首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Self-organised patterns of stone stripes, polygons, circles and clastic solifluction lobes form by the sorting of clasts from fine-grained sediments in freeze-thaw cycles. We present new High Resolution Imaging Science Experiment (HiRISE) images of Mars which demonstrate that the slopes of high-latitude craters, including Heimdal crater - just 25 km east of the Phoenix Landing Site - are patterned by all of these landforms. The order of magnitude improvement in imaging data resolution afforded by HiRISE over previous datasets allows not only the reliable identification of these periglacial landforms but also shows that high-latitude fluviatile gullies both pre- and post-date periglacial patterned ground in several high-latitude settings on Mars. Because thaw is inherent to the sorting processes that create these periglacial landforms, and from the association of this landform assemblage with fluviatile gullies, we infer the action of liquid water in a fluvio-periglacial context. We conclude that these observations are evidence of the protracted, widespread action of thaw liquids on and within the martian regolith. Moreover, the size frequency statistics of superposed impact craters demonstrate that this freeze-thaw environment is, at least in Heimdal crater, less than a few million years old. Although the current martian climate does not favour prolonged thaw of water ice, observations of possible liquid droplets on the strut of the Phoenix Lander may imply significant freezing point depression of liquids sourced in the regolith, probably driven by the presence of perchlorates in the soil. Because perchlorates have eutectic temperatures below 240 K and can remain liquid at temperatures far below the freezing point of water we speculate that freeze-thaw involving perchlorate brines provides an alternative “low-temperature” hypothesis to the freeze-thaw of more pure water ice and might drive significant geomorphological work in some areas of Mars. Considering the proximity of Heimdal crater to the Phoenix Landing Site, the presence of such hydrated minerals might therefore explain the landforms described here. If this is the case then the geographical distribution of martian freeze-thaw landforms might reflect relatively high temperatures (but still below 273 K) and the locally elevated concentration of salts in the regolith.  相似文献   

2.
The Amazonian period of Mars has been described as static, cold, and dry. Recent analysis of high-resolution imagery of equatorial and mid-latitude regions has revealed an array of young landforms produced in association with ice and liquid water; because near-surface ice in these regions is currently unstable, these ice-and-water-related landforms suggest one or more episodes of martian climate change during the Amazonian. Here we report on the origin and evolution of valley systems within a degraded crater in Noachis Terra, Asimov Crater. The valleys have produced a unique environment in which to study the geomorphic signals of Amazonian climate change. New high-resolution images reveal Hesperian-aged layered basalt with distinctive columnar jointing capping interior crater fill and providing debris, via mass wasting, for the surrounding annular valleys. The occurrence of steep slopes (>20°), relatively narrow (sheltered) valleys, and a source of debris have provided favorable conditions for the preservation of shallow-ice deposits. Detailed mapping reveals morphological evidence for viscous ice flow, in the form of several lobate debris tongues (LDT). Superimposed on LDT are a series of fresh-appearing gullies, with typical alcove, channel, and fan morphologies. The shift from ice-rich viscous-flow formation to gully erosion is best explained as a shift in martian climate, from one compatible with excess snowfall and flow of ice-rich deposits, to one consistent with minor snow and gully formation. Available dating suggests that the climate transition occurred >8 Ma, prior to the formation of other small-scale ice-rich flow features identified elsewhere on Mars that have been interpreted to have formed during the most recent phases of high obliquity. Taken together, these older deposits suggest that multiple climatic shifts have occurred over the last tens of millions of years of martian history.  相似文献   

3.
Hale crater, a 125 × 150 km impact crater located near the intersection of Uzboi Vallis and the northern rim of Argyre basin at 35.7°S, 323.6°E, is surrounded by channels that radiate from, incise, and transport material within Hale’s ejecta. The spatial and temporal relationship between the channels and Hale’s ejecta strongly suggests the impact event created or modified the channels and emplaced fluidized debris flow lobes over an extensive area (>200,000 km2). We estimate ∼1010 m3 of liquid water was required to form some of Hale’s smaller channels, a volume we propose was supplied by subsurface ice melted and mobilized by the Hale-forming impact. If 10% of the subsurface volume was ice, based on a conservative porosity estimate for the upper martian crust, 1012 m3 of liquid water could have been present in the ejecta. We determine a crater-retention age of 1 Ga inside the primary cavity, providing a minimum age for Hale and a time at which we propose the subsurface was volatile-rich. Hale crater demonstrates the important role impacts may play in supplying liquid water to the martian surface: they are capable of producing fluvially-modified terrains that may be analogous to some landforms of Noachian Mars.  相似文献   

4.
Gareth A. Morgan 《Icarus》2009,202(1):39-59
The majority of martian valley networks are found on Noachian-aged terrain and are attributed to be the result of a ‘warm and wet’ climate that prevailed early in Mars' history. Younger valleys have been identified, though these are largely interpreted to be the result of localized conditions associated with the melting of ice from endogenic heat sources. Sinton crater, a 60 km diameter impact basin in the Deuteronilus Mensae region of the dichotomy boundary, is characterized by small anastomosing valley networks that are located radial to the crater rim. Large scale deposits, interpreted to be the remains of debris covered glaciers, have been identified in the area surrounding Sinton, and our observations have revealed the occurrence of an ice rich fill deposit within the crater itself. We have conducted a detailed investigated into the Sinton valley networks with all the available remote data sets and have dated their formation to the Amazonian/Hesperian boundary. The spatial and temporal association between Sinton crater and the valley networks suggest that the impact was responsible for their formation. We find that the energy provided by an asteroid impact into surficial deposits of snow/ice is sufficient to generate the required volumes of melt water needed for the valley formation. We therefore interpret these valleys to represent a distinct class of martian valley networks. This example demonstrates the potential for impacts to cause the onset of fluvial erosion on Mars. Our results also suggest that periods of glacial activity occurred throughout the Amazonian and into the Hesperian in association with variations in spin orbital parameters.  相似文献   

5.
Joseph Levy  James W. Head 《Icarus》2010,209(2):390-404
Hypotheses accounting for the formation of concentric crater fill (CCF) on Mars range from ice-free processes (e.g., aeolian fill), to ice-assisted talus creep, to debris-covered glaciers. Based on analysis of new CTX and HiRISE data, we find that concentric crater fill (CCF) is a significant component of Amazonian-aged glacial landsystems on Mars. We present mapping results documenting the nature and extent of CCF along the martian dichotomy boundary over −30 to 90°E latitude and 20-80°N longitude. On the basis of morphological analysis we classify CCF landforms into “classic” CCF and “low-definition” CCF. Classic CCF is most typical in the middle latitudes of the analysis area (∼30-50°N), while a range of degradation processes results in the presence of low-definition CCF landforms at higher and lower latitudes. We evaluate formation mechanisms for CCF on the basis of morphological and topographic analyses, and interpret the landforms to be relict debris-covered glaciers, rather than ice-mobilized talus or aeolian units. We examine filled crater depth-diameter ratios and conclude that in many locations, hundreds of meters of ice may still be present under desiccated surficial debris. This conclusion is consistent with the abundance of “ring-mold craters” on CCF surfaces that suggest the presence of near-surface ice. Analysis of breached craters and distal glacial deposits suggests that in some locations, CCF-related ice was once several hundred meters higher than its current level, and has sublimated significantly during the most recent Amazonian. Crater counts on ejecta blankets of filled and unfilled craters suggests that CCF formed most recently between ∼60 and 300 Ma, consistent with the formation ages of other martian debris-covered glacial landforms such as lineated valley fill (LVF) and lobate debris aprons (LDA). Morphological analysis of CCF in the vicinity of LVF and LDA suggests that CCF is a part of an integrated LVF/LDA/CCF glacial landsystem. Instances of morphological continuity between CCF, LVF, and LDA are abundant. The presence of formerly more abundant CCF ice, coupled with the integration of CCF into LVF and LDA, suggests the possibility that CCF represents one component of the significant Amazonian mid-latitude glaciation(s) on Mars.  相似文献   

6.
The survey of the hydrogeologic system formed by Gusev crater and Ma'adim Vallis (Aeolis subquadrangle of Mars) points out evidence for the existence of an ice-covered lake in Gusev crater. A first lake was formed by the drainage of the aquifer in the region surrounding Gusev before the entry of Ma'adim Vallis in the crater. The existence of a former lake in Gusev is deduced from the morphology of the Ma'adim delta. Its comparison with terrestrial Antarctic analogs argues for the presence of an ice-covered lake in Gusev at the time that the southern part of the crater's rampart was breached by Ma'adim first release, and for a subice–lacustrine construction of the valley's delta. Our survey shows that Ma'adim Vallis may have entered Gusev crater as late as Late Hesperian/Early Amazonian as part of a second lake episode. The relationship between the variation of the Gusev lake water-level, the volume of the lake, and the surface of the lake bed is established by our bathymetric model. The elevation of the former lake is deduced from the elevation of the mesa-like structures in the delta of Ma'adim Vallis. Furthermore, the correlation of the crater frequency of Gusev rampart with Mars' stratigraphic age shows that lakes may have occupied Gusev crater over a period of time covering 2 Gyrs., from the formation of the crater to the last episode of water release from Ma'adim Vallis. Though it is most likely that the lake was episodical, the recurrence of abundant water in Gusev crater makes this site a high priority for missions, either for martian resource exploration, or for the search of life.  相似文献   

7.
Abundant evidence exists for glaciation being an important geomorphic process in the mid-latitude regions of both hemispheres of Mars, as well as in specific environments at near-equatorial latitudes, such as along the western flanks of the major Tharsis volcanoes. Detailed analyses of glacial landforms (lobate-debris aprons, lineated valley fill, concentric crater fill, viscous flow features) have suggested that this glaciation was predominantly cold-based. This is consistent with the view that the Amazonian has been continuously cold and dry, similar to conditions today. We present new data based on a survey of images from the Context Camera (CTX) on the Mars Reconnaissance Orbiter that some of these glaciers experienced limited surface melting, leading to the formation of small glaciofluvial valleys. Some of these valleys show evidence for proglacial erosion (eroding the region immediately in front of or adjacent to a glacier), while others are supraglacial (eroding a glacier’s surface). These valleys formed during the Amazonian, consistent with the inferred timing of glacial features based on both crater counts and stratigraphic constraints. The small scale of the features interpreted to be of glaciofluvial origin hindered earlier recognition, although their scale is similar to glaciofluvial counterparts on Earth. These valleys appear qualitatively different from valley networks formed in the Noachian, which can be much longer and often formed integrated networks and large lakes. The valleys we describe here are also morphologically distinct from gullies, which are very recent fluvial landforms formed during the last several million years and on much steeper slopes (∼20-30° for gullies versus ?10° for the valleys we describe). These small valleys represent a distinct class of fluvial features on the surface of Mars (glaciofluvial); their presence shows that the hydrology of Amazonian Mars is more diverse than previously thought.  相似文献   

8.
There is now widespread agreement that the surface of Mars underwent some degree of fluvial modification, but there is not yet full understanding of its surface hydrological cycle and the nature of standing bodies of water, rivers, and precipitation that affected its surface. In this paper we explore Erythraea Fossa (31.5 W, 27.3 S), a graben adjacent to Holden crater, which exhibits strong evidence that it once housed a chain of three lakes, had overland water flow, and was subject to precipitation. The inlet valley, outlet valley, and fan morphologies in the paleolakes are used to qualitatively discern the hydrologic history of the paleolakes; based on topography constraints, the three basins combined once held 56 km3 of water. Depositional features within the basins that change with drainage area and nearby valleys that start near drainage divides indicate that the paleolakes may have been fed by precipitation driven runoff. This suggests the presence of an atmosphere, at least locally, that was capable of supporting a hydrological cycle.  相似文献   

9.
Caleb I. Fassett 《Icarus》2007,189(1):118-135
Ceraunius Tholus, a Hesperian-aged volcano in the Tharsis region, is characterized by small radial valleys on its flanks, and several larger valleys originating near its summit caldera. All of these large valleys drain from near the lowest present portion of the caldera rim and down the flanks of the volcano. The largest valley debauches into Rahe Crater (an oblique impact crater), forming a depositional fan. Recent study of climate change on Mars suggests that many low-latitude regions (especially large volcanic edifices) were periodically the sites of snow accumulation, likely triggered by variations in spin orbital parameters. We apply a conductive heat flow model to Ceraunius Tholus that suggests that following magmatic intrusion, sufficient heating would be available to cause basal melting of any accumulated summit snowpack and produce sufficient meltwater to cause the radial valleys. The geometry of the volcano summit caldera suggests that meltwater would also accumulate in a volumetrically significant caldera lake. Analysis of the morphology and volumes of the largest valley, as well as depositional features at its base, suggest that fluvial erosion due to drainage of this summit caldera lake formed the large valleys, in a manner analogous to how valleys were formed catastrophically from a lake in Aniakchak caldera in Alaska. Moreover, the event which carved the largest valley on Ceraunius Tholus appears to have led to the formation of a temporary lake within Rahe Crater, at its base. The more abundant, small valleys on the flanks are interpreted to form by radial drainage of melted ice or snow from the outside of the caldera rim. Comparison of Ceraunius Tholus with the volcano-capping Icelandic ice sheet Myrdalsjokull provides insight into the detailed mechanisms of summit heating, ice-cap accumulation and melting, and meltwater drainage. These observations further underline the importance of a combination of circumstances (i.e., climate change to produce summit snowpack and an active period of magmatism to produce melting) to form the valley systems on some martian volcanoes and not on others.  相似文献   

10.
Hydrostatic (closed-system) pingos are small, elongate to circular, ice-cored mounds that are perennial features of some periglacial landscapes. The growth and development of hydrostatic pingos is contingent upon the presence of surface water, freezing processes and of deep, continuous, ice-cemented permafrost. Other cold-climate landforms such as small-sized, polygonal patterned ground also may occur in the areas where pingos are found. On Mars, landscapes comprising small, elongate to circular mounds and other possible periglacial features have been identified in various areas, including Utopia Planitia, where water is thought to have played an important role in landscape evolution. Despite the importance of the martian mounds as possible markers of water, most accounts of them in the planetary science literature have been brief and/or based upon Viking imagery. We use a high-resolution Mars Orbiter Camera image (EO300299) and superposed Mars Orbiter Laser Altimeter data tracks to describe and characterise a crater-floor landscape in northwest Utopia Planitia (64.8° N/292.7° W). The landscape comprises an assemblage of landforms that is consistent with the past presence of water and of periglacial processes. This geomorphological assemblage may have formed as recently as the last episode of high obliquity. A similar assemblage of landforms is found in the Tuktoyaktuk peninsula of northern Canada and other terrestrial cold-climate landscapes. We point to the similarity of the two assemblages and suggest that the small, roughly circular mounds on the floor of the impact crater in northwest Utopia Planitia are hydrostatic pingos. Like the hydrostatic pingos of the Tuktoyaktuk peninsula, the origin of the crater-floor mounds could be tied to the loss of ponded, local water, permafrost aggradation and the evolution of a sub-surface ice core.  相似文献   

11.
The current morphology of the martian lithospheric magnetic field results from magnetization and demagnetization processes, both of which shaped the planet. The largest martian impact craters, Hellas, Argyre, Isidis and Utopia, are not associated with intense magnetic fields at spacecraft altitude. This is usually interpreted as locally non- or de-magnetized areas, as large impactors may have reset the magnetization of the pre-impact material. We study the effects of impacts on the magnetic field. First, a careful analysis is performed to compute the impact demagnetization effects. We assume that the pre-impact lithosphere acquired its magnetization while cooling in the presence of a global, centered and mainly dipolar magnetic field, and that the subsequent demagnetization is restricted to the excavation area created by large craters, between 50- and 500-km diameter. Depth-to-diameter ratio of the transient craters is set to 0.1, consistent with observed telluric bodies. Associated magnetic field is computed between 100- and 500-km altitude. For a single-impact event, the maximum magnetic field anomaly associated with a crater located over the magnetic pole is maximum above the crater. A 200-km diameter crater presents a close-to-1-nT magnetic field anomaly at 400-km altitude, while a 100-km diameter crater has a similar signature at 200-km altitude. Second, we statistically study the 400-km altitude Mars Global Surveyor magnetic measurements modelled locally over the visible impact craters. This approach offers a local estimate of the confidence to which the magnetic field can be computed from real measurements. We conclude that currently craters down to a diameter of 200 km can be characterized. There is a slight anti-correlation of −0.23 between magnetic field intensity and impact crater diameters, although we show that this result may be fortuitous. A complete low-altitude magnetic field mapping is needed. New data will allow predicted weak anomalies above craters to be better characterized, and will bring new constraints on the timing of the martian dynamo and on Mars’ evolution.  相似文献   

12.
In the Xanthe Terra region of Mars, two forms of flow fields are observed on the walls of Mojave Crater, a fresh impact site with a maximum age of Late Hesperian. Flow fields with steep, lobate margins are consistent with emplacement of a highly viscous medium. The focus of this report is on fan-shaped landforms that share many morphologic attributes in common with terrestrial alluvial fans, including a semi-conical form, branching tributary networks, distributary channels and incised channels. Collectively, these sub-kilometer-scale landforms have attributes consistent with overland flow of fluids and formation of fans by water and gravity-driven alluvial sedimentation. Superposition and cross-cutting relationships indicate that fan formation occurred in multiple phases that may have been a single event or multiple, temporally distinct episodes. Many aspects of the fan formation are ill-constrained, including the amount and source of fluid as well as the duration of fan formation and modification. Fans are concentrated on the crater walls and the ejecta blanket shows minimal evidence of fluvial erosion. Similar fan-shaped landforms to those in Mojave Crater are extremely rare on Mars. The localization of fans to Mojave Crater implies that the impact event played a role in the formation of these sub-kilometer fans. This is the first geologic evidence on Mars that tentatively supports a link between impact crater events and the liberation of water for surface runoff.  相似文献   

13.
At martian mid-to-high latitudes, the surfaces of potentially ice-rich features, including concentric crater fill, lobate debris aprons, and lineated valley fill, typically display a complex texture known as “brain terrain,” due to its resemblance to the complex patterns on brain surfaces. In order to determine the structure and developmental history of concentric crater fill and overlying latitude-dependent mantle (LDM) material, “brain terrain” and polygonally-patterned LDM surfaces are analyzed using HiRISE images from four craters in Utopia Planitia containing concentric crater fill. “Brain terrain” and mantle surface textures are classified based on morphological characteristics: (1) closed-cell “brain terrain,” (2) open-cell “brain terrain,” (3) high-center mantle polygons, and (4) low-center mantle polygons. A combined glacial and thermal-contraction cracking model is proposed for the formation and modification of the “brain terrain” texture of concentric crater fill. A similar model, related to thermal contraction cracking and differential sublimation of underlying ice, is proposed for the formation and development of polygonally patterned mantle material. Both models require atmospheric deposition of ice, likely during periods of high obliquity, but do not require wet active layer processes. Crater dating of “brain terrain” and mantled surfaces suggests a transition at martian mid-latitudes from peak “glacial” conditions occurring within the past ∼10-100 My to a quiescent period followed by a cold-desert “periglacial” period during the past ∼1-2 My.  相似文献   

14.
Following the work of Kieffer and Titus (2001, Icarus 154, 162-180), we present results of thermal IR observations of Korolev crater, located at ∼73° latitude in the martian northern polar region. Similar to techniques employed by Titus et al. (2003, Science 299, 1048-1050), we use infrared images from the Thermal Emission Imaging System (THEMIS) aboard Mars Odyssey to identify several regions within the crater basin with distinct thermal properties that correlate with topography. The THEMIS results show these regions exhibit temperature variations, spatially within the crater and throughout the martian year. In addition to the variations identified in the THEMIS observations, Mars Global Surveyor Thermal Emission Spectrometer (TES) observations show differences in albedo and temperature of these regions on both daily and seasonal cycles. Modeling annual temperature variations of the surface, we use TES observations to examine the thermal properties of these regions. This analysis reveals the crater interior deposits are likely thick layers (several meters) of high thermal inertia material (water ice, or extremely ice-rich regolith). Spatial variations of the physical properties of these regions are likely due to topography and possibly variations in the subsurface material itself. The nature of these deposits may help constrain polar processes, as well as provide context for the polar lander mission, Phoenix.  相似文献   

15.
This paper describes the evolution of landforms in Atlantis and Gorgonum basins, using a geomorphologic approach which interprets landform distribution and hierarchy. Rather than looking at the distribution of large-area (>106 km2) geologic sequences, this study focuses on interpreting the local-scale (<103 km2) cratered terrains, tectono-structural basins, and local manifestation of exogenic processes. Specifically, the evolution of fluvio-lacustrine landforms is interpreted as being functionally subordinated to the evolution of the cratered terrains and to the tectono-structural modifications of the landscape. Results show that three major phases of landscape evolution in Atlantis and Gorgonum basins can be identified: (a) major impact cratering during the heavy-bombardment period; (b) tectonic displacements in response to volcano emplacement in the Tharsis region, and simultaneous landform creation by fluvial and lacustrine processes; and (c) exogenic modification of the older landforms through weathering and eolian processes. Our results show that the smaller morphological features, which form on the older geological units, are not necessarily old themselves and can in fact be relatively recent (e.g. Amazonian). The main implication of these results is that martian morphology did not form only during a period immediately following the heavy bombardment, as commonly postulated, but rather that landform evolution continued throughout the entire martian history.  相似文献   

16.
The issue of crater retention age estimates on planetary surfaces is discussed with an attempt to quantify the effect of overlapping primary and secondary impact crater populations in restricted crater diameter ranges. The approach to this problem is illustrated with a simple model production function where the secondary crater input is artificially enhanced. Extrapolation of such a secondary crater model distribution to a global record results in extraordinarily high crater frequencies that do not exist on Mars, and implies the need of detailed studies of the size-frequency distribution for remote secondary craters, to date poorly known. A key case, the martian crater Zunil and its secondary crater field, illustrate that reasonable predictions for the secondary crater size-frequency distribution at small (<100 m) crater diameters affected the standard model crater retention age for the Cerberus plains less than the statistical uncertainty. These observations show that age determination based on appropriate crater counting statistics is valid in a wide primary crater diameter range.  相似文献   

17.
We present geologic evidence suggesting that after the development of Mars' cryolithosphere, the formation of aquifers in southwestern Chryse Planitia and their subsequent disruption led to extensive regional resurfacing during the Late Hesperian, and perhaps even during the Amazonian. In our model, these aquifers formed preferentially along thrust faults associated with wrinkle ridges, as well as along fault systems peripheral to impact craters. The characteristics of degraded wrinkle ridges and impact craters in southwestern Chryse Planitia indicate a profound role of subsurface volatiles and especially liquid water in the upper crust (the upper one hundred to a few thousands of meters). Like lunar wrinkle ridges, the martian ones are presumed to mark the surface extensions of thrust faults, but in our study area the wrinkle ridges are heavily modified. Wrinkle ridges and nearby plains have locally undergone collapse, and in other areas they are associated with domical intrusions we interpret as mud volcanoes and mud diapirs. In at least one instance, a sinuous valley emanates from a modified wrinkle ridge, further indicating hydrological influences on these thrust-fault-controlled features. A key must be the formation of volatile-rich crust. Primary crustal formation and differentiation incorporated juvenile volatiles into the global crust, but the crustal record here was then strongly modified by the giant Chryse impact. The decipherable rock record here begins with the Chryse impact and continues with the resulting basin's erosion and infilling, which includes outflow channel activity. We propose that in Simud Vallis surface flow dissection into the base of the cryolithosphere-produced zones where water infiltrated and migrated along SW-dipping strata deformed by the Chryse impact, thereby forming an extensive aquifer in southwestern Chryse Planitia. In this region, compressive stresses produced by the rise of Tharsis led to the formation of wrinkle ridges. Zones of high fracture density within the highly strained planes of the thrust faults underlying the wrinkle ridges formed regions of high permeability; thus, groundwater likely flowed and gathered along these tectonic structures to form zones of elevated permeability. Volatile depletion and migration within the upper crustal materials, predominantly along fault systems, led to structurally controlled episodic resurfacing in southwestern Chryse Planitia. The erosional modification of impact craters in this region is linked to these processes. This erosion is scale independent over a range of crater diameters from a few hundred meters to tens of kilometers. According to our model, pressurized water and sediment intruded and locally extruded and caused crustal subsidence and other degradational activity across this region. The modification of craters across this wide range of sizes, according to our model, implies that there was intensive mobilization of liquid water in the upper crust ranging from about one hundred to several thousand meters deep.  相似文献   

18.
Geological evidence indicates that low-latitude polygonally-patterned grounds on Mars, generally thought to be the product of flood volcanism, are periglacial in nature and record a complex signal of changing climate. By studying the martian surface stratigraphically (in terms of the geometrical relations between surface landforms and the substrate) rather than genetically (by form analogy with Earth), we have identified dynamic surfaces across one-fifth of martian longitude. New stratigraphical observations in the Elysium-Amazonis plains have revealed a progressive surface polygonisation that is destructive of impact craters across the region. This activity is comparable to the climatically-driven degradation of periglacial landscapes on Earth, but because it affects impact craters—the martian chronometer—it can be dated. Here, we show that it is possible to directly date this activity based on the fraction of impact craters affected by polygon formation. Nearly 100% of craters (of all diameters) are superposed by polygonal sculpture: considering the few-100 Ma age of the substrate, this suggests that the process of polygon formation was active within the last few million years. Surface polygonisation in this region, often considered to be one of the signs of young, ‘plains-forming’ volcanism on Mars, is instead shown to postdate the majority of impact craters seen. We therefore conclude that it is post-depositional in origin and an artefact of thermal cycling of near-surface ground ice. Stratigraphically-controlled crater counts present the first way of dating climate change on a planet other than Earth: a record that may tell us something about climate change on our own planet. Parallel climate change on these two worlds—an ice age Mars coincident with Earth’s glacial Quaternary period—might suggest a coupled system linking both. We have previously been unable to generalise about the causes of long-term climate change based on a single terrestrial example—with the beginnings of a chronology for climate change on our nearest planetary neighbour, we can.  相似文献   

19.
Recent geomorphic, remote sensing, and atmospheric modeling studies have shown evidence for abundant ground ice deposits in the martian mid-latitudes. Numerous potential water/ice-rich flow features have been identified in craters in these regions, including arcuate ridges, gullies, and small flow lobes. Previous studies (such as in Newton Basin) have shown that arcuate ridges and gullies are mainly found in small craters (∼2-30 km in diameter). These features are located on both pole-facing and equator-facing crater walls, and their orientations have been found to be dependent on latitude. We have conducted surveys of craters >20 km in diameter in two mid-latitude regions, one in the northern hemisphere in Arabia Terra, and one in the southern hemisphere east of Hellas basin. In these regions, prominent lobes, potentially ice-rich, are commonly found on the walls of craters with diameters between ∼20-100 km. Additional water/ice-rich features such as channels, valleys, alcoves, and debris aprons have also been found in association with crater walls. In the eastern Hellas study region, channels were found to be located primarily on pole-facing walls, whereas valleys and alcoves were found primarily on equator-facing walls. In the Arabia Terra study region, these preferences are less distinct. In both study regions, lobate flows, gullies, and arcuate ridges were found to have pole-facing orientation preferences at latitudes below 45° and equator-facing orientation preferences above 45°, similar to preferences previously found for gullies and arcuate ridges in smaller craters. Interrelations between the features suggest they all formed from the mobilization of accumulated ice-rich materials. The dependencies of orientations on latitude suggest a relationship to differences in total solar insolation along the crater walls. Differences in slope of the crater wall, differences in total solar insolation with respect to wall orientation, and variations in topography along the crater rim can explain the variability in morphology of the features studied. The formation and evolution of these landforms may best be explained by multiple cycles of deposition of ice-rich material during periods of high obliquity and subsequent modification and transport of these materials down crater walls.  相似文献   

20.
With widespread evidence of both heat sources and water (either liquid or solid), hydrothermal systems are likely to have existed on Mars. We model hydrothermal systems in two sizes of fresh impact craters, one simple and one complex, and find that a hydrothermal system forms on the crater floor. In the larger complex craters with a substantial melt sheet, a lake can form, even under current martian atmospheric conditions. By comparing these hydrothermal systems to those that exist and have been studied extensively on the Earth, we make predictions as to the types of minerals that could be precipitated and the potential habitability of such systems by primitive organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号