like adsorption water between the adsorbing mineral surface layer and an upper ice layer. It is shown that the thickness or number of mono-layers of the interfacial water (of adsorption water and premelted ice) depends on temperature and atmospheric relative humidity. The derived equations for the sandwich model fit well to a known phenomenological relation between thickness of the liquid layer and relative humidity, and can be a tool to estimate or to determine for appropriate materials Hamaker's constant for van der Waals interactions on grains and in porous media. The curvature of grain surfaces is shown to have no remarkable effects for particles in the μm-range and larger. The application of these equations to thermo-physical conditions on Mars shows that the thickness of frost-layers, which can evolve over several hours on cooling surface parts of Mars, is typically of the order or a few tenths of one millimeter or less. This is in agreement with observations. Furthermore, an equation is derived, which relates the freezing point depression for van der Waals force governed interfacial water to the value of the Hamaker constant, to the latent heat of solidification, to the mass density of water ice, and to the thickness of the liquid-like layer. Again, this equation fits well to a known phenomenological relation between freezing point depression and thickness of the liquid-like layer. The derived equation shows that the lower limiting temperature of the liquid phase can reach about 180 K under martian conditions having an atmospheric water content of around 10 pr μm. An “Equilibrium Moisture Content” (EMC)/“Equilibrium Relative Humidity” (ERH) relation for the water content of martian soil has been derived, which relates, for equilibrium conditions, soil water content and atmospheric relative humidity. This relation indicates that the content of liquid interfacial water in the upper surface of Mars can reach up to 10% by weight and more in course of saturation during night hours, and it can be of about 2% by weight during the dry daytime hours.  相似文献   

11.
12.
The Mars Orbiter Camera onboard the Mars Global Surveyor has obtained several images of polygonal features in the southern polar region. In images taken during the end of the southern spring, when the surrounding surface is free of the seasonal frost, CO2 ice still appears to be present within the polygonal troughs. In Earth's polar regions, polygons such as these are indicative of water ice in the ground below. We analyzed the seasonal evolution of the thermal state and the CO2 content of these features. Our 2-D model includes condensation and sublimation of the CO2 ice, a self consistent treatment of the variations of the thermal properties of the regolith, and the seasonal variations of the local atmospheric pressure which we take from the results of a general circulation model. We find that the residence time of seasonal CO2 ice in troughs depends not only on atmospheric opacity and albedo of the CO2 ice, but also and most significantly on the distribution of water ice in the regolith. Optical properties of the atmosphere and surface CO2 ice can be independently obtained from observations. To date this is not true about the distribution of water ice below the surface. Our analysis quantifies the dependence of the seasonal cycle of the CO2 ice within the troughs on the assumed distribution of the water ice below the surface. We show that presence of water ice in the ground at a depth smaller than the depth of the troughs reduces winter condensation rate of CO2 ice. This is due to higher heat flux conducted from the water ice rich regolith toward the facets of the troughs.  相似文献   

13.
In this work we consider when and how much liquid water during present climate is possible within the gullies observed on the surface of Mars. These features are usually found on poleward directed slopes. We analyse the conditions for melting of H2O ice, which seasonally condenses within the gullies. We follow full annual cycle of condensation and sublimation of atmospheric CO2 and H2O, accounting for the heat and mass transport in the soil. During the summer, once the facets of the gullies are exposed to the Sun the water ice can melt and evaporate. Two mid latitude locations in both hemispheres are considered. The model includes both the rough geometry of the gullies as well as the slope of the surface where the gullies appear. It is an extension of the model developed to calculate condensation of CO2 ice in troughs of different sizes, including polygonal features on Mars (Kossacki and Markiewicz, 2002, Icarus 160, 73; Kossacki et al., 2003, Planet. Space Sci. 51, 569). We have found, that water ice accumulated during winter can undergo transition to the liquid phase after complete sublimation of CO2 ice. The amount of liquid water depends on water content in the atmosphere and on the local wind speed. It is probably not enough to destabilise the slope and cause flow of the surface material. However, even the small amounts of liquid water predicted, can play an important role in surface chemistry, in increasing the cohesive strength of the soil's surface layer and possibly may have some exobiological implications.  相似文献   

14.
The Antarctic Dry Valleys (ADV) are generally classified as a hyper-arid, cold-polar desert. The region has long been considered an important terrestrial analog for Mars because of its generally cold and dry climate and because it contains a suite of landforms at macro-, meso-, and microscales that closely resemble those occurring on the martian surface. The extreme hyperaridity of both Mars and the ADV has focused attention on the importance of salts and brines on soil development, phase transitions from liquid water to water ice, and ultimately, on process geomorphology and landscape evolution at a range of scales on both planets. The ADV can be subdivided into three microclimate zones: a coastal thaw zone, an inland mixed zone, and a stable upland zone; zones are defined on the basis of summertime measurements of atmospheric temperature, soil moisture, and relative humidity. Subtle variations in these climate parameters result in considerable differences in the distribution and morphology of: (1) macroscale features (e.g., slopes and gullies); (2) mesoscale features (e.g., polygons, including ice-wedge, sand-wedge, and sublimation-type polygons, as well as viscous-flow features, including solifluction lobes, gelifluction lobes, and debris-covered glaciers); and (3) microscale features (e.g., rock-weathering processes/features, including salt weathering, wind erosion, and surface pitting). Equilibrium landforms are those features that formed in balance with environmental conditions within fixed microclimate zones. Some equilibrium landforms, such as sublimation polygons, indicate the presence of extensive near-surface ice; identification of similar landforms on Mars may also provide a basis for detecting the location of shallow ice. Landforms that today appear in disequilibrium with local microclimate conditions in the ADV signify past and/or ongoing shifts in climate zonation; understanding these shifts is assisting in the documentation of the climate record for the ADV. A similar type of landform analysis can be applied to the surface of Mars where analogous microclimates and equilibrium landforms occur (1) in a variety of local environments, (2) in different latitudinal bands, and (3) in units of different ages. Documenting the nature and evolution of the ADV microclimate zones and their associated geomorphic processes is helping to provide a quantitative framework for assessing the evolution of climate on Mars.  相似文献   

15.
We have documented the surface characteristics and degradational history of a population of 65 lobate debris aprons in the Tempe Terra/Mareotis fossae region of Mars. These aprons were compared to other martian debris aprons to evaluate similarities and differences among different populations, which can provide insight into the dominant controls on apron development. Tempe/Mareotis debris aprons, found at the bases of isolated or clustered massifs, escarpments, and crater interior walls, were studied using Viking Orbiter, Mars Global Surveyor, and Mars Odyssey datasets in a GIS database. Six textures related to degradation of apron surfaces are identified in MOC images, and they are divided into two groups: an upper-surface group and a lower-surface group. Degradation occurs within an inferred smooth, upper surface mantle of ice and debris, producing a sequence of pitted, ridge and valley, and knobby textures of the upper-surface group. Where upper-surface materials have been removed, smooth and ridged textures of the lower-surface group are exposed. Degradation to various depths may expose lower-surface materials, which may consist of the main apron mass, remnants of mantling deposits, or both. A combination of geologic processes may have caused the degradation, including ice sublimation, ice melt, and eolian activity. Apron surfaces have lower maximum thermal inertias and mean surface temperatures than adjacent plains surfaces, which may be explained by the trapping of unconsolidated materials in low-lying pits and valleys formed by surface degradation or from the disruption of crusts on degraded portions of apron surfaces. One feature observed only on Tempe/Mareotis debris aprons are broad ridges, which mimic the shape of massif bases for tens of kilometers. We propose these to be constructional features that could have formed during cycles of increased debris production. Apron morphometric parameters including area, volume, slope, thickness, relief, and H/L, were compiled and the results show that Tempe/Mareotis aprons have average surface areas, volumes, and frontal thicknesses that are ∼2-3 times smaller than eastern Hellas aprons. Within the Tempe/Mareotis population escarpment-related aprons are larger than massif-related aprons, suggesting that aprons with larger source areas have potentially greater volatile accumulation, translating into longer apron travel distances and lower H/L values.  相似文献   

16.
The residual south polar cap of Mars (RSPC) is distinct from the residual north polar cap both in composition and in morphology. CO2 frost in the RSPC is stabilized by its high albedo during southern spring and summer despite the relatively large insolation during that period. The morphology of the RSPC in summer displays a bewildering variety of depressions that are formed in relatively thin layers of CO2. The increase of the size of these depressions between each of the first three years of Mars Global Surveyor (MGS) observations may possibly signal some sort of climate change on the planet. For example, the erosion of the bright plateaus might reduce the RSPC albedo and affect the energy balance. The Mars Orbiter Cameras (MOC) on MGS observed Mars for four consecutive martian years before contact with the spacecraft was lost in late 2006. During this period coverage of the polar regions was particularly dense because MGS flew over them on every orbit. In this paper we report on the four-year behavior of the morphological features in the RSPC and on the large-scale variability in RSPC albedo over the period. The changes in the size of the surface features in the RSPC due to backwasting that were first observed between Mars years (MY) 24 and 25 and subsequently between MY25 and M26 was observed to continue at the same rate through MY 27. The results indicate that on average thicker layers in the RSPC retreat faster than thinner ones, roughly in proportion to their thickness. We argue that a simple difference in porosity between the A and B layers can explain this difference although other factors could be involved. The large-scale albedo of the RSPC decreases as the depressions are uncovered by sublimation of seasonal CO2. However, any interannual differences in albedo due to the backwasting process are masked by interannual differences in the summer dust opacity in the RSPC region.  相似文献   

17.
We report on new retrievals of water vapor column abundances from the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) data. The new retrievals are from the TES nadir data taken above the ‘cold’ surface areas in the North polar region (Tsurf < 220 K, including seasonal frost and permanent ice cap) during spring and summer seasons, where retrievals were not performed initially. Retrievals are possible (with some modifications to the original algorithm) over cold surfaces overlaid by sufficiently warm atmosphere. The retrieved water vapor column abundances are compared to the column abundances observed by other spacecrafts in the Northern polar region during spring and summer and good agreement is found. We detect an annulus of water vapor growing above the edge of the retreating seasonal cap during spring. The formation of the vapor annulus is consistent with the previously proposed mechanism for water cycling in the polar region, according to which vapor released by frost sublimation during spring re-condenses on the retreating seasonal CO2 cap. The source of the vapor in the vapor annulus, according to this model, is the water frost on the surface of the CO2 at the retreating edge of the cap and the frost on the ground that is exposed by the retreating cap. Small contribution from regolith sources is possible too, but cannot be quantified based on the TES vapor data alone. Water vapor annulus exhibits interannual variability, which we attribute to variations in the atmospheric temperature. We propose that during spring and summer the water ice sublimation is retarded by high relative humidity of the local atmosphere, and that higher atmospheric temperatures lead to higher vapor column abundances by increasing the water holding capacity of the atmosphere. Since the atmospheric temperatures are strongly influenced by the atmospheric dust content, local dust storms may be controlling the release of vapor into the polar atmosphere. Water vapor abundances above the residual polar cap also exhibit noticeable interannual variability. In some years abundances above the cap are lower than the abundances outside of the cap, consistent with previous observations, while in the other years the abundances above the cap are higher or similar to abundances outside of the cap. We speculate that the differences may be due to weaker off-cap transport in the latter case, keeping more vapor closer to the source at the surface of the residual cap. Despite the large observed variability in water vapor column abundances in the Northern polar region during spring and summer, the latitudinal distribution of the vapor mass in the atmosphere is very similar during the summer season. If the variability in vapor abundances is caused by the variability of vapor sources across the residual cap then this would mean that they annually contribute relatively little vapor mass to significantly affect the vapor mass budget. Alternatively this may suggest that the vapor variability is caused by the variability of the polar atmospheric circulation. The new water vapor retrievals should be useful in tuning the Global Circulation Models of the martian water cycle.  相似文献   

18.
Tetsuya Tokano 《Icarus》2003,164(1):50-78
In an effort to test and to understand the global hydrogen distribution in the shallow subsurface of Mars retrieved by the Mars Odyssey gamma-ray spectrometer, the present state and movement of water are investigated by a coupled global subsurface-atmosphere water cycle model. It was found that the observed global subsurface hydrogen distribution is largely consistent with the modeled global water cycle, so a large fraction of hydrogen is likely to exist as water, at low and mid latitudes in the form of adsorbed water. Under the present climate the water content in the shallow subsurface becomes higher in the northern hemisphere than in the southern hemisphere as a result of global water cycle, regardless of the initial water distribution in the soil or adsorptive capacity. The higher annual maximum soil temperature in the south, stronger net northward transport of atmospheric water vapor, and the emission of vapor from the northern residual polar cap in northern summer contribute to this hemispheric asymmetry. The generally higher adsorptive capacity of clay minerals in the northern plains may further increase this bias. The longitudinal inhomogeneity is caused by several factors, such as thermal inertia, adsorptive capacity, and atmospheric surface pressure. The water abundance is locally high in low thermal inertia regions (e.g., Arabia Terra) and at deep places where the surface pressure is high (e.g., Hellas); it is low in soil with a low adsorptive capacity (e.g., Tharsis) and high thermal inertia regions (e.g., Solis Planum). Most of the soil humidity near the surface at low and mid latitudes may originate from the atmosphere. The model implies that the upper soil layer should be largely ice-free because otherwise an excessive sublimation and vapor emission into the atmosphere in warm seasons would violate the observational constraints. Moreover, the more uniform latitudinal variation of the observed hydrogen abundance near the surface compared to that of deeper layers is indicative of the presence of adsorbed water instead of ground ice because the adsorbed water content does not as steeply depend on latitude as the ground ice stability. Concerning the regolith mineralogy, montmorillonite can much better account for the observed water cycle than palagonite. While the presence of permanent ground ice appears likely in the polar region below a thin layer, large seasonal cycle of phase change between pore ice and adsorbed water may be possible. Regolith adsorption/desorption is neither negligible nor crucial for the seasonal atmospheric water cycle, but the surface-atmosphere coupling is a major prerequisite for the long-term evolution of subsurface water distribution.  相似文献   

19.
Edgar L Andreas 《Icarus》2007,186(1):24-30
The strong hydrogen signal that the Lunar Prospector saw at the Moon's poles suggests that water ice may be present near the surface of the lunar regolith. A robotic mission to obtain in situ samples and to quantify the amount of this valuable resource must be designed carefully to avoid dissipating too much heat in the regolith during coring or drilling and, thus, causing the ice to sublimate before it is processed. Here I use new results for the saturation vapor pressure of water ice to extend previous estimates of its sublimation rate down to a temperature of 40 K, typical of the permanently shaded craters near the lunar poles where the water ice is presumed to be trapped. I find that, for temperatures below 70 K, the sublimation rate of an exposed ice surface is much less than one molecule of water vapor lost per square centimeter of surface per hour. But even if a small ice sample (∼4 ng) were heated to 150 K, it could exist for over two hours without sublimating a significant fraction of its mass. Hence, carefully designed sampling and sample handling should be able to preserve water ice obtained near the lunar poles for an accurate measurement of its in situ concentration.  相似文献   

20.
Previous spectroscopic studies have shown the presence of hydrated minerals in various kinds of sedimentary accumulations covering and encircling the martian North Polar Cap. More specifically, gypsum, a hydrated calcium sulfate, has been detected on Olympia Planum, a restricted part of the Circum-Polar Dune Field. To further constrain the geographical distribution and the process of formation and accumulation of these hydrated minerals, we performed an integrated morphological, structural and compositional analysis of a key area where hydrated minerals were detected and where the main polar landforms are present. By the development of a spectral processing method based on spectral derivation and by the acquisition of laboratory spectra of gypsum-ice mixtures we find that gypsum-bearing sediment is not restricted to the Olympia Planum dunes but is also present in all kinds of superficial sediment covering the surface of the North Polar Cap and the Circum-Polar Dune Field. Spectral signatures consistent with perchlorates are also detected on these deposits. The interpretation of landforms reveals that this gypsum-bearing sediment was released from the ice cap by sublimation. We thus infer that gypsum crystals that are now present in the Circum-Polar Dune Field derive from the interior of the North Polar Cap. Gypsum crystals that were initially trapped in the ice cap have been released by sublimation of the ice and have accumulated in the form of ablation tills at the surface of the ice cap. These gypsum-bearing sublimation tills are reworked by winds and are transported towards the Circum-Polar Dune Field. Comparison with sulfates found in terrestrial glaciers suggests that gypsum crystals in the martian North Polar Cap have formed by weathering of dust particles, either in the atmosphere prior to their deposition during the formation of the ice cap, and/or in the ice cap after their deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号