首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Nearly all adaptive optics images of Titan taken between December 2001 and November 2004 showed tropospheric clouds located within 30° of the south pole. We report here on a dissipation of Titan's south polar clouds observed in twenty-nine Keck and Gemini images taken between December 2004 and April 2005. The near complete lack of south polar cloud activity during this time, and subsequent resurgence months later at generally higher latitudes, may be the beginning of seasonal change in Titan's weather. The ∼5 month decrease in cloud activity may also have been caused by methane rainout from a large cloud event in October 2004. Understanding the seasonal evolution of Titan's clouds, and of any precipitation associated with them, is essential for interpreting the geological observations of fluid flow features observed over a wide range of Titan latitudes with the Cassini/Huygens spacecraft.  相似文献   

2.
We present results from 14 nights of observations of Titan in 1996-1998 using near-infrared (centered at 2.1 microns) speckle imaging at the 10-meter W.M. Keck Telescope. The observations have a spatial resolution of 0.06 arcseconds. We detect bright clouds on three days in October 1998, with a brightness about 0.5% of the brightness of Titan. Using a 16-stream radiative transfer model (DISORT) to model the central equatorial longitude of each image, we construct a suite of surface albedo models parameterized by the optical depth of Titan's hydrocarbon haze layer. From this we conclude that Titan's equatorial surface albedo has plausible values in the range of 0-0.20. Titan's minimum haze optical depth cannot be constrained from this modeling, but an upper limit of 0.3 at this wavelength range is found. More accurate determination of Titan's surface albedo and haze optical depth, especially at higher latitudes, will require a model that fully considers the 3-dimensional nature of Titan's atmosphere.  相似文献   

3.
Using adaptive optics on the W. M. Keck II telescope, we imaged Titan several times during 1999 to 2001 in narrowband near-infrared filters selected to probe Titan's stratosphere and upper troposphere. We observed a bright feature around the south pole, possibly a collar of haze or clouds. Further, we find that solar phase angle explains most of the observed east-west brightness asymmetry of Titan's atmosphere, although the data do not preclude the presence of a “morning fog” effect at small solar phase angle.  相似文献   

4.
Titan, Saturn's largest moon, has a thick nitrogen/methane atmosphere. The temperature and pressure conditions in Titan's atmosphere are such that the methane vapor should condense near the tropopause to form clouds. Several ground-based measurements have observed sparse cloud-like features in Titan's atmosphere, while the Cassini mission to Saturn has provided large scale images of the clouds. However, Titan's cloud formation conditions remain poorly constrained. Heterogeneous nucleation (from the vapor phase onto a solid or liquid aerosol surface) greatly enhances cloud formation relative to homogeneous nucleation. In order to elucidate the cloud formation mechanism near the tropopause, we have performed laboratory measurements of the adsorption of methane and ethane onto solid organic particles (tholins) representative of Titan's photochemical haze. We find that monolayers of methane adsorb onto tholin particles at saturation ratios less than unity. We also find that solid methane nucleates onto the adsorbed methane at a saturation ratio of S=1.07±0.008. This implies that Titan's methane clouds should form easily. This is consistent with recent measurements of the column of methane ruling out excessive methane supersaturation. In addition, we find ethane adsorbs onto tholin particles in a metastable phase prior to nucleation. However, ethane nucleation onto the adsorbed ethane occurs at a relatively high saturation ratio of S=1.36±0.08. These findings are consistent with the recent report of polar ethane clouds in Titan's lower stratosphere.  相似文献   

5.
The first two swaths collected by Cassini's Titan Radar Mapper were obtained in October of 2004 (Ta) and February of 2005 (T3). The Ta swath provides evidence for cryovolcanic processes, the possible occurrence of fluvial channels and lakes, and some tectonic activity. The T3 swath has extensive areas of dunes and two large impact craters. We interpret the brightness variations in much of the swaths to result from roughness variations caused by fracturing and erosion of Titan's icy surface, with additional contributions from a combination of volume scattering and compositional variations. Despite the small amount of Titan mapped to date, the significant differences between the terrains of the two swaths suggest that Titan is geologically complex. The overall scarcity of impact craters provides evidence that the surface imaged to date is relatively young, with resurfacing by cryovolcanism, fluvial erosion, aeolian erosion, and likely atmospheric deposition of materials. Future radar swaths will help to further define the nature of and extent to which internal and external processes have shaped Titan's surface.  相似文献   

6.
The near-infrared spectrum of Titan, Saturn's largest moon and one of the Cassini/Huygens' space mission primary targets, covers the 0.8 to 5 micron region in which it shows several weak CH4 absorption regions, and in particular one centered near 2.75 micron. Due to the interference of telluric absorption, only part of this window region (2.9-3.1 μm) has previously been observed from the ground [Noll, K.S., Geballe, T.R., Knacke, R., Pendleton, F., Yvonne, J., 1996. Icarus 124, 625-631; Griffith, C.A., Owen, T., Miller, G.A., Geballe, T., 1998. Nature 395, 575-578; Griffith, C.A., Owen, T., Geballe, T.R., Rayner, J., Rannou, P., 2003. Science 300, 628-630; Geballe, T.R., Kim, S.J., Noll, K.S., Griffith, C.A., 2003. Astrophys. J. 583, L39-L42]. We report here on the first spectroscopic observations of Titan covering the whole 2.4-4.9 μm region by two instruments on board the Infrared Space Observatory (ISO) in 1997. These observations show the 2.75-μm window in its complete extent for the first time. In this study we have also used a high-resolution Titan spectrum in the 2.9-3.6 μm region taken with the Keck [Geballe, T.R., Kim, S.J., Noll, K.S., Griffith, C.A., 2003. Astrophys. J. 583, L39-L42; Kim, S.J., Geballe, T.R., Noll, K.S., Courtin, R., 2005. Icarus 173, 522-532] to infer information on the atmospheric parameters (haze extinction, single scattering albedo, methane abundance, etc.) by fitting the methane bands with a detailed microphysical model of Titan's atmosphere (updated from Rannou, P., McKay, C.P., Lorenz, R.D., 2003. Planet. Space Sci. 51, 963-976). We have included in this study an updated version of a database for the CH4 absorption coefficients [STDS, Wenger, Ch., Champion, J.-P., 1998. J. Quant. Spectrosc. Radiat. Transfer 59, 471-480. See also http://www.u-bourgogne.fr/LPUB/TSM/sTDS.html for latest updates; Boudon, V., Champion, J.-P., Gabard, T., Loëte, M., Michelot, F., Pierre, G., Rotger, M., Wenger, Ch., Rey, M., 2004. J. Mol. Spectrosc. 228, 620-634]. For the atmosphere we find that (a) the haze extinction profile that best matches the data is one with higher (by 40%) extinction in the atmosphere with respect to Rannou et al. (2003) down to about 30 km where a complete cut-off occurs; (b) the methane mixing ratio at Titan's surface cannot exceed 3% on a disk-average basis, yielding a maximum CH4 column abundance of 2.27 km-am in Titan's atmosphere. From the derived surface albedo spectrum in the 2.7-3.08 micron region, we bring some constraints on Titan's surface composition. The albedo in the center of the methane window varies from 0.01 to 0.08. These values, compared to others reported in the other methane windows, show a strong compatibility with the water ice spectrum in the near-infrared. Without confirming its existence from this work alone, our data then appear to be compatible with water ice. A variety of other ices, such as CO2, NH3, tholin material or hydrocarbon liquid cannot be excluded from our data, but an additional unidentified component with a signature around 2.74 micron is required to satisfy the data.  相似文献   

7.
Cloud formation along mountain ridges on Titan   总被引:1,自引:0,他引:1  
Cassini radar passes have shown a number of mountain ranges on Titan. Radar data covering approximately one quarter of Titan's surface places mountains in primarily equatorial regions with the mean height of about 900 m. The flow of air over topographic features can both trigger and enhance cloud formation. Orographically induced clouds near terrestrial mountain ranges include shallow wave clouds produced from upslope flow as well as precipitating stratus and cumulus type clouds; mountains can provide the perturbations needed to trigger convective clouds. The Titan regional atmospheric modeling system (TRAMS) has been used to explore a number of convective cloud properties and is now used to report on clouds formed when a mountain peak is placed within the model domain. Using a range of heights and surface winds compatible with Cassini/Huygens data, constraints can be placed on the scenarios in which clouds can be expected to form. Given sufficiently humid conditions (at least 50% humidity), convection is triggered. For drier environments similar to the Huygens landing site, short-lived, optically thin clouds form from air rising upslope. Precipitation is also seen in the cases of the convective clouds, which could have implications for the eroded appearance of Titan's mountains.  相似文献   

8.
The Visual and Infrared Mapping Spectrometer (VIMS) instrument on the Cassini Saturn Orbiter returned spectral imaging data as the spacecraft undertook six close encounters with Titan beginning 7 July, 2004. Three of these flybys each produced overlapping coverage of two distinct regions of Titan's surface. Twenty-four points were selected on approximately opposite hemispheres to serve as photometric controls. Six points were selected in each of four reflectance classes. On one hemisphere each control point was observed at three distinct phase angles. From the derived phase coefficients, preliminary normal reflectances were derived for each reflectance class. The normal reflectance of Titan's surface units at 2.0178 μm ranged from 0.079 to 0.185 for the most absorbing to the most reflective units assuming no contribution from absorbing haze. When a modest haze contribution of τ=0.1 is considered these numbers increase to 0.089–0.215. We find that the lowest three reflectance classes have comparable normal reflectance on either hemisphere. However, for the highest brightness class the normal reflectance is higher on the hemisphere encompassing longitude 14–65° compared to the same high brightness class for the hemisphere encompassing 122–156° longitude. We conclude that an albedo dichotomy observed in continental sized units on Titan is due not only to one unit having more areal coverage of reflective material than the other but the material on the brighter unit is intrinsically more reflective than the most reflective material on the other unit. This suggests that surface renewal processes are more widespread on Titan's more reflective units than on its less reflective units.

We note that one of our photometric control points has increased in reflectance by 12% relative to the surrounding terrain from July of 2004 to April and May of 2005. Possible causes of this effect include atmospheric processes such as ground fog or orographic clouds; the suggestion of active volcanism cannot be ruled out.

Several interesting circular features which resembled impact craters were identified on Titan's surface at the time of the initial Titan flyby in July of 2004. We traced photometric profiles through two of these candidate craters and attempted to fit these profiles to the photometric properties expected from model depressions. We find that the best-fit attempt to model these features as craters requires that they be unrealistically deep, approximately 70 km deep. We conclude that despite their appearance, these circular features are not craters, however, the possibility that they are palimpsests cannot be ruled out.

We used two methods to test for the presence of vast expanses of liquids on Titan's surface that had been suggested to resemble oceans. Specular reflection of sunlight would be indicative of widespread liquids on the surface; we found no evidence of this. A large liquid body should also show uniformity in photometric profile; we found the profiles to be highly variable. The lack of specular reflection and the high photometric variability in the profiles across candidate oceans is inconsistent with the presence of vast expanses of flat-lying liquids on Titan's surface. While liquid accumulation may be present as small, sub-pixel-sized bodies, or in areas of the surface which still remain to be observed by VIMS, the presence of large ocean-sized accumulations of liquids can be ruled out.

The Cassini orbital tour offers the opportunity for VIMS to image the same parts of Titan's surface repeatedly at many different illumination and observation geometries. This creates the possibility of understanding the properties of Titan's atmosphere and haze by iteratively adapting models to create a best fit to the surface reflectance properties.  相似文献   


9.
Strong experimental evidence is presented that the northern polar cloud observed in Titan's atmosphere by the Cassini orbiter (VIMS) was indeed composed of ethane aerosol as proposed by Griffith et al. [2006. Science 313, 1620-1622]. We report on the condensation and phase behavior of ethane aerosol under atmospheric conditions of Titan (145 hPa, 40 km altitude, 70-90 K, 10-30 ppm ethane in nitrogen). The results were obtained in an in-situ collisional cooling experiment combined with Fourier-transform infrared (FTIR) spectroscopy. Apart from the liquid phase, three crystalline phases (solid I, solid II, metastable) and the transitions into each other have been observed in the ethane aerosol. The phases were found to have a significant effect on the particles' IR spectra, their growth dynamics and the final size of the aerosols which varies between 0.5 and 4 μm (compared to 1-3 μm observed on Titan). This has strong implications on the ethane vapor pressure, precipitation and optical aerosol detection.  相似文献   

10.
We present a hybrid simulation study (kinetic ions, fluid electrons) of Titan's plasma interaction during an excursion of this moon from Saturn's magnetosphere into its magnetosheath, as observed for the first time during Cassini's T32 flyby on 13 June 2007. In contrast to earlier simulations of Titan's plasma environment under non-stationary upstream conditions, our model considers a difference in the flow directions of magnetospheric and magnetosheath plasma. Two complementary scenarios are investigated, with the flow directions of the impinging magnetospheric/magnetosheath plasmas being (A) antiparallel and (B) parallel. In both cases, our simulations show that due to the drastically reduced convection speed in the slow and dense heavy ion plasma near Titan, the satellite carries a bundle of “fossilized” magnetic field lines from the magnetosphere in the magnetosheath. Furthermore, the passage through Saturn's magnetopause goes along with a disruption of Titan's pick-up tail. Although the tail is not detached from the satellite, large clouds of heavy ion plasma are stripped of its outer flank, featuring a wave-like pattern. Whereas in case (B) under parallel flow conditions there is only a small retardation of about 5 min between the passage of Titan through the magnetopause and the reconfiguration of the pick-up tail, the tail reconfiguration in the case (A) scenario is completed not until 25 min after the magnetopause passage. The lifetime of fossil fields in the moon's ionosphere is approximately 25 min, regardless of whether parallel or antiparallel flow conditions are applied.  相似文献   

11.
H.G. Roe  I. de Pater 《Icarus》2004,169(2):440-461
All previous observations of seasonal change on Titan have been of physical phenomena such as clouds and haze. We present here the first observational evidence of chemical change in Titan's atmosphere. Images taken during 1999-2002 (late southern spring on Titan) with the W.M. Keck I 10-meter telescope at 8-13 μm show a significant accumulation of ethylene (C2H4) in the south polar stratosphere as well as north-south stratospheric temperature variation (colder at poles). Our observations restrict this newly discovered south polar ethylene accumulation to latitudes south of 60° S. The only other observations of the spatial distribution of C2H4 were those of Voyager I, which found a significant north polar accumulation in early northern spring. We see no build-up in the north, although the highest northern latitudes are obstructed from view in the current season. Our observations constrain any unobserved north polar accumulation of C2H4 to north of 50° N latitude. Comparison of the Voyager I results with our new results show seasonal chemical change has occurred in Titan's atmosphere.  相似文献   

12.
Since Saturn orbital insertion in July 2004, the Cassini orbiter has been observing Titan throughout most of the northern winter season (October 2002–August 2009) and the beginning of spring, allowing a detailed monitoring of Titan’s cloud coverage at high spatial resolution with close flybys on a monthly basis. This study reports on the analysis of all the near-infrared images of Titan’s clouds acquired by the Visual and Infrared Mapping Spectrometer (VIMS) during 67 targeted flybys of Titan between July 2004 and April 2010.The VIMS observations show numerous sporadic clouds at southern high and mid-latitudes, rare clouds in the equatorial region, and reveal a long-lived cloud cap above the north pole, ubiquitous poleward of 60°N. These observations allow us to follow the evolution of the cloud coverage during almost a 6-year period including the equinox, and greatly help to further constrain global circulation models (GCMs). After 4 years of regular outbursts observed by Cassini between 2004 and 2008, southern polar cloud activity started declining, and completely ceased 1 year before spring equinox. The extensive cloud system over the north pole, stable between 2004 and 2008, progressively fractionated and vanished as Titan entered into northern spring. At southern mid-latitudes, clouds were continuously observed throughout the VIMS observing period, even after equinox, in a latitude band between 30°S and 60°S. During the whole period of observation, only a dozen clouds were observed closer to the equator, though they were slightly more frequent as equinox approached.We also investigated the distribution of clouds with longitude. We found that southern polar clouds, before disappearing in mid-2008, were systematically concentrated in the leading hemisphere of Titan, in particular above and to the east of Ontario Lacus, the largest reservoir of hydrocarbons in the area. Clouds are also non-homogeneously distributed with longitude at southern mid-latitudes. The n = 2-mode wave pattern of the distribution, observed since 2003 by Earth-based telescopes and confirmed by our Cassini observations, may be attributed to Saturn’s tides.Although the latitudinal distribution of clouds is now relatively well reproduced and understood by the GCMs, the non-homogeneous longitudinal distributions and the evolution of the cloud coverage with seasons still need investigation. If the observation of a few single clouds at the tropics and at northern mid-latitudes late in winter and at the start of spring cannot be further interpreted for the moment, the obvious shutdown of the cloud activity at Titan’s poles provides clear signs of the onset of the general circulation turnover that is expected to accompany the beginning of Titan’s northern spring. According to our GCM, the persistence of clouds at certain latitudes rather suggests a ‘sudden’ shift in near future of the meteorology into the more illuminated hemisphere. Finally, the observed seasonal change in cloud activity occurred with a significant time lag that is not predicted by our model. This may be due to an overall methane humidity at Titan’s surface higher than previously expected.  相似文献   

13.
We use data from the VIMS instrument on board the Cassini spacecraft to construct high sensitivity and high spatial-resolution maps of the locations of tropospheric clouds on Titan in the late northern winter season during which the Cassini prime mission took place. These observations show that, in this season, clouds on Titan are strongly hemispherically asymmetric. Mid-latitude clouds, in particular, occur only in the southern hemisphere and have not ever been observed in the north. Such an asymmetry is in general agreement with circulation models where sub-solar surface heating controls the locations of clouds and appears in conflict with models where perennial polar hazes prevent significant summertime polar heating from affecting the circulation. The southern mid-latitude clouds appear to be distributed uniformly in longitude, in contrast to some previous observations. Southern high-latitude clouds exhibit a significant concentration, however, between about 180° and 270°E longitude. A spatially and temporally uniform cloud always appears northward of ∼50°N latitude. This cloud appears unchanged over the course of the observations, consistent with the interpretation that it is caused by continuous ethane condensation as air subsides and radiatively cools through the tropopause. The location of this cloud likely provides a direct tracer of elements of north polar atmospheric circulation, potentially allowing continuous monitoring of circulation changes as Titan passes through equinox into north polar spring and summer. We show that a similar analysis of this dataset by Rodriguez et al. (2009) contains substantial errors and should not be used.  相似文献   

14.
We analyze the variability of the ambient magnetospheric field along Titan's orbit at 20.3 Saturn radii. However, while our preceding study (Simon et al., 2010) focused on Cassini magnetometer observations from the 62 Titan flybys (TA-T62) between October 2004 and October 2009, the present work discusses magnetic field data that were collected near Titan's orbit when the moon was far away. In analogy to the observations during TA-T62, the magnetospheric fields detected during these 79 “virtual” Titan flybys are strongly affected by the presence of Saturn's bowl-shaped and highly dynamic magnetodisk current sheet. We therefore provide a systematic classification of the magnetic field observations as magnetodisk current sheet or lobe-type scenarios. Among the 141 (62 real+79 virtual) crossings of Titan's orbit between July 2004 and December 2009, only 17 encounters (9 real+8 virtual) took place within quiet, magnetodisk lobe-type fields. During another 50 encounters (21 real+29 virtual), rapid transitions between current sheet and lobe fields were observed around the moon's orbital plane. Most of the encounters (54=22 real+32 virtual) occurred when Titan's orbit was embedded in highly distorted current sheet fields, thereby invalidating the frequently applied idealized picture of Titan interacting with a homogeneous and stationary magnetospheric background field. The locations of real and virtual Titan flybys are correlated to each other. Each of the 62 real Titan flybys possesses at least one virtual counterpart that occurred shortly before or after the real encounter and at nearly the same orbital position. A systematic comparison between Cassini magnetometer observations from the real Titan flybys and their virtual companions suggests that there is no clear evidence of Titan exerting a significant level of control on the vertical oscillatory motion of the magnetodisk near its orbit.  相似文献   

15.
Near-infrared brightness temperature contrasts observed on the night side of Venus indicate variations in the size and distribution of particles in the lower and middle cloud decks. McGouldrick and Toon [McGouldrick, K., Toon, O.B., 2007. Icarus 191, 1-24] have shown that these changes can be explained by large-scale dynamics; in particular, that downdrafts may produce optical depth “holes” in the clouds. The lifetimes of these holes are observed to be moderately short, on the order of ten days. Here, we explore a simple model to better understand this lifetime. We have coupled a microphysical model of the Venus clouds with a simple, two-dimensional (zonal, vertical) kinematical transport model to study the effects of the zonal flow on the lifetime of the holes in the clouds. We find that although wind shear may be negligible within the cloud itself, the shear that is present near the top and the bottom of the statically unstable cloud region can lead to changes in the radiative-dynamical feedback which ultimately lead to the dissipation of the holes.  相似文献   

16.
Our understanding of Titan, Saturn's largest satellite, has recently been consid-erably enhanced, thanks to the Cassini-Huygens mission. Since the Saturn Orbit Injection in July 2004, the probe has been harvesting new insights of the Kronian system. In par-ticular, this mission orchestrated a climax on January 14, 2005 with the descent of the Huygens probe into Titan's thick atmosphere. The orbiter and the lander have provided us with picturesque views of extraterrestrial landscapes, new in composition but reassuringly Earth-like in shape. Thus, Saturn's largest satellite displays chains of mountains, fields of dark and damp dunes, lakes and possibly geologic activity. As on Earth, landscapes on Titan are eroded and modeled by some alien hydrology: dendritic systems, hydrocarbon lakes, and methane clouds imply periods of heavy rainfalls, even though rain was never observed directly. Titan's surface also proved to be geologically active - today or in the recent past - given the small number of impact craters listed to date, as well as a few possible cryovolcanic features. We attempt hereafter a synthesis of the most significant results of the Cassini-Huygens endeavor, with emphasis on the surface.  相似文献   

17.
Saturn's Moon Titan has a thick atmosphere with a meteorological cycle. We report on the evolution of the giant cloud system covering its north pole using observations acquired by the Visual and Infrared Mapping Spectrometer onboard the Cassini spacecraft. A radiative transfer model in spherical geometry shows that the clouds are found at an altitude between 30 and 65 km. We also show that the polar cloud system vanished progressively as Titan approached equinox in August 2009, revealing at optical wavelengths the underlying sea known as Kraken Mare. This decrease of activity suggests that the north-polar downwelling has begun to shut off. Such a scenario is compared with the Titan global circulation model of Rannou et al. (2006), which predicts a decrease of cloud coverage in northern latitudes at the same period of time.  相似文献   

18.
We report the observation of a cloud system on Titan that remained localized near 40°S latitude and 60°W longitude for at least 34 h. Ground-based observations obtained with the SINFONI imaging spectrograph at the Very Large Telescope over four consecutive nights recorded the lifetime and altitude of the unresolved cloud system. Concomitant measurements made by Cassini/VIMS over 3 h resolved changes in the altitude and opacity of individual regions within the system during this time. Clouds are measured from 13 to 37 km altitude with optical depths per pixel ranging from τ=0.13 to 7. Short timescale rise times are consistent with previous measurements of the evolution of mid-latitude clouds; however the long timescale localization of the cloud structure is unexplained. We speculate about the role of mesoscale circulation in relation to cloud formation.  相似文献   

19.
Saturn's largest moon, Titan, provides an interesting opportunity to study how dense atmospheres interact with the surrounding plasma environment. Without an intrinsic magnetic field, this satellite's nitrogen-rich atmosphere is relatively unprotected from plasma interactions. Therefore, the energy-deposition rate is important for understanding chemistry and dynamics in Titan's atmosphere. Since the plasma environment can vary significantly we focus here on the T18 Titan encounter using in-situ data from instruments on board the Cassini spacecraft. These instruments cannot provide in-situ information below the spacecraft closest approach altitude (∼>960 km) so we use the Cassini magnetospheric imaging instrument (MIMI) ion-neutral camera (INCA) to remotely image energetic hydrogen particle fluxes (20-80 keV) at altitudes below Titan closest approach. We also use the MIMI low-energy magnetosphere measurements system (LEMMS) to measure the incident ion fluxes as the spacecraft approaches Titan and combine these data sets with an atmospheric model to first reproduce INCA images. We then use this model to calculate the energy-deposition profiles for the observed incident proton flux. Our model is able to reproduce the INCA observations and give the energy density deposited vs. altitude in Titan's atmosphere; however, we find that the incident fluxes and energy-deposition profiles vary significantly during the encounter.  相似文献   

20.
The Huygens Probe detected dendritic drainage-like features, methane clouds and a high surface relative humidity (∼50%) on Titan in the vicinity of its landing site [Tomasko, M.G., and 39 colleagues, 2005. Nature 438, 765-778; Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779-784], suggesting sources of methane that replenish this gas against photo- and charged-particle chemical loss on short (10-100) million year timescales [Atreya, S.K., Adams, E.Y., Niemann, H.B., Demick-Montelara, J.E., Owen, T.C., Fulchignoni, M., Ferri, F., Wilson, E.H., 2006. Planet. Space Sci. In press]. On the other hand, Cassini Orbiter remote sensing shows dry and even desert-like landscapes with dunes [Lorenz, R.D., and 39 colleagues, 2006a. Science 312, 724-727], some areas worked by fluvial erosion, but no large-scale bodies of liquid [Elachi, C., and 34 colleagues, 2005. Science 308, 970-974]. Either the atmospheric methane relative humidity is declining in a steady fashion over time, or the sources that maintain the relative humidity are geographically restricted, small, or hidden within the crust itself. In this paper we explore the hypothesis that the present-day methane relative humidity is maintained entirely by lakes that cover a small part of the surface area of Titan. We calculate the required minimum surface area coverage of such lakes, assess the stabilizing influence of ethane, and the implications for moist convection in the atmosphere. We show that, under Titan's surface conditions, methane evaporates rapidly enough that shorelines of any existing lakes could potentially migrate by several hundred m to tens of km per year, rates that could be detected by the Cassini orbiter. We furthermore show that the high relative humidity of methane in Titan's lower atmosphere could be maintained by evaporation from lakes covering only 0.002-0.02 of the whole surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号