首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Variations in air density have been determined using the orbit of the satellite Cosmos 462, 1971-106A, which entered orbit on 3 December 1971 with an initial perigee near 230 km and inclination 65.75°, and decayed on 4 April 1975. Accurate orbits determined at 85 epochs give perigee height correct to about 200 m throughout the satellite's lifetime. Using these values of perigee height and orbital decay rates from NORAD elements, 604 values of air density at half a scale height above perigee have been evaluated. These densities have been compared with values from the COSPAR International Reference Atmosphere 1972, taking account of variations due to solar activity and geomagnetic disturbances, and day-to-night variations, to reveal the residual variations in density at a series of standard heights, 245, 240, 232 and 213 km.The main residual variation is semi-annual, with maxima usually in April and October, and minima usually in January and July; but it is irregular in phase and shape. The amplitude of the semi-annual variation is remarkably constant from year to year between 1972 and 1975, and considerably greater than that given by CIRA 1972: the April/July density ratio is 1.68, not 1.32 as in CIRA; the October–November maxima are all lower than the April maxima, whereas CIRA gives the opposite; the July minima are 18% lower than the January minima, as opposed to 10% in CIRA.A standardized semi-annual density variation for the early 1970s is presented, with January minimum of 0.94, April maximum of 1.28, July minimum of 0.77 and October–November maximum of 1.22. In addition, three other recurrent variations are recognizable: in each year the density has a subsidiary minimum in May and maximum in June; there are low values in mid November and high values in late December.  相似文献   

2.
Values of air density at 712 epochs between August 1973 and September 1978 have been determined using orbital elements of 1972-05B with orbital decay rates from NORAD bulletins. Normalised to a series of fixed heights and cleared of the effects of solar activity, geomagnetic activity and the diurnal variation, the residual air density was analysed for the semi-annual variation. This variation exhibited maxima usually in April and October and minima usually in January and July.

For 1974–1978, this study revealed near-identical values of the April and October maxima and a July minimum 12% stronger than the January minimum. Further, the shape and phase of the variation exhibited an irregular pattern from year-to-year. Overall the amplitude of the variation was considerably greater than that given in the atmospheric models (CIRA, 1972; Jacchia, 1977). Other observations included the presence of subsidiary minima and maxima in late May and June respectively during 1977 and 1978 and a general increase in air density from mid 1977 onwards, relative to the atmospheric models.  相似文献   


3.
Air density at a height of 180–200 km from July 1967 to September 1969 has been determined from analysis of the high eccentricity orbit of satellite 1967-31A. The data show good correlation between sudden density increase and geomagnetic disturbance. The increases for disturbances of equal strength are approximately 40% greater during night-time than daytime hours. The day-night influence is also observed in the changes in density with changes in the solar flux index, F10. The 27-day density variation is predominant mainly during night-time, although the atmospheric response to F10 variations is quite variable regardless of local time. A semi-annual variation of approx. 40% is observed. Also found is a 25% diurnal variation for heights near 170–180 km, which is in good agreement with the CIRA 1972 atmosphere.  相似文献   

4.
In this paper we compute the rate of solar EUV heating in the upper atmosphere by photo-dissociation and photo-ionization, taking care to include properly the effects of oblique incidence of solar flux, sphericity of the atmosphere and ellipticity of the Earth's orbit. The time and latitudinal variations of the computed heat function are revealed by numerical Fourier analysis of the heat function into harmonics of the yearly cycle. It is shown that EUV absorption contains a ‘latitude independent’ semi-annual component of heating with the ‘proper phase’ to account for the semi-annual density variations. Further, the annual component of the heat function predicts the existence of ‘summer polar’ density increases in the northern and southern hemispheres.  相似文献   

5.
A least-squares multiple linear regression is performed on orbital decay density data obtained from precise orbital analysis of 22 low-perigee (130–160 km) Air Force satellites. Variations related to solar activity, the semi-annual effect, geomagnetic activity, and the zenith angle of the Sun are in agreement with the model of Jacchia (1971). Density variations in longitude and latitude are also deduced and compared with recent results from other investigations within this altitude regime.  相似文献   

6.
Changes in the orbital periods of two satellites, 1962-βτ6 (Injun 3 rocket) and 1965-11D (Cosmos 54 rocket), have been used to deduce the air density at heights of 240 and 280 km during April–November 1967. At both heights the generally low density observed in July and the higher density in April and October were almost certainly part of a semi-annual variation similar to that observed at other heights in the thermosphere. The ratio of the maximum (October) to minimum (July) density was about 1·8 at 240 km and 2·2 at 280 km. Superimposed upon this variation were short-lived increases in density associated with magnetic storms, the largest being of 65 per cent at 280 km on 25 May, and a periodic variation with an amplitude of up to 25 per cent from the monthly mean density, related to the 10·7 cm solar radiation flux. A diurnal variation of density was also detected with a maximum density at 14 hr and a maximum to minimum ratio of 1·7 at 280 km.  相似文献   

7.
China 2 rocket, 1971-18B, was launched on 3rd March 1971 into an orbit inclined at 69.9° to the Equator, with an initial perigee height of 265 km. Analysis of its orbit has yielded values of air density at average intervals of 6 days between July 1971 and January 1972. When corrected to a fixed height, the density exhibits a correlation with the geomagnetic index Ap and the solar 10.7-cm radiation. With values of density extending over seven months it is possible to examine a complete cycle of the semi-annual variation at a height near 300 km. The values of density, corrected for the day-to-night variation and for solar and geomagnetic activity, reveal minima in mid-August and late January; at the intervening maximum, in early November, the density is almost 40% higher than at the minima.  相似文献   

8.
The orbit of Explorer 19 (1963-53A) has been determined at 60 epochs between February 1976 and October 1976 from over 3000 observations. Using values of the orbital decay rate corrected for the effects of solar radiation pressure, 58 values of air density at a height of 900 km have been evaluated. After correcting for solar and geomagnetic activity and seasonal-latitudinal and diurnal variations in the exospheric temperature, the residual variation exhibited modulations associated with the ‘winter helium bulge’.An examination of three different models of the helium variation has indicated a procedure, which combines distinct features of the CIRA (1972) and Jacchia (1977) model atmospheres, for determining the atmospheric drag effect on Explorer 19. It is proposed that this technique may be equally applicable to any satellite in near-polar orbit at an equivalent height.  相似文献   

9.
Orbital parameters of several artificial satellites of the Earth were analyzed for 1964–2007 and secular variations of the atmospheric density were estimated for the last 30–40 years. The analysis was based on the information about orbital parameters of 17 satellites and high-precision numerical integrations of the equations of motion with allowance for basic perturbing factors and spatiotemporal density variations, calculated from measured solar activity indices using the NRLMSISE-00 atmosphere model. The results demonstrate the presence of long-term variations in the atmospheric density not presented in modern atmosphere models. During solar-activity cycle 21, the atmospheric density became 0.4 to 19% higher (depending on height) than in cycle 20. It decreased by 1.0 to 11% (depending on height) in cycle 22 as compared to cycle 21. Both decreases and increases were observed in the atmospheric density during cycle 23, but with much smaller gradients. The results cannot be explained only by the growing concentration of greenhouse gases. Possible causes of the density variations and possible ways to take them into account in modern empirical and semiempirical atmospheric models are discussed.  相似文献   

10.
Variations in air density, the satellite drag coefficient, and the atmospheric rotation rate at 60°S lat and 120–130 km height during the period September 1968–June 1969 have been determined from analysis of the high-eccentricity orbit of the 4th Molyniya 1 upper-stage rocket body, 1966-92D. The results show good correlation between density increases and strong geomagnetic activity, although solar flares of equal geomagnetic index value do not consistently produce density changes of equal magnitude. A 30 per cent semi-annual variation was observed, but there was no indication of the 50 per cent lower thermosphere seasonal-latitudinal variation that was predicted from the CIRA 1972 atmosphere. The satellite drag coefficient was observed to begin decreasing with height at an altitude where the molecular mean free path, λ, was twice the satellite's length. The coefficient decreased to a value approaching 1.0 as the satellite's perigee height fell below the altitude where λ was one-half the length. A mean atmospheric rotation rate of 1.1 ± 0.1 Earth rot/day was obtained for the last 20 days of decay. However, variations were observed with west-to-east wind speeds of ?100 m/sec measured for a local time of 13 hr.  相似文献   

11.
COSTTEC is a monthly median regional map for ionospheric electron content. The data used for the mapping effort are monthly and bi-hourly medians from Differential Doppler observations on the signals of the Navy Navigation Satellites (NNSS) made at Graz/Austria and Lindau/Harz, Germany. COSTTEC uses linear dependences of electron content on the solar activity index R12, on geographic latitude and on geographic longitude. For the local time dependence and for the seasonal dependence it uses Fourier decomposition. The decomposition converts the 12 × 12 time domain medians into 12 × 12 Fourier coefficients. For the maps only 5x5 coefficients are kept (time independent term, diurnal and semi-diurnal variation, annual and semi-annual variations and all combinations). Finally the maps consist of 2 × 3 sets of 5 × 5 Fourier coefficients: 3 sets for high and 3 sets for low solar activity. At each solar activity level one set is for a central point, one for the latitudinal and one for the longitudinal gradients. Since no TEC data could be used to derive the longitude dependence it was necessary to incorporate experience from F2 peak density behaviour.We report on the reasons for the chosen mapping approach, demonstrate the most important map properties and show comparisons between observations and TEC map data.  相似文献   

12.
Cosmos 359 rocket, 1970-65D, entered orbit on 22 August 1970, with an initial perigee height of 209 km and inclination 51·2°, and decayed on 6 October 1971. Using the values of perigee height from RAE orbits and decay rates from USAF Spacetrack bulletins, 146 values of air density have been calculated between August 1970 and September 1971, mainly at heights between 180 and 230 km.On ten occasions in 1971 when there were substantial geomagnetic disturbances there were sudden increases in density, the largest being about 32 per cent.When the density was corrected to a fixed height and allowance was made for the day-tonight variation and the effects of solar activity, the dominant feature was a semi-annual variation, with maxima in density centred at 6 November 1970 and 7 April 1971, and minima centred at 5 January and 28 July 1971. The maxima in density are nearly equal and exceed the minima by about 50 per cent.  相似文献   

13.
655 visual observations of 1972-25G, Molniya 1V Rocket, were made when its perigee height was below 130 km, and have been used to determine its orbit at 17 epochs between 5 November 1973 and 24 February 1974 and obtain almost daily values of its rate of decay. These give 52 values of atmospheric density with a relative accuracy of 1 % at a height of 128 km in latitudes 55–65°S. Day-to-day variations correlated with geomagnetic activity of up to 10% are found, plus an irregular semi-annual variation of amplitude 10%. The decrease in inclination has been measured accurately enough to enable the mean atmospheric rotation rate to be determined over the same time-span.  相似文献   

14.
In late 2014, when the current Solar Cycle 24 entered its declining phase, the white-light corona as observed by the LASCO-C2 coronagraph underwent an unexpected surge that increased its global radiance by 60%, reaching a peak value comparable to the peak values of the more active Solar Cycle 23. A comparison of the temporal variation of the white-light corona with the variations of several indices and proxies of solar activity indicate that it best matches the variation of the total magnetic field. The daily variations point to a localized enhancement or bulge in the electron density that persisted for several months. Carrington maps of the radiance and of the HMI photospheric field allow connecting this bulge to the emergence of the large sunspot complex AR 12192 in October 2014, the largest since AR 6368 observed in November 1990. The resulting unusually high increase of the magnetic field and the distortion of the neutral sheet in a characteristic inverse S-shape caused the coronal plasma to be trapped along a similar pattern. A 3D reconstruction of the electron density based on time-dependent solar rotational tomography supplemented by 2D inversion of the coronal radiance confirms the morphology of the bulge and reveals that its level was well above the standard models of a corona of the maximum type, by typically a factor of 3. A rather satisfactory agreement is found with the results of the thermodynamic MHD model produced by Predictive Sciences, although discrepancies are noted. The specific configuration of the magnetic field that led to the coronal surge resulted from the interplay of various factors prevailing at the onset of the declining phase of the solar cycles, which was particularly efficient in the case of Solar Cycle 24.  相似文献   

15.
Insight into the causes of the annual and semi-annual ozone oscillations may be gained from the analysis of photochemical model behavior. In this paper, the monthly variations of the ozone mixing ratio computed by the two-dimensional photochemical model of Garcia and Solomon (1983, J. geophys. Res. 88, 1379) are Fourier-analyzed and compared with SBUV observations of ozone mixing ratio. Remarkably good qualitative agreement between the model calculations and the observations is found. Analysis of computed transport and chemical production and destruction rates reveals the causes of the modelled seasonal ozone variations.

It will be shown that at high latitudes and low altitudes, modelled ozone abundances increase in the winter due to transport and decrease in the summer due to chemical destruction. In the middle stratosphere, the calculated annual ozone variation is largely due to the annual variation in the odd-oxygen production rate, and in the upper stratosphere, the computed annual ozone variation is caused by the large calculated annual oscillation in temperature. Comparison between the model and observations suggests that the equatorial semi-annual oscillation above 10 mb is caused mainly by the semi-annual temperature and wind oscillation (SAO). Below 10 mb the computed equatorial ozone variation is caused by the increased rates of odd-oxygen production associated with the semi-annual zenith crossings of the Sun. Finally, the calculated polar semi-annual ozone oscillations are found to be caused by modulation of the radiatively driven middle-stratospheric ozone variation by temperature dependent chemical destruction processes.  相似文献   


16.
The ionosphere shows a large degree of variability on time scales from hours to the solar cycle length. This variation is associated with magnetospheric storms, the Earth's rotation, the season, and the level of solar activity. To make accurate predictions of key ionospheric parameters all these variations must be considered. Neural networks, which are data driven non-linear models, are very useful for such tasks. In this work we examine if the F2 layer plasma frequency, foF2, at a single ionospheric station can be predicted 1 to 24 hours in advance by using information of past foF2 observations, magnetospheric activity, and time as inputs to neural networks. Particular attention has been paid to periods when great geomagnetic storms were in progress with the aim to develop a successful ionospheric storm forecasting tool.  相似文献   

17.
The morphological features of Pc5 pulsations during a solar cycle are studied using Fort Churchill data for the years 1962–1972. Some of the characteristics noted are as follows: (1) Increasing sunspot numbers show little influence on the diurnal variation of the occurrence, amplitude and the period except perhaps some noticeable change in the absolute magnitude of these parameters during different hours of the day. (2) The morning occurrence peak dominates during all phases of the solar cycle. (3) As noted earlier (Gupta 1973a), with increasing magnetic activity the day side region(s) of generation of Pc5 is found to shift closer to the subsolar point and in the midnight sector, the occurrence region (presumably the region of open and closed field lines) seemed to shift towards earlier hours with increasing magnetic activity and towards later hours with increasing sunspot numbers. (4) Despite the smaller number of data points for high magnetic activity levels the analysis indicates that the amplitude of Pc5 pulsations is directly related to all the levels of magnetic activity. (5) The periods of Pc5 pulsations show strong correlation with increasing sunspot numbers and the amplitude and occurrences are found to vary in accordance with the magnetic activity all through the cycle. (6) The annual and semi-annual variations of Pc5 parameters have been demonstrated especially for the pulsations occurring in the morning close to 8 ± 1 h LT and for those occurring near the midnight hours. (7) A suspected 27-day recurrence tendency has been clearly noticed for the occurrence, amplitude and period of Pc5 pulsations.  相似文献   

18.
Autospectra in the 2–13 month range, computed from mean monthly horizontal intensity on quiet days at Trivandrum, situated close to the dip equator, suggest an exceedingly large semi-annual modulation of the field confined to an interval of about 5 hr centred at 1000 LT. The amplitude of the semi-annual oscillation at this station, derived from power density, is greater than 19 γ at 1000 LT. Between 1900 and 0500 LT, spectral lines, corresponding to a period of six months, are not observed above the continuum. Spectral densities from observations at two other electrojet stations in India, Kodaikanal and Annamalainagar, and at Alibag, outside the electrojet, establish the existence of an appreciable enhancement of the semi-annual oscillation of the field in the equatorial electrojet belt. Similar computations of spectra using observations on all days, however, suggest a secondary component in the evening sector. This component is not enhanced in the equatorial electrojet belt. It is concluded that while in low latitudes the daytime component is largely associated with the modulation of Sq currents, in the electrojet belt it appears to be due entirely to a semi-annual modulation of the equatorial electrojet. It is also concluded that the secondary component, observed in the evening sector in low latitude and equatorial stations, is associated purely with the modulation of the ring current by disturbance. The two components of the semi-annual variation observed at the Indian stations have also been noticed at several stations between geomagnetic latitudes N54.6° and S41.8°. It is also observed that the association of the semi-annual component with geomagnetic latitude is confined to the evening-night component.  相似文献   

19.
Intensity variation of cosmic rays near the heliospheric current sheet   总被引:1,自引:0,他引:1  
Cosmic ray intensity variations near the heliospheric current sheet—both above and below it—have been studied during 1964–1976. Superposed epoch analysis of the cosmic ray neutron monitor data with respect to sector boundaries (i.e., heliospheric current sheet crossings) has been performed. In this analysis we have used the data from neutron monitors well distributed in latitude over the Earth's surface. First, this study has been made during the two solar activity minimum periods 1964–1965 and 1975–1976, using the data from Thule (cut-off rigidity 0 GV), Deep River (cut-off rigidity 1.02 GV), Rome (cut-off rigidity 6.32 GV) and Huancayo (cut-off rigidity 13.45 GV) neutron monitors. We have also analyzed the data from Deep River, Rome and Huancayo neutron monitors, for whom we have the data for full period (1964–1976), by dividing the periods according to the changes in solar activity, interplanetary magnetic field polarity and coronal holes. All these studies have shown a negative gradient with respect to heliomagnetic latitude (current sheet). These results have been discussed in the light of theoretical and observational evidences. Suggestions have been given to overcome the discrepancy between the observational and theoretical results. Further, possible explanations for these observational results have been suggested.  相似文献   

20.
From rocket and radar-meteor wind observations, annual and semi-annual components of the zonal flow are derived for latitudes N at heights between 60 and 130 km. Height regions of maximum and minimum amplitude are described with reference to changes in phase. The annual components decrease with height throughout the mesosphere and, after a reversal of phase, enhance to 25 m/sec at 100 ± 5 km. The semi-annual components have maximum amplitudes of 25 m/sec over a wide range of latitude in two height regions at 90 and 120 km and in a limited range of latitude (near 50°) at 65 km.

Calculated temperatures and log densities are discussed in terms of amplitude and phase as functions of height and latitude. Below 100 km a comparison is made with temperature amplitudes derived from independent temperature data. Above 100 km the annual temperature variation maximizes at 115 km and is particularly large at high latitudes (exceeding 50°K). On the other hand, the semi-annual component increases rapidly with height between 110 and 120 km at all latitudes maximizing at the 120 km level, where amplitudes exceed 25°K at high and low latitudes and 10°K at mid-latitudes. The annual component of log density, like the temperature variation, is largest at high latitudes up to 125 km. The semi-annual variation has a minimum at 110–115 km, above which amplitudes increase with height, reaching 5–12 per cent at 130 km according to latitude. The phases at and near 130 km for the annual and semi-annual density variations are very close to those found at greater heights from satellite orbits and amplitudes could be readily extrapolated to agree with those in the satellite region.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号