首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider how the tidal potential of a stellar cluster or a dense molecular cloud affects the fragmentation of gravitationally unstable molecular cloud cores. We find that molecular cloud cores which would collapse to form a single star in the absence of tidal shear, can be forced to fragment if they are subjected to tides. This may enhance the frequency of binaries in star-forming regions such as Ophiuchus and the frequency of binaries with separations ≲100 au in the Orion Trapezium Cluster. We also find that clouds which collapse to form binary systems in the absence of a tidal potential will form bound binary systems if exposed to weak tidal shear. However, if the tidal shear is sufficiently strong, even though the cloud still collapses to form two fragments, the fragments are pulled apart while they are forming by the tidal shear and two single stars are formed. This sets an upper limit for the separation of binaries that form near dense molecular clouds or in stellar clusters.  相似文献   

2.
This work deals with a CCD imaging study at optical and near‐infrared wavelength oftwo giant molecular clouds (plus a control field) in the southern region of the Large Magellanic Cloud, one ofwhich shows multiple signs of star formation, whereas the other does not. The observational data from VLT FORS2 (R band) and NTT SOFI (Ks band) have been analyzed to derive luminosity functions and color‐magnitude diagrams. The young stellar content of these two giant molecular clouds is compared and confirmed to be different, in the sense that the apparently “starless” cloud has so far formed only low‐luminosity, low‐mass stars (fainter than mKs ∽ 16.5 mag, not seen by 2MASS), while the other cloud has formed both faint low‐mass and luminous high‐mass stars. The surface density excess oflow‐luminosity stars (∽2 per square arcmin) in the “starless” cloud with respect to the control field is about 20% whereas the excess is about a factor of 3 in the known star‐forming cloud. The difference may be explained theoretically by the gravo‐turbulent evolution of giant molecular clouds, one being younger and less centrally concentrated than the other (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We investigate the dependence of stellar properties on the mean thermal Jeans mass in molecular clouds. We compare the results from the two largest hydrodynamical simulations of star formation to resolve the fragmentation process down to the opacity limit, the first of which was reported by Bate, Bonnell & Bromm. The initial conditions of the two calculations are identical except for the radii of the clouds, which are chosen so that the mean densities and mean thermal Jeans masses of the clouds differ by factors of 9 and 3, respectively.
We find that the denser cloud, with the lower mean thermal Jeans mass, produces a higher proportion of brown dwarfs and has a lower characteristic (median) mass of the stars and brown dwarfs. This dependence of the initial mass function (IMF) on the density of the cloud may explain the observation that the Taurus star-forming region appears to be deficient in brown dwarfs when compared with the Orion Trapezium cluster. The new calculation also produces wide binaries (separations >20 au), one of which is a wide binary brown dwarf system.
Based on the hydrodynamical calculations, we develop a simple accretion/ejection model for the origin of the IMF. In the model, all stars and brown dwarfs begin with the same mass (set by the opacity limit for fragmentation) and grow in mass until their accretion is terminated stochastically by their ejection from the cloud through dynamically interactions. The model predicts that the main variation of the IMF in different star-forming environments should be in the location of the peak (due to variations in the mean thermal Jeans mass of the cloud) and in the substellar regime. However, the slope of the IMF at high masses may depend on the dispersion in the accretion rates of protostars.  相似文献   

4.
We present results from high-resolution hydrodynamical simulations that explore the effects of small-scale clustering in star-forming regions. A large ensemble of small- N clusters with five stellar seeds have been modelled and the resulting properties of stars and brown dwarfs statistically derived and compared with observational data.
Close dynamical interactions between the protostars and competitive accretion driven by the cloud collapse are shown to produce a distribution of final masses that is bimodal, with most of the mass residing in the binary components. When convolved with a suitable core mass function, the final distribution of masses resembles the observed initial mass function, in both the stellar and substellar regimes. Binaries and single stars are found to constitute two kinematically distinct populations, with about half of the singles attaining velocities ≥2 km s−1, which might deprive low-mass star-forming regions of their lightest members in a few crossing times. The eccentricity distribution of binaries and multiples is found to follow a distribution similar to that of observed long-period (uncircularized) binaries.
The results obtained support a mechanism in which a significant fraction of brown dwarfs form under similar circumstances as those of normal stars but are ejected from the common envelope of unstable multiple systems before their masses exceed the hydrogen burning limit. We predict that many close binary stars should have wide brown dwarf companions. Brown dwarfs, and, in general, very low-mass stars, would be rare as pure binary companions. The binary fraction should be a decreasing function of primary mass, with low-mass or substellar primaries being scarce. Where such binaries exist, they are expected either to be close enough (semimajor axis ∼10 au) to survive strong interactions with more massive binaries or to be born in very small molecular cloud cores.  相似文献   

5.
We investigate the dependence of stellar properties on the initial kinematic structure of the gas in star-forming molecular clouds. We compare the results from two large-scale hydrodynamical simulations of star cluster formation that resolve the fragmentation process down to the opacity limit, the first of which was reported by Bate, Bonnell & Bromm. The initial conditions of the two calculations are identical, but in the new simulation the power spectrum of the velocity field imposed on the cloud initially and allowed to decay is biased in favour of large-scale motions. Whereas the calculation of Bate et al. began with a power spectrum   P ( k ) ∝ k −4  to match the Larson scaling relations for the turbulent motions observed in molecular clouds, the new calculation begins with a power spectrum   P ( k ) ∝ k −6  .
Despite this change to the initial motions in the cloud and the resulting density structure of the molecular cloud, the stellar properties resulting from the two calculations are indistinguishable. This demonstrates that the results of such hydrodynamical calculations of star cluster formation are relatively insensitive to the initial conditions. It is also consistent with the fact that the statistical properties of stars and brown dwarfs (e.g. the stellar initial mass function) are observed to be relatively invariant within our Galaxy and do not appear to depend on environment.  相似文献   

6.
We present high-resolution optical echelle spectroscopy for a large fraction of the Li-rich late-type stars recently discovered in the vicinity of the Lupus dark clouds. Our results confirm the high Li  i   λ 6708 equivalent widths previously estimated from medium-resolution spectra, thus adding strength to the conclusion that the large majority of these stars are still in the pre-main-sequence phase of their evolution, contrary to claims from other authors that many of them might be zero-age main-sequence stars. We present a statistical approach to derive a mean distance for the sample, and find that it is consistent with, or slightly lower than, the Hipparcos distance of the Lupus star-forming region. The radial velocities measured for part of these stars are consistent with those observed for the Lupus star-forming region, while stars outside the dark clouds show a mean difference of the order of 3 km s−1. The projected rotational velocities show a lack of slow rotators, which is interpreted as a consequence of the X-ray selection of the sample. The Li-rich stars in Lupus studied in this work yield a fairly 'clean' sample of very young stars, while in other star-forming regions a larger fraction of older zero-age main-sequence stars has been found among ROSAT -discovered Li-rich stars. We argue that this fact reflects the relation of these stars with the Gould Belt.  相似文献   

7.
In order to investigate the differences between the molecular clouds which are associated with the massive star forming regions and those which are not, we have performed the single-dish simultaneous observations of 12CO J=2-1 and J=3-2 lines toward a sample of 59 Spitzer Extended Green Objects (EGOs) as the massive star forming regions in the northern sky. Combining our results with the data of the 12CO J=1-0 observations toward the same sample EGOs in the literature, we have made the statistical comparisons on the intensities and linewidths of multiple 12CO lines between the molecular clouds associated with EGOs (EGO molecular clouds, in brief) and other non-EGO molecular clouds. On this basis, we have discussed the effects of the gas temperature, density, and velocity field distributions on the statistical characteristics of the two kinds of molecular clouds. It is found that both the EGO molecular clouds and non-EGO molecular clouds have similar mass ranges, hence we conclude that for the formation of massive stars, the key-important factor is probably not the total mass of a giant molecular cloud (GMC), but the volume filling factor of the molecular clumps in the GMC (or the compression extent of the molecular gas in the cloud).  相似文献   

8.
The fragmentation process in collapsing clouds with various metallicities is studied using three-dimensional nested-grid hydrodynamics. Initial clouds are specified by three parameters: cloud metallicity, initial rotation energy and initial cloud shape. For different combinations of these parameters, we calculate 480 models in total and study cloud evolution, fragmentation conditions, orbital separation and binary frequency. For the cloud to fragment during collapse, the initial angular momentum must be higher than a threshold value, which decreases with decreasing metallicity. Although the exact fragmentation conditions depend also on the initial cloud shape, this dependence is only modest. Our results indicate a higher binary frequency in lower metallicity gas. In particular, with the same median rotation parameter as in the solar neighbourhood, a majority of stars are born as members of binary/multiple systems for  <10−4 Z  . With initial mass  <0.1 M  , if fragments are ejected in embryo from the host clouds by multibody interaction, they evolve to substellar-mass objects. This provides a formation channel for low-mass stars in zero- or low-metallicity environments.  相似文献   

9.
In order to reveal the star-forming history of the molecular cloud complex we studied the intermediate mass stellar population in the Cepheus Flare region. (Paper I dealt with the distance and the young stellar object candidates of the region.) Correlating the IRAS Point Source Catalogue and Faint Source Catalogue positions with those of 1214 B8–A8 and 1760 F0–F5 type stars brighter than     and classified during an objective prism survey, we identified 19 stars showing far-infrared excess emission in the Cepheus Flare region. In addition to the 16 stars whose counterparts are given in the IRAS catalogues, we found three more stars with infrared excess not recognized before. In order to identify the young medium-mass stars associated with the Cepheus Flare molecular clouds we observed the optical spectra of the IR-excess stars, and using published optical photometry and the IRAS data we examined their spectral energy distributions (SEDs) and IRAS two-colour diagram. The observations resulted in the discovery of a new Herbig Ae/Be star, BD +68°1118, coinciding with IRAS 21169+6842. More evolved HAe/Be stars may be SAO 19953, BD +67°1314 and BD +69°1231, whose H α lines showed weak emission components. Possible β Pictoris- or Vega-type stars may be HD 203854, HD 212826 and HD 216486, whereas the far-infrared fluxes at the positions of BD +72°1018, HD 210806 and HD 217903 can be attributed to the heating of the interstellar environment. We used distances and radial velocities of the stars derived from the spectroscopy and published optical photometry as indicators of their relations to the clouds. Information on the environment of the observed stars deduced from the diffuse interstellar band at λ 6613 is briefly discussed.  相似文献   

10.
We put forward evidence that relates the phenomenon of the chemically peculiar stars of the upper main sequence to Supernovae explosions in young clusters. In the Upper Scorpius region we find that a supernova shell has interacted with dense clouds and that the peculiar stars lie close to or along the edges of interaction. We argue that the stars at or near the cloud faces are capable of acquiring this enriched material which is sufficiently slowed down. The magnetic accretion process of Havnes and Conti provides the mechanism of acquisition. This process with the associated magnetic braking accounts for the build-up in abundance anomalies and the slowing down of rotation with age.  相似文献   

11.
1E 1207.4–5209 is an X‐ray source located at the centre of the supernova remnant (SNR) PKS 1209–52 (G296.5+10.0) and is thought to be an isolated neutron star (INS) associated with the SNR. Its optical spectrum shows several absorption lines and the X‐ray spectrum exhibits three variable absorption features at what appears to be harmonically related wavelengths, the latter being interpreted as due to cyclotron resonance. However, there are several serious problems, uncertainties and difficulties in the above association (SNR/INS) and in the interpretation of the spectra. In view of these, we suggest an alternative explanation of the observed spectra in terms of blueshifts. This implies that the optical and X‐ray absorption spectra are due to the central object of the SNR in association with two separate absorption clouds ejected at successively increasing speeds. The clouds have their origins in jets resulting from the merger of two very massive compact stars. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
It is generally accepted that the lifetime of molecular clouds does not exceed 3×107 yr due to disruption by stellar feedback. We put together some arguments giving evidence that a substantial fraction of molecular clouds (primarily in the outer regions of a disc) may avoid destruction process for at least 108 yr or even longer. A molecular cloud can live long if massive stars are rare or absent. Massive stars capable to destroy a cloud may not form for a long time if a cloud is low massive, or stellar initial mass function is top-light, or if there is a delay of the beginning of active star formation. A long duration of the inactive phase of clouds may be reconciled with the low amount of the observed starless giant molecular clouds if to propose that they were preceded by slowly contraction phase of the magnetized dark gas, non-detected in CO-lines.  相似文献   

13.
This is an examination of two groups of stars, one of which contains a trapezium-type system consisting of four stars, while the second is made up of three stars, which are also part of a trapezium-type system. The two groups are located in the CMa OB1 association and contain cometary nebulae. Data on 12CO(1-0) observations of the molecular cloud connected with the first group of stars are presented. The central portion of the molecular cloud is moving toward us. This may be a consequence of the presence of a strong flow inside the cloud produced by the star-formation region.  相似文献   

14.
15.
Young massive stars in the central parsec of our Galaxy are best explained by star formation within at least one, and possibly two, massive self-gravitating gaseous discs. With help of numerical simulations, we here consider whether the observed population of young stars could have originated from a large angle collision of two massive gaseous clouds at   R ≃ 1 pc  from Sgr A*. In all the simulations performed, the post-collision gas flow forms an inner, nearly circular gaseous disc and one or two eccentric outer filaments, consistent with the observations. Furthermore, the radial stellar mass distribution is always very steep,  Σ*∝ R −2  , again consistent with the observations. All of our simulations produce discs that are warped by between 30° and 60°, in accordance with the most recent observations. The three-dimensional velocity structure of the stellar distribution is sensitive to initial conditions (e.g. the impact parameter of the clouds) and gas cooling details. For example, the runs in which the inner disc is fed intermittently with material possessing fluctuating angular momentum result in multiple stellar discs with different orbital orientations, contradicting the observed data. In all the cases the amount of gas accreted by our inner boundary condition is large, enough to allow Sgr A* to radiate near its Eddington limit over ∼105 yr. This suggests that a refined model would have physically larger clouds (or a cloud and a disc such as the circumnuclear disc) colliding at a distance of a few parsecs rather than 1 pc as in our simulations.  相似文献   

16.
Detailed studies of nearby cluster-forming molecular clouds can help us understand the physical processes by which most stars form in galaxies. I review recent advances made on this subject. Submillimeter observations of nearby protoclusters suggest that stars are generally built from finite, detached reservoirs of mass inside molecular cloud cores, and point to a cloud fragmentation origin for the IMF. Much progress in this field will come from future large submillimeter instruments such as Herschel and ALMA. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

17.
To better understand the conditions under which ice mantles form on grains in molecular clouds, three globules in the Southern Coalsack have been searched for the presence of H2O ice. Given the total lack of star formation in the Coalsack, it is an ideal site for studying unprocessed icy molecular mantles. In our sample of eight field stars lying behind the Coalsack we detect strong H2O ice absorption in the lines of sight to two stars and possible weak absorption in four others. We estimate H2O ice column densities or upper limits for these lines of sight. Compared to dark clouds such as Taurus, the Coalsack H2O ice column densities are lower than expected given the quiescent nature of the Coalsack region. It is possible that the chemical evolution of the Coalsack may simply be at too early a stage for significant ice mantles to appear on the grains, except perhaps in the densest parts of some of the globules. Alternatively, the presence or absence of ice absorption may be related to the distribution of dust along each line of sight, specifically, the relative contributions of dense globules and a more extended diffuse component. For example, our observations are consistent with an ice threshold extinction similar to that observed in the Taurus dark cloud if extinction amounting to   A V∼5  towards Globules 2 and 3 arises in the extended component. Globule 1 appears to have no extended component.  相似文献   

18.
We re-examine the formation of the inner Oort comet cloud while the Sun was in its birth cluster with the aid of numerical simulations. This work is a continuation of an earlier study (Brasser, R., Duncan, M.J., Levison, H.F. [2006]. Icarus 184, 59–82) with several substantial modifications. First, the system consisting of stars, planets and comets is treated self-consistently in our N-body simulations, rather than approximating the stellar encounters with the outer Solar System as hyperbolic fly-bys. Second, we have included the expulsion of the cluster gas, a feature that was absent previously. Third, we have used several models for the initial conditions and density profile of the cluster – either a Hernquist or Plummer potential – and chose other parameters based on the latest observations of embedded clusters from the literature. These other parameters result in the stars being on radial orbits and the cluster collapses. Similar to previous studies, in our simulations the inner Oort cloud is formed from comets being scattered by Jupiter and Saturn and having their pericentres decoupled from the planets by perturbations from the cluster gas and other stars. We find that all inner Oort clouds formed in these clusters have an inner edge ranging from 100 AU to a few hundred AU, and an outer edge at over 100,000 AU, with little variation in these values for all clusters. All inner Oort clouds formed are consistent with the existence of (90377) Sedna, an inner Oort cloud dwarf planetoid, at the inner edge of the cloud: Sedna tends to be at the innermost 2% for Plummer models, while it is 5% for Hernquist models. We emphasise that the existence of Sedna is a generic outcome. We define a ‘concentration radius’ for the inner Oort cloud and find that its value increases with increasing number of stars in the cluster, ranging from 600 AU to 1500 AU for Hernquist clusters and from 1500 AU to 4000 AU for Plummer clusters. The increasing trend implies that small star clusters form more compact inner Oort clouds than large clusters. We are unable to constrain the number of stars that resided in the cluster since most clusters yield inner Oort clouds that could be compatible with the current structure of the outer Solar System. The typical formation efficiency of the inner Oort cloud is 1.5%, significantly lower than previous estimates. We attribute this to the more violent dynamics that the Sun experiences as it rushes through the centre of the cluster during the latter’s initial phase of violent relaxation.  相似文献   

19.
分子云磁场与尘埃导致的偏振   总被引:1,自引:1,他引:0  
磁场对分子云及其中的恒星的形成和演化起到重要的作用.分子云磁场的探测方法主要是谱线塞曼效应、尘埃热辐射的偏振,以及谱线的线偏振观测.利用谱线的塞曼效应可以直接测量视线方向的磁场强度.尘埃热辐射偏振可以有效地示踪磁场方向在天球上的分布.分子云内部的磁场会受到不同物理过程的影响.高分辨率观测可以研究磁场扰动的细节,低分辨率观测可以得到分子云甚至银河系大尺度磁场的宏观信息.只有多波段的观测才能全面地认识分子云磁场与各种物理过程的联系.该文对分子云尘埃热辐射偏振的观测情况做了调研,总结了分子云大尺度磁场的研究现状和发展前景.  相似文献   

20.
We present a fully sampled C18O (1–0) map towards the southern giant molecular cloud (GMC) associated with the H  ii region RCW 106, and use it in combination with previous 13CO (1–0) mapping to estimate the gas column density as a function of position and velocity. We find localized regions of significant 13CO optical depth in the northern part of the cloud, with several of the high-opacity clouds in this region likely associated with a limb-brightened shell around the H  ii region G333.6−0.2. Optical depth corrections broaden the distribution of column densities in the cloud, yielding a lognormal distribution as predicted by simulations of turbulence. Decomposing the 13CO and C18O data cubes into clumps, we find relatively weak correlations between size and linewidth, and a more sensitive dependence of luminosity on size than would be predicted by a constant average column density. The clump mass spectrum has a slope near −1.7, consistent with previous studies. The most massive clumps appear to have gravitational binding energies well in excess of virial equilibrium; we discuss possible explanations, which include magnetic support and neglect of time-varying surface terms in the virial theorem. Unlike molecular clouds as a whole, the clumps within the RCW 106 GMC, while elongated, appear to show random orientations with respect to the Galactic plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号