首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Julio A. Fernández 《Icarus》1980,42(3):406-421
The orbital evolution of 500 hypothetical comets during 109 years is studied numerically. It is assumed that the birthplace of such comets was the region of Uranus and Neptune from where they were deflected into very elongated orbits by perturbations of these planets. Then, we adopted the following initial orbital elements: perihelion distances between 20 and 30 AU, inclinations to the ecliptic plane smaller than 20°, and semimajor axes from 5 × 103 to 5 × 104 AU. Gravitational perturbations by the four giant planets and by hypothetical stars passing at distances from the Sun smaller than 5 × 105 AU are considered. During the simulation, somewhat more than 50% of the comets were lost from the solar system due to planetary or stellar perturbations. The survivors were removed from the planetary region and left as members of what is generally known as the cometary cloud. At the end of the studied period, the semimajor axes of the surviving comets tend to be concentrated in the interval 2 × 104 < a < 3 × 104 AU. The orbital planes of the comets with initial a ≧ 3 × 104AU acquired a complete randomization while the others still maintain a slight predominance of direct orbits. In addition, comet orbits with final a < 6 × 104AU preserve high eccentricities with an average value greater than 0.8 Most “new” comets from the sample entering the region interior to Jupiter's orbit had already registered earlier passages through the planetary region. By scaling up the rate of paritions of hypothetical new comets with the observed one, the number of members of the cometary cloud is estimated to be about 7 × 1010 and the conclusion is drawn that Uranus and Neptune had to remove a number of comets ten times greater.  相似文献   

2.
We investigate the potential importance of molecular cloud and stellar perturbations on the orbits of Pluto and more distant (hypothetical) planets up to 500 AU from the Sun. It is found that stellar and molecular cloud-core perturbations are of roughly equal importance. It also is found that the likelihood of substantial perturbations on Pluto is not insignificant, and that numerous substantial stellar and molecular cloud perturbations are likely to have influenced the orbits of any planets beyond 200 AU. These perturbations may contribute to a prevalence of moderate eccentricities and inclinations for planets beyond the orbit of Neptune, and may be a characteristic of distant planetary orbits in other solar systems. Given the recent discovery of chaotic behavior in Pluto's orbit (Sussman and Wisdom 1988), the effects of external perturbations on the long-term stability of Pluto's orbit warrant continued study.  相似文献   

3.
Sedna is the first inner Oort cloud object to be discovered. Its dynamical origin remains unclear, and a possible mechanism is considered here. We investigate the parameter space of a hypothetical solar companion which could adiabatically detach the perihelion of a Neptune-dominated TNO with a Sedna-like semimajor axis. Demanding that the TNO’s maximum value of osculating perihelion exceed Sedna’s observed value of 76 AU, we find that the companion’s mass and orbital parameters (m c , a c , q c , Q c , i c ) are restricted to $$m_c>rapprox 5\hskip.25em\hbox{M}_{\rm J}\left(\frac{Q_c}{7850\hbox{ AU}} \frac{q_c}{7850\hbox{ AU}}\right)^{3/2}$$ during the epoch of strongest perturbations. The ecliptic inclination of the companion should be in the range $45{\deg}\lessapprox i_c\lessapprox 135{\deg}$ if the TNO is to retain a small inclination while its perihelion is increased. We also consider the circumstances where the minimum value of osculating perihelion would pass the object to the dynamical dominance of Saturn and Jupiter, if allowed. It has previously been argued that an overpopulated band of outer Oort cloud comets with an anomalous distribution of orbital elements could be produced by a solar companion with present parameter values $$m_c\approx 5\hskip.25em\hbox{M}_{\rm J}\left(\frac{9000\hbox{ AU}}{a_c}\right)^{1/2}.$$ If the same hypothetical object is responsible for both observations, then it is likely recorded in the IRAS and possibly the 2MASS databases.  相似文献   

4.
By telescopic tracking, we have established that the transneptunian object (TNO) 2000 CR105 has a semimajor axis of 220±1 AU and perihelion distance of 44.14±0.02 AU, beyond the domain which has heretofore been associated with the “scattered disk” of Kuiper Belt objects interacting via gravitational encounters with Neptune. We have also firmly established that the TNO 1995 TL8 has a high perihelion (of 40.08±0.02 AU). These objects, and two other recent discoveries which appear to have perihelia outside 40 AU, have probably been placed on these orbits by a gravitational interaction which is not strong gravitational scattering off of any of the giant planets on their current orbits. Their existence may thus have profound cosmogonic implications for our understanding of the formation of the outer Solar System. We discuss some viable scenarios which could have produced these objects, including long-term diffusive chaos and scattering off of other massive bodies in the outer Solar System. This discovery implies that there must be a large population of TNOs in an “extended scattered disk” with perihelia above the previously suggested 38 AU boundary. The total population is difficult to estimate due to the ease with which such objects would have been lost. This illustrates the great value of frequent and well time-sampled recovery observations of trans-neptunian objects within their discovery opposition.  相似文献   

5.
We study the transfer process from the scattered disk (SD) to the high-perihelion scattered disk (HPSD) (defined as the population with perihelion distances q > 40 AU and semimajor axes a>50 AU) by means of two different models. One model (Model 1) assumes that SD objects (SDOs) were formed closer to the Sun and driven outwards by resonant coupling with the accreting Neptune during the stage of outward migration (Gomes 2003b, Earth, Moon, Planets 92, 29–42.). The other model (Model 2) considers the observed population of SDOs plus clones that try to compensate for observational discovery bias (Fernández et al. 2004, Icarus , in press). We find that the Kozai mechanism (coupling between the argument of perihelion, eccentricity, and inclination), associated with a mean motion resonance (MMR), is the main responsible for raising both the perihelion distance and the inclination of SDOs. The highest perihelion distance for a body of our samples was found to be q = 69.2 AU. This shows that bodies can be temporarily detached from the planetary region by dynamical interactions with the planets. This phenomenon is temporary since the same coupling of Kozai with a MMR will at some point bring the bodies back to states of lower-q values. However, the dynamical time scale in high-q states may be very long, up to several Gyr. For Model 1, about 10% of the bodies driven away by Neptune get trapped into the HPSD when the resonant coupling Kozai-MMR is disrupted by Neptune’s migration. Therefore, Model 1 also supplies a fossil HPSD, whose bodies remain in non-resonant orbits and thus stable for the age of the solar system, in addition to the HPSD formed by temporary captures of SDOs after the giant planets reached their current orbits. We find that about 12 – 15% of the surviving bodies of our samples are incorporated into the HPSD after about 4 – 5 Gyr, and that a large fraction of the captures occur for up to the 1:8 MMR (a ⋍ 120 AU), although we record captures up to the 1:24 MMR (a ≃ 260 AU). Because of the Kozai mechanism, HPSD objects have on average inclinations about 25°–50°, which are higher than those of the classical Edgeworth–Kuiper (EK) belt or the SD. Our results suggest that Sedna belongs to a dynamically distinct population from the HPSD, possibly being a member of the inner core of the Oort cloud. As regards to 2000 CR105 , it is marginally within the region occupied by HPSD objects in the parametric planes (q,a) and (a,i), so it is not ruled out that it might be a member of the HPSD, though it might as well belong to the inner core.  相似文献   

6.
T.A. Heppenheimer 《Icarus》1974,22(4):436-447
A theory is presented for determining regions where planets may form in binary star systems. Planet formation by accretion is assumed possible if mean planetesimal collision velocities do not exceed a critical value. Collision velocities are increased by perturbations due to the companion star, treated by secular perturbation theory. Collision velocities are damped by aerodynamic drag within the solar nebula, taken as the linear case of Cameron and Pine.A general feature of planetary systems in binary stars is the existence of two zones. The inner zone has enough damping to permit unimpeded growth by accretion; in the outer zone, growth proceeds to a limited diameter, beyond which damping is insufficient. It is shown that the asteroids could not have failed to coalesce due to Jupiter perturbations in the primitive solar nebula. Binary star systems with semimajor axis < 30AU are not likely to have planets; these include Alpha Centauri and 70 Ophiuchi. Systems possibly possessing planets include Eta Cassiopeiae, 40 Eridani, and Σ 2398. Epsilon Eridani is a marginal case.  相似文献   

7.
B. Lago  A. Cazenave 《Icarus》1983,53(1):68-83
The evolution of the perihelion distance distribution in the Oort cloud was studied over the age of the solar system, under the gravitational perturbations of random passing stars, using a statistical approach. These perturbations are accounted for through an empirical relation relating the change in cometary perihelion distance to the closest-approach comet-star distance; this relation is deduced from a previous study [H. Scholl, A. Cazenave, and A. Brahic, Astron. Astrophys.112, 157–166 (1982)]. Two kinds of initial perihelion distances are considered: (a) perihelion distances <2500 AU, associated with an origin of comets as icy planetesimals in the region of the giant planets, and (b) larger perihelion distances (up to 5 × 104 AU), possibly representative of comet formation as satellite fragments in the accretion disk of the primitive solar nebula. Distant star-comet encounters, as well as rare close encounters, are considered. Several quantities are estimated: (i) number of “new” comets entering into the planetary region, (ii) number of comets escaping the Sun sphere of influence or lost by hyperbolic ejection and (iii) percentage of total comet loss over the age of the solar system. From these quantities, the current and original cloud populations are deduced, as well as the corresponding cloud mass, for the two types of formation scenarios.  相似文献   

8.
A numerical simulation of the Oort cloud is used to explain the observed orbital distributions and numbers of Jupiter-family (JF) and Halley-type (HT) short-period (SP) comets. Comets are given initial orbits with perihelion distances between 5 and 36 au, and evolve under planetary, stellar and Galactic perturbations for 4.5 Gyr. This process leads to the formation of an Oort cloud (which we define as the region of semimajor axes a > 1,000 au), and to a flux of cometary bodies from the Oort cloud returning to the planetary region at the present epoch. The results are consistent with the dynamical characteristics of SP comets and other observed cometary populations: the near-parabolic flux, Centaurs, and high-eccentricity trans-Neptunian objects. To achieve this consistency with observations, the model requires that the number of comets versus initial perihelion distance is concentrated towards the outer planetary region. Moreover, the mean physical lifetime of observable comets in the inner planetary region (q < 2.5 au) at the present epoch should be an increasing function of the comets’ initial perihelion distances. Virtually all observed HT comets and nearly half of observed JF comets come from the Oort cloud, and initially (4.5 Gyr ago) from orbits concentrated near the outer planetary region. Comets that have been in the Oort cloud also return to the Centaur (5 < q < 28 au, a < 1,000 au) and near-Neptune high-eccentricity regions. Such objects with perihelia near Neptune are hard to discover, but Centaurs with characteristics predicted by the model (e.g. large semimajor axes, above 60 au, or high inclinations, above 40°) are increasingly being found by observers. The model provides a unified picture for the origin of JF and HT comets. It predicts that the mean physical lifetime of all comets in the region q < 1.5 au is less than ~200 revolutions.  相似文献   

9.
We investigate the influence of a stellar fly-by encounter on the Edgeworth-Kuiper belt objects through numerical orbital calculations, in order to explain both mass depletion and high orbital inclinations of the classical Edgeworth-Kuiper belt (CEKB) objects, which have semimajor axis of 42-48 AU and perihelia beyond 35 AU. The observationally inferred total mass of the CEKB is ∼1/10 Earth masses, which is only ∼0.02 of that extrapolated from the minimum-mass solar nebula model. The CEKB consists of bimodal population: “hot population” with inclinations i?0.2-0.6 radians and “cold population” with i?0.1. The observationally suggested difference in size and color of objects between the two populations may imply different origins of the two populations. We find that both the depletion of solid materials in the CEKB and the formation of the hot population are accounted for by a single close stellar encounter with pericenter distance of 80-100 AU and inclination relative to the initial protoplanetary disk ?50°-70°. Such a stellar encounter highly pumps up eccentricities of most objects in the CEKB and then their perihelia migrate within 35 AU. These objects would be removed by Neptune's perturbations after Neptune is formed at or migrates to the current position (30 AU). Less than 10% of the original objects remain in stable orbits with small eccentricities and perihelion distances larger than 35 AU, in the CEKB, which is consistent with the observation. We find that i of the remaining objects are as large as that of the observed hot population. The only problem is how to stop Neptune's migration at ∼30 AU, which is addressed in a separate paper. The depletion by the stellar encounter extends deeply into ∼30-35 AU, which provides the basis of the formation model for the cold population through Neptune's outward migration by Levison and Morbidelli (2003, Nature, 426, 419-421). The combination of our model with Levison and Morbidelli's model could consistently explain the mass depletion, truncation at 50 AU, bimodal distribution in i, and differences in size and color between the hot and the cold populations in the CEKB.  相似文献   

10.
S. Inaba  G.W. Wetherill 《Icarus》2003,166(1):46-62
We have calculated formation of gas giant planets based on the standard core accretion model including effects of fragmentation and planetary envelope. The accretion process is found to proceed as follows. As a result of runaway growth of planetesimals with initial radii of ∼10 km, planetary embryos with a mass of ∼1027 g (∼ Mars mass) are found to form in ∼105 years at Jupiter's position (5.2 AU), assuming a large enough value of the surface density of solid material (25 g/cm2) in the accretion disk at that distance. Strong gravitational perturbations between the runaway planetary embryos and the remaining planetesimals cause the random velocities of the planetesimals to become large enough for collisions between small planetesimals to lead to their catastrophic disruption. This produces a large number of fragments. At the same time, the planetary embryos have envelopes, that reduce energies of fragments by gas drag and capture them. The large radius of the envelope increases the collision rate between them, resulting in rapid growth of the planetary embryos. By the combined effects of fragmentation and planetary envelope, the largest planetary embryo with 21M forms at 5.2 AU in 3.8×106 years. The planetary embryo is massive enough to start a rapid gas accretion and forms a gas giant planet.  相似文献   

11.
An overview is given of close encounters of nearly parabolic comets (NPCs; with periods of P > 200 years and perihelion distances of q > 0.1 AU; the number of the comets is N = 1041) with planets. The minimum distances Δmin between the cometary and planetary orbits are calculated to select comets whose Δmin are less than the radius of the planet’s sphere of influence. Close encounters of these comets with planets are identified by numerical integration of the comets’ equations of motion over an interval of ±50 years from the time of passing the perihelion. Close encounters of NPCs with Jupiter in 1663–2011 are reported for seven comets. An encounter with Saturn is reported for comet 2004 F2 (in 2001).  相似文献   

12.
We suggest that planets, brown dwarfs, and even low mass stars can be formed by fragmentation of protoplanetary disks around very massive stars (M ? 100 M). We discuss how fragmentation conditions make the formation of very massive planetary systems around very massive stars favorable. Such planetary systems are likely to be composed of brown dwarfs and low mass stars of ~0.1–0.3 M, at orbital separations of ~ few × 100–104 AU. In particular, scaling from solar-like stars suggests that hundreds of Mercury-like planets might orbit very massive stars at ~103 AU where conditions might favor liquid water. Such fragmentation objects can be excellent targets for the James Webb Space Telescope and other large telescopes working in the IR bands. We predict that deep observations of very massive stars would reveal these fragmentation objects, orbiting in the same orbital plane in cases where there are more than one object.  相似文献   

13.
As follows from dynamical studies, in the course of evolution, most near-Earth objects reach orbits with small perihelion distances. Changes of the asteroids in the vicinity of the Sun should play a key role in forming the physical properties, size distribution, and dynamical features of the near-Earth objects. Only seven of the discovered asteroids are currently moving along orbits with perihelion distances q < 0.1 AU. However, due to the Kozai–Lidov secular perturbations, the asteroids, having recently passed near the Sun, could by now have moved to orbits farther from the Sun. In this study, we found asteroids that have been recently orbiting with perihelion distances q < 0.1 AU. Asteroids may be on such orbits for hundreds to tens of thousands of years. To carry out astrophysical observations of such objects is a high priority.  相似文献   

14.
A substantial fraction of the Edgeworth-Kuiper belt objects are presently known to move in resonance with Neptune (the principal commensurabilities are 1/2, 3/5, 2/3, and 3/4). We have found that many of the distant (with orbital semimajor axes a > 50 AU) trans-Neptunian objects (TNOs) also execute resonant motions. Our investigation is based on symplectic integrations of the equations of motion for all multiple-opposition TNOs with a > 50 AU with allowance made for the uncertainties in their initial orbits. Librations near such commensurabilities with Neptune as 4/9, 3/7, 5/12, 2/5, 3/8, 4/27, and others have been found. The largest number of distant TNOs move near the 2/5 resonance with Neptune: 12 objects librate with a probability higher than 0.75. The multiplicity of objects moving in 2/5 resonance and the longterm stability of their librations suggest that this group of resonant objects was formed at early formation stages of the Solar system. For most of the other resonant objects, the librations are temporary. We also show the importance of asymmetric resonances in the large changes in TNO perihelion distances.  相似文献   

15.
We present results from 44 simulations of late stage planetary accretion, focusing on the delivery of volatiles (primarily water) to the terrestrial planets. Our simulations include both planetary “embryos” (defined as Moon to Mars sized protoplanets) and planetesimals, assuming that the embryos formed via oligarchic growth. We investigate volatile delivery as a function of Jupiter's mass, position and eccentricity, the position of the snow line, and the density (in solids) of the solar nebula. In all simulations, we form 1-4 terrestrial planets inside 2 AU, which vary in mass and volatile content. In 44 simulations we have formed 43 planets between 0.8 and 1.5 AU, including 11 “habitable” planets between 0.9 and 1.1 AU. These planets range from dry worlds to “water worlds” with 100+oceans of water (1 ocean=1.5×1024 g), and vary in mass between 0.23M and 3.85M. There is a good deal of stochastic noise in these simulations, but the most important parameter is the planetesimal mass we choose, which reflects the surface density in solids past the snow line. A high density in this region results in the formation of a smaller number of terrestrial planets with larger masses and higher water content, as compared with planets which form in systems with lower densities. We find that an eccentric Jupiter produces drier terrestrial planets with higher eccentricities than a circular one. In cases with Jupiter at 7 AU, we form what we call “super embryos,” 1-2M protoplanets which can serve as the accretion seeds for 2+M planets with large water contents.  相似文献   

16.
We use a secular model to describe the non-resonant dynamics of trans-Neptunian objects in the presence of an external ten-Earth-mass perturber. The secular dynamics is analogous to an “eccentric Kozai mechanism” but with both an inner component (the four giant planets) and an outer one (the eccentric distant perturber). By the means of Poincaré sections, the cases of a non-inclined or inclined outer planet are successively studied, making the connection with previous works. In the inclined case, the problem is reduced to two degrees of freedom by assuming a non-precessing argument of perihelion for the perturbing body. The size of the perturbation is typically ruled by the semi-major axis of the small body: we show that the classic integrable picture is still valid below about 70 AU, but it is progressively destroyed when we get closer to the external perturber. In particular, for \(a>150\) AU, large-amplitude orbital flips become possible, and for \(a>200\) AU, the Kozai libration islands at \(\omega =\pi /2\) and \(3\pi /2\) are totally submerged by the chaotic sea. Numerous resonance relations are highlighted. The most large and persistent ones are associated with apsidal alignments or anti-alignments with the orbit of the distant perturber.  相似文献   

17.
18.
In 1946, E. Sevin postulated the global vibrations of the Sun with a period P 0 = 1/9 day and a “wavelength” L 0 = c × P 0 = 19.24 AU and predicted the tenth planet at a mean distance of 4.0 × L 0 ≈ 77.0 AU from the Sun (c is the speed of light). The global vibrations of the Sun, precisely with the period of 1/9 day, were actually detected in 1974. Recently, the largest Kuiper Bell object 2003 UB313, or Eris, with an orbital semimajor axis ≈ 3.5 × L 0 ≈ 67.5 AU was discovered. We adduce arguments for the status of Eris as our tenth planet: (i) the object is larger and farther from the Sun than Pluto and (ii) the semimajor axis of Eris agrees well with the sequence of planetary distances that follows from the resonance spectrum of the Solar system dimensions (with the scale L 0 and for all 11 orbits, including those of Pluto, Eris, and the asteroid belt). We point to a mistake of the Prague (2006) IAU Assembly, which excluded Pluto from the family of planets by introducing a new, highly controversial class of objects—“dwarf planets.”  相似文献   

19.
J.A. Fernández  W.-H. Ip 《Icarus》1981,47(3):470-479
The dynamical evolution of bodies under the gravitational influence of the accreting proto-Uranus and proto-Neptune is investigated. The main aim of this study is to analyze the interrelations between the accretion of Uranus and Neptune with other processes of cosmological importance as, for example, the formation of a cometary reservoir from bodies placed into near-parabolic orbits by planetary perturbations and the scattering of bodies to the region of the terrestrial planets. Starting with a mass ratio (initial mass/present mass) of 0.1, Uranus and Neptune acquire masses close to their present ones in a time scale of 108 years. Neptune is found to be the most important contributor of comets to the cometary reservoir. The time scale of bodies scattered by Neptune to reach near-parabolic orbits (semimajor axes a > 104 AU)is about 109 years. The contribution of Uranus was partially inhibited because a large part of the residual bodies of its accretion zone fell under the strong gravitational influence of Jupiter and Saturn. A significant fraction of the bodies dispersed by Uranus and Neptune reached the region of the terrestrial planets in a time scale of some 108 years.  相似文献   

20.
The increasing number and variety of extrasolar planets illustrates the importance of characterizing planetary perturbations. Planetary orbits are typically described by physically intuitive orbital elements. Here, we explicitly express the equations of motion of the unaveraged perturbed two-body problem in terms of planetary orbital elements by using a generalized form of Gauss’ equations. We consider a varied set of position and velocity-dependent perturbations, and also derive relevant specific cases of the equations: when they are averaged over fast variables (the “adiabatic” approximation), and in the prograde and retrograde planar cases. In each instance, we delineate the properties of the equations. As brief demonstrations of potential applications, we consider the effect of Galactic tides. We measure the effect on the widest-known exoplanet orbit, Sedna-like objects, and distant scattered disk objects, particularly with regard to where the adiabatic approximation breaks down. The Mathematica code which can help derive the equations of motion for a user-defined perturbation is freely available upon request.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号