首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanical structure of the GREGOR telescope was installed at the Observatorio del Teide, Tenerife, in 2004. New concepts for mounting and cooling of the 1.5‐meter primary mirror were introduced. GREGOR is an open telescope, therefore the dome is completely open during observations to allow for air flushing through the open, but stiff telescope structure. Backside cooling system of the primary mirror keeps the mirror surface close to ambient temperature to prevent mirror seeing. The large collecting area of the primary mirror results in high energy density at the field stop at the prime focus of the primary which needs to be removed. The optical elements are supported by precision alignment systems and should provide a stable solar image at the optical lab. The coudé train can be evacuated and serves as a natural barrier between the outer environmental conditions and the air‐conditioned optical laboratory with its sensitive scientific instrumentation. The telescope was successfully commissioned and will start its nominal operation during 2013 (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The installation and operation of a telescope in Antarctica represent particular challenges, in particular the requirement to operate at extremely cold temperatures, to cope with rapid temperature fluctuations and to prevent frosting. Heating of electronic subsystems is a necessity, but solutions must be found to avoid the turbulence induced by temperature fluctuations on the optical paths. ASTEP 400 is a 40cm Newton telescope installed at the Concordia station, Dome C since 2010 for photometric observations of fields of stars and their exoplanets. While the telescope is designed to spread star light on several pixels to maximize photometric stability, we show that it is nonetheless sensitive to the extreme variations of the seeing at the ground level (between about 0′′.1 and 5′′) and to temperature fluctuations between –30°C and –80 °C. We analyze both day‐time and night‐time observations and obtain the magnitude of the seeing caused by the mirrors, dome and camera. The most important effect arises from the heating of the primary mirror which gives rise to a mirror seeing of 0′′.23 K–1. We propose solutions to mitigate these effects. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We constructed a wide field cryogenic telescope (WFCT) containing a whole Ritchey-Chrétien system and a focal plane array in a cryostat for near infrared observations to cover the field of view of 0.4°. The telescope has a primary mirror of 220 mm and an engineering grade 256 × 256 InSb array. The optical components such as two mirrors, filters, spiders, and radiation shield tube are cooled down to 180 K as well as the InSb array to 35 K by a mechanical refrigerator. We show the results of the background surface brightnesses and the limiting magnitudes at 3.3 and 3.67 μm measured at Sutherland, South Africa. We describe the on-going upgrade of this instrument, equipped with a 1024 × 1024 ALADDIN InSb science grade array. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures and high image intensities to map the faint Cherenkov light emitted from cosmic ray air showers onto their image sensors. Segmented reflectors fulfill these needs, and as they are composed from mass production mirror facets they are inexpensive and lightweight. However, as the overall image is a superposition of the individual facet images, alignment is a challenge. Here we present a computer vision based star tracking alignment method, which also works for limited or changing star light visibility. Our method normalizes the mirror facet reflection intensities to become independent of the reference star’s intensity or the cloud coverage. Using two CCD cameras, our method records the mirror facet orientations asynchronously of the telescope drive system, and thus makes the method easy to integrate into existing telescopes. It can be combined with remote facet actuation, but does not require one to work. Furthermore, it can reconstruct all individual mirror facet point spread functions without moving any mirror. We present alignment results on the 4 m First Geiger-mode Avalanche Cherenkov Telescope (FACT).  相似文献   

5.
An array of seven atmospheric Cherenkov telescopes was commissioned at a high altitude site in Hanle in the Ladakh region of the Himalayas. The array called HAGAR has been designed to observe celestial γ-rays of energy >100 GeV. Each telescope is altitude-azimuth mounted and carries seven parabolic mirrors whose optic axes are co-aligned with the telescope axis. The telescopes point and track a celestial source using a PC-based drive control system. Two important issues in positioning of each HAGAR telescope are pointing accuracy of telescope axis and co-alignment of mirrors’ optic axes with the telescope axis. We have adopted a three pronged strategy to address these issues, namely use of pointing models to improve pointing accuracy of the telescopes, RA-DEC scan technique to measure the pointing offsets of the mirrors and mechanical fine-tuning of off-axis mirrors by sighting a distant stationary light source. This paper discusses our efforts in this regard as well as the current status of pointing and monitoring of HAGAR telescopes.  相似文献   

6.
类地行星(月球)自转监测望远镜的科学目标是在行星(月球)表面现场测量行星(月球)自转并研究其内部结构和物理性质.为了验证全新的观测原理和资料处理方法,项目团队设计制造了一套原理样机,在一台商用天文望远镜的光路前端增加3面反射镜组,使其具有同时观测3个视场的能力.自2017年起在地面上开展了观测实验,获得了混合有3视场星象的图像.通过计算星象在前后图像上的位移实现了归属视场识别,使得观测效果与分视场独立观测等同,证明了用一台设备同时观测多视场的可行性.处理图像并通过3个视场中心的指向变化归算地球自转轴的空间指向,与理论值比较偏差平均约1′′,证明了观测原理和数据处理方法有效.对各种观测误差来源进行了分析,包含大气折射、仪器热稳定性和光学分辨能力的影响等,指出采用更长焦距的望远镜可以提高空间分辨率,优化形变控制可以提高观测稳定性.改进多视场同时观测中的光学设计也有助于精度的提高.  相似文献   

7.
We present a fiber sensor based on an active integrated component which could be effectively used to measure the longitudinal vibration modes of telescope mirrors in an interferometric array. We demonstrate the possibility to measure vibrations with frequencies up to ⋍100 Hz with a precision better than 10 nm (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The Very Energetic Radiation Imaging Telescope Array System (VERITAS) is the next-generation ground-based gamma-ray observatory that is being built in southern Arizona by a collaboration of 10 institutions in Canada, Ireland, the UK and the USA. VERITAS is designed to operate in the range from 50 GeV to 50 TeV with optimal sensitivity near 200 GeV; it will effectively overlap with the next generation of space-based gamma-ray telescopes. The first phase of VERITAS, consisting of four telescopes of 12 m aperture, will be operational by the time of the GLAST launch in 2007. Eventually, the array will be expanded to include the full array of seven telescopes on a filled hexagonal grid of side 80 m. A prototype VERITAS telescope with a reduced number of mirrors and signal channels has been built. Its design and performance is described here. The prototype is scheduled to be upgraded to a full 499 pixel camera with 350 mirrors during the autumn of 2004. The VERITAS collaboration consists of universities and institutions from Ireland, UK, USA and Canada. See for a full listing.  相似文献   

9.
Emission from the Herschel telescope is the dominant source of radiation for the majority of SPIRE Fourier transform spectrometer (FTS) observations, despite the exceptionally low emissivity of the primary and secondary mirrors. Accurate modelling and removal of the telescope contribution is, therefore, an important and challenging aspect of FTS calibration and data reduction pipeline. A dust-contaminated telescope model with time invariant mirror emissivity was adopted before the Herschel launch. However, measured FTS spectra show a clear evolution of the telescope contribution over the mission and strong need for a correction to the standard telescope model in order to reduce residual background (of up to 7 Jy) in the final data products. Systematic changes in observations of dark sky, taken over the course of the mission, provide a measure of the evolution between observed telescope emission and the telescope model. These dark sky observations have been used to derive a time dependent correction to the telescope emissivity that reduces the systematic error in the continuum of the final FTS spectra to ~0.35 Jy.  相似文献   

10.
InFOCμS is a new generation balloon-borne hard X-ray telescope with focusing optics and spectroscopy. We had a successful 22.5-hour flight from Fort Sumner, NM on September 16,17, 2004. In this paper, we present the performance of the hard X-ray telescope, which consists of a depth-graded platinum/carbon multilayer mirror and a CdZnTe detector. The telescope has an effective area of 49 cm2 at 30 keV, an angular resolution of 2.4 arcmin (HPD), and a field of view of 11 arcmin (FWHM) depending on energies. The CdZnTe detector is configured with a 12 × 12 segmented array of detector pixels. The pixels are 2 mm square, and are placed on 2.1 mm centers. An averaged energy resolution is 4.4 keV at 60 keV and its standard deviation is 0.36 keV over 128 pixels. The detector is surrounded by a 3-cm thick CsI anti coincidence shield to reduce background from particles and photons not incident along the mirror focal direction. The inflight background is 2.9 × 10−4 cts cm−2 sec−1 keV−1 in the 20–50 keV band.  相似文献   

11.
In January 2009, first light observations with the NST (New Solar Telescope) in Big Bear Solar Observatory (BBSO) were made. NST has a 1.7 m primary with a 1.6 m clear aperture. First observational results in TiO and Hα are shown and discussed. The NST primary mirror is the most aspheric telescope mirror deployed to date. The NST is early in its commissioning, and the plans for this phase will be sketched. Lessons learned in building and implementing the NST are germane for the ATST and EST telescopes and will be discussed. The NST has an off‐axis Gregorian configuration consisting of a parabolic primary, heat‐stop, elliptical secondary and diagonal flats. The focal ratio of the primary mirror is f/2.4. The working wavelength range covers from 0.4 to 1.7 µm in the Coudé Lab beneath the telescope and all wavelengths including the far infrared at the Nasmyth focus on the dome floor (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
This paper summarizes recent advances on the Columbus Project telescope and in the University of Arizona Mirror Lab. The Columbus telescope structure has been re-optimized to allow rapid changes between foci, while still maintaining high rigidity. Room has been made to translate secondary and tertiary spiders out of the light path to the center. A bill allowing construction of the telescope on Mt. Graham, Arizona, has been passed by Congress and signed into law. Two alternative enclosure designs, one with a co-rotating building and a second which opens like a flower, are being explored.A common baseline design for the 8 m honeycomb mirrors for both the Columbus and Magellan telescopes has been developed. It has stiffness comparable to that of the Palomar 200 inch mirror. The Mirror Lab has successfully cast two 3.5 m honeycomb blanks and expects to begin casting at the 6.5 and 8 m scale at the end of 1990. Interferometric tests of the Vatican f/1 1.8 m borosilicate honeycomb mirror show good stability of figure with the air jet ventilation system. A 60 cm stressed lap has been completed, and will be used to parabolize this mirror which is now polished as an f/1 sphere. Plans for a polishing facility to house two 8 m machines and a test tower are complete, with construction starting in April 1989.Paper presented at the Symposium on the JNLT and Related Engineering Developments, Tokyo, November 29–December 2, 1988.  相似文献   

13.
We present a detailed thermal and structural analysis of a 2 m class solar telescope mirror which is subjected to a varying heat load at an observatory site. A 3-dimensional heat transfer model of the mirror takes into account the heating caused by a smooth and gradual increase of the solar flux during the day-time observations and cooling resulting from the exponentially decaying ambient temperature at night. The thermal and structural response of two competing materials for optical telescopes, namely Silicon Carbide – best known for excellent heat conductivity and Zerodur – preferred for its extremely low coefficient of thermal expansion, is investigated in detail. The insight gained from these simulations will provide a valuable input for devising an efficient and stable thermal control system for the primary mirror.  相似文献   

14.
In this paper, the present status of the development of the design of the European Solar Telescope is described. The telescope is devised to have the best possible angular resolution and polarimetric performance, maximizing the throughput of the whole system. To that aim, adaptive optics and multi‐conjugate adaptive optics are integrated in the optical path. The system will have the possibility to correct for the diurnal variation of the distance to the turbulence layers, by using several deformable mirrors, conjugated at different heights. The present optical design of the telescope distributes the optical elements along the optical path in such a way that the instrumental polarization induced by the telescope is minimized and independent of the solar elevation and azimuth. This property represents a large advantage for polarimetric measurements. The ensemble of instruments that are planned is also presented (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Two versions of a fast, purely reflective Paul-Baker-type telescope are discussed, each with an 8.4-m aperture, 3° diameter flat field and f/1.25 focal ratio. The first version is based on a common, even asphere type of surface with zero conic constant. The primary and tertiary mirrors are 6th order aspheres, while the secondary mirror is an 8th order asphere (referred to here for brevity, as the 6/8/6 configuration). The D 80 diameter of a star image varies from 0″.18 on the optical axis up to 0″.27 at the edge of the field (9.3–13.5 μm). The second version of the telescope is based on a polysag surface type, which uses a polynomial expansion in the sag z, 1 $$ r^2 = 2R_0 z - \left( {1 + b} \right)z^2 + a_3 z^3 + a_4 z^3 + a_4 z^4 + \ldots + a_N z^N $$ instead of the common form of aspheric surface. This approach results in somewhat better images, with D 80 ranging from 0″.16 to 0″.23, using a lower-order 3/4/3 combination of powers for the mirror surfaces. An additional example with 3.5-m aperture, 3°.5 diameter flat field, and f/1.25 focal ratio featuring near-diffraction-limited image quality is also presented.  相似文献   

16.
This contribution to the series of GREGOR inauguration articles addresses the history of the GREGOR telescope. It was obvious since a long time that the study of the atmospheric dynamics on the Sun needs telescopes with a large aperture. So the first plans to replace the 40 years old Gregory‐Coudé Telescope, with its 45 cm primary mirror, by a large, 1.5‐meter telescope date back to 1997. After a positive review of the project by the Deutsche Forschungsgemeinschaft in 2000, the large financial support started in 2000. Unfortunately, the new technology of the Cesic mirrors was not yet ripe to produce the large primary mirror with this light‐weight material. So, the project was much delayed. After recollecting for the reader several dates, I also go through some properties of GREGOR. I recall the aims of the project and discuss difficulties and ways to realise the intentions (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
A method for finishing the surface shape of large mirrors for space telescopes that are accurate up to λ/20 is described, as well as training of the method for manufacturing a systall mirror 2.6 m in diameter for the ZTSH telescope.  相似文献   

18.
We report the results of numerical simulations of the instrumental signal in the Stokes V channel of circular polarization as observed by RATAN-600 radio telescope operating in the “Southern sector with a flat reflector” mode. Our simulations are based on an improved algorithm of the beam pattern computation that takes into account diffraction in the space between the telescope mirrors. The computations cover a wide range of wavelengths in the case of a focused antenna and in the presence of aberrations. We analyze the structure and properties of the element M 41 of the Mueller matrix and of the parasite signal from the solar disk in various cases of the antenna irradiation. We estimate the differences between the left- and right-polarization power-beam patterns of the telescope. We report the computed M 11 and M 41 elements for the case of observation of the right- and left-polarized radiation at different points of the focal line of the secondary mirror, and analyze their variations as a function of a number of parameters, including, in particular, the shift applied to correct the displacement of scans.  相似文献   

19.
PRONAOS is a balloon-borne system dedicated to astronomical observations in the submillimeter range (180µm - 1050µm) based on the use of a 2m Cassegrain telescope. The primary mirror consists of six CFRP (Carbon Fiber Reinforced Plastic) panels, each being positioned by three actuators. The rotation angles of the panels have been measured in the visible range with the help of a CCD and digital centroiding techniques that were necessary because of the light scattering on the CFRP mirror. The translation movements (along the optical axis) of the panels have been measured with an interference technique in the submillimeter range. Both visible and submillimeter measurements were also necessary to determine the alignment of the telescope - focal instrument system with the star sensor. The whole alignment process leads to a precision of ±8 for the rotation angles and ±7µm for the translation of each panel, sufficient for a qualification of the system.  相似文献   

20.
Vibrations of telescopes can be successfully corrected in real time using a seismometer as an inertial reference. A prototype pendular seismometer is described that is suitable for angular vibration measurements at frequencies from a few tenths to several tens of Hz. The average pendulum position is maintained by a slow servo system that also damps its resonance. The prototype instrument has an rms noise of 3 milliarcsec in the 0–25-Hz band. It was tested on a 1-m telescope, and a good agreement of the seismometer signal with the direct optical measurements of the optical axis fluctuations of the telescope was found. A frequency response of the seismometer is studied, an expression for the rms amplitude of residual (uncompensated) vibrations is given. In space applications it is suggested that a pendular mirror in front of the telescope is used as an inertial reference for vibration correction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号