首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crossover adjustment plays a central role in the processing of satellite altimeter measurements. The usual procedure is to form sea surface height differences at crossover points, solve for the radial orbit error (with due attention to the singular nature of the estimation problem) and then to construct altimetric sea-level maps using the mean sea surface heights at the crossover points. Our approach is very different, to make direct use of measurements at crossover points without differencing and to estimate simultaneously orbit parameters, mean sea surface height and sea surface height variability in a single, unified adjustment. The technique is suited for repeat data over an area small enough that adjoining passes may be considered to be parallel and to permit the solution of a set of linear equations of dimension equal to the number of crossover points. The size of the numerical problem is almost independent of the number of repeat cycles of the altimeter mission. Explicit recognition is given to the rank defect of the least-squares estimation problem; we show that, for an orbit model with r parameters, the rank defect of the local crossover problem is exactly r 2. The defect may be overcome by choosing an appropriate set of constraints – either giving a best fit of mean sea surface heights to a reference surface, or minimising orbit parameters, or a minimum norm solution in which both mean sea surface heights and orbit parameters are minimised. There is no need to choose a reference pass, all passes are treated equally and data gaps are easily accommodated. Numerical results are presented for the south-western Indian Ocean, based on the first 2 years of altimeter data from the Geosat Exact Repeat Mission. Received: 31 May 1996 / Accepted: 19 April 1997  相似文献   

2.
In the linear estimation problem associated with an experiment that is exactly repeated a number of times, the estimation parameters may naturally be partitioned into two groups, those that are common to all repetitions, and those that are particular to each repeat experiment. We derive least-squares solutions that minimise in norm either group of parameters, as also the trace of the corresponding covariance matrix. These solutions are applied to the station adjustment of triangulation surveying, and to the estimation problem of satellite radar altimetry: to estimate simultaneously mean sea surface heights and residual radial orbit errors, while minimising the norm of either group of parameters. This altimetry problem is considered in the cases of collinear, local crossover and global crossover data. Received: 6 January 1997 / Accepted: 21 December 1998  相似文献   

3.
 A technique is presented for the development of a high-precision and high-resolution mean sea surface model utilising radar altimetric sea surface heights extracted from the geodetic phase of the European Space Agency (ESA) ERS-1 mission. The methodology uses a cubic-spline fit of dual ERS-1 and TOPEX crossovers for the minimisation of radial orbit error. Fourier domain processing techniques are used for spectral optimal interpolation of the mean sea surface in order to reduce residual errors within the initial model. The EGM96 gravity field and sea surface topography models are used as reference fields as part of the determination of spectral components required for the optimal interpolation algorithm. A comparison between the final model and 10 cycles of TOPEX sea surface heights shows differences of between 12.3 and 13.8 cm root mean square (RMS). An un-optimally interpolated surface comparison with TOPEX data gave differences of between 15.7 and 16.2 cm RMS. The methodology results in an approximately 10-cm improvement in accuracy. Further improvement will be attained with the inclusion of stacked altimetry from both current and future missions. Received: 22 December 1999 / Accepted: 6 November 2000  相似文献   

4.
The determination of local geoid models has traditionally been carried out on land and at sea using gravity anomaly and satellite altimetry data, while it will be aided by the data expected from satellite missions such as those from the Gravity field and steady-state ocean circulation explorer (GOCE). To assess the performance of heterogeneous data combination to local geoid determination, simulated data for the central Mediterranean Sea are analyzed. These data include marine and land gravity anomalies, altimetric sea surface heights, and GOCE observations processed with the space-wise approach. A spectral analysis of the aforementioned data shows their complementary character. GOCE data cover long wavelengths and account for the lack of such information from gravity anomalies. This is exploited for the estimation of local covariance function models, where it is seen that models computed with GOCE data and gravity anomaly empirical covariance functions perform better than models computed without GOCE data. The geoid is estimated by different data combinations and the results show that GOCE data improve the solutions for areas covered poorly with other data types, while also accounting for any long wavelength errors of the adopted reference model that exist even when the ground gravity data are dense. At sea, the altimetric data provide the dominant geoid information. However, the geoid accuracy is sensitive to orbit calibration errors and unmodeled sea surface topography (SST) effects. If such effects are present, the combination of GOCE and gravity anomaly data can improve the geoid accuracy. The present work also presents results from simulations for the recovery of the stationary SST, which show that the combination of geoid heights obtained from a spherical harmonic geopotential model derived from GOCE with satellite altimetry data can provide SST models with some centimeters of error. However, combining data from GOCE with gravity anomalies in a collocation approach can result in the estimation of a higher resolution geoid, more suitable for high resolution mean dynamic SST modeling. Such simulations can be performed toward the development and evaluation of SST recovery methods.  相似文献   

5.
Summary New Latitude Lumped Coefficients (LLC) of a geopotential model are defined as representing the principal differences of the radial distance to a satellite due to the model at single-orbit crossovers in an Exact Repeat Mission. In contrast with previously defined orbital lumped coefficients, the LLC here are dependent only on the geopotential order (without degree distinction) and the latitude. We examine discrepancies in altimetrically determined sea surface heights at over 30000 crossover positions of GEOSAT during its ERM, 1986–1989, after removal of many variable media and surface effects (Cheney et al., 1991) as well as initial condition orbit error. The mean of these discrepancies along well represented latitude bands in the southern hemisphere are used to determine the LLC errors for Goddard Earth Model T2, which was the reference for the GEOSAT sea surface heights. GEM T2 was derived from satelliteonly tracking data with good representation of the GEOSAT orbit. Relating the measured LLC discrepancies to projections of commission error from the GEM T2 variance-covariance matrix, we find that — except for order 3 — GEM T2's performance is as expected. This test represents the first spectral calibration of a gravity model with independent, purely radial orbit data.  相似文献   

6.
This paper analyzes several systematic errors affecting sea surface gradients derived from Seasat, Geosat/ERM, Geosat/GM, ERS-1/35d, ERS-1/GM and TOPEX/POSEIDON altimetry. Considering the data noises, the conclusion is: (1) only Seasat needs to correct for the non-geocentricity induced error, (2) only Seasat and Geosat/GM need to correct for the one cycle per revolution error, (3) only Seasat, ERS-1/GM and Geosat/GM need to correct for the tide model error; over shallow waters it is suggested to use a local tide model not solely from altimetry. The effects of the sea surface topography on gravity and geoid computations from altimetry are significant over areas with major oceanographic phenomena. In conclusion, sea surface gradient is a better data type than sea surface height. Sea surface gradients from altimetry, land gravity anomalies, ship gravity anomalies and elevation data were then used to calculate the geoid over Taiwan by least-squares collocation. The inclusion of sea surface gradients improves the geoid prediction by 27% when comparing the GPS-derived and the predicted geoidal heights, and by 30% when comparing the observed and the geoid-derived deflections of the vertical. The predicted geoid along coastal areas is accurate to 2 cm and can help GPS to do the third-order leveling. Received 22 January 1996; Accepted 13 September 1996  相似文献   

7.
The time and space distribution of general reflection altimetry from two satellites (senders and receivers) via the the oceans surface is examined with specific reference to GPS senders and two current receiving satellites. While a considerable enhancement of conventional altimeter coverage is possible in all configurations if the reflection signals can be used, repeating passes of these (with GPS senders) having reasonably small cycle times (days to tens of days) occur only if the receiving orbit is nearly polar. Results of an analysis of the fundamental geometry show that over a large range of reflection angles the error of recovered sea heights depends almost entirely on the errors in the delay signal and the radial error of the receiving satellite (using current estimates of GPS orbit accuracies). The most critical element is the precision of the delay measurement. Both it and the accuracy of the receiving orbit should be below the decimeter level for the technique to achieve its full potential.  相似文献   

8.
The impact of accelerometry on CHAMP orbit determination   总被引:6,自引:0,他引:6  
 The contribution of the STAR accelerometer to the CHAMP orbit precision is evaluated and quantified by means of the following results: orbital fit to the satellite laser ranging (SLR) observations, GPS reduced-dynamic vs SLR dynamic orbit comparisons, and comparison of the measured to the modeled non-gravitational accelerations (atmospheric drag in particular). In each of the four test periods in 2001, five CHAMP arcs of 2 days' length were analyzed. The mean RMS-of-fit of the SLR observations of the orbits computed with STAR data or the non-gravitational force model were 11 and 24 cm, respectively. If the accelerometer calibration parameters are not known at least at the few percent level, the SLR orbit fit deteriorates. This was tested by applying a 10% error to the along-track scale factor of the accelerometer, which increased the SLR RMS-of-fit on average to 17 cm. Reference orbits were computed employing the reduced-dynamic technique with GPS tracking data. This technique yields the most accurate orbit positions thanks to the estimation of a large number of empirical accelerations, which compensate for dynamic modeling errors. Comparison of the SLR orbits, computed with STAR data or the non-gravitational force model, to the GPS-based orbits showed that the SLR orbits employing accelerometer observations are twice as accurate. Finally, comparison of measured to modeled accelerations showed that the level of geomagnetic activity is highly correlated with the atmospheric drag model error, and that the largest errors occur around the geomagnetic poles. Received: 7 May 2002 / Accepted: 18 November 2002 Correspondence to: S. Bruinsma Acknowledgments. The TIGCM results were obtained from the CEDAR database. This study was supported by the Centre National d'Etudes Spatiales (CNES). The referees are thanked for their helpful remarks and suggestions.  相似文献   

9.
永久散射体技术(permanent scatterers interferometric synthetic aperture radar,PSInSAR)通过提取时间维高相干点,根据各类信息的时空统计特性实现PS(persistent scatterers)点相位分量的分离,获得高精度地表形变监测结果。大气效应作为影响干涉测量精度的最主要误差源,可以通过经典滤波器分别在时间维和空间维滤波处理予以消除。在StaMPS(stanford method for persistent scatterers)技术体系中,大气效应分离时还保有全部的沉降信息。当地表形变速率较大时,大气效应和沉降信息的频谱重合度较高,经典滤波器无法将二者有效分离。通过平滑样条滤波分离大气效应和形变信息,采用广义交叉验证方法获取形变信息的最优估计值,可抗拒解缠错误引起的相位跳变干扰。最后根据模拟数据和ASAR(advanced synthetic aperture radar)数据对比分析高斯滤波和平滑样条滤波分离大气效应的效果,验证平滑样条方法的有效性。  相似文献   

10.
The height datum problem and the role of satellite gravity models   总被引:1,自引:0,他引:1  
Regional height systems do not refer to a common equipotential surface, such as the geoid. They are usually referred to the mean sea level at a reference tide gauge. As mean sea level varies (by ±1 to 2 m) from place to place and from continent to continent each tide gauge has an unknown bias with respect to a common reference surface, whose determination is what the height datum problem is concerned with. This paper deals with this problem, in connection to the availability of satellite gravity missions data. Since biased heights enter into the computation of terrestrial gravity anomalies, which in turn are used for geoid determination, the biases enter as secondary or indirect effect also in such a geoid model. In contrast to terrestrial gravity anomalies, gravity and geoid models derived from satellite gravity missions, and in particular GRACE and GOCE, do not suffer from those inconsistencies. Those models can be regarded as unbiased. After a review of the mathematical formulation of the problem, the paper examines two alternative approaches to its solution. The first one compares the gravity potential coefficients in the range of degrees from 100 to 200 of an unbiased gravity field from GOCE with those of the combined model EGM2008, that in this range is affected by the height biases. This first proposal yields a solution too inaccurate to be useful. The second approach compares height anomalies derived from GNSS ellipsoidal heights and biased normal heights, with anomalies derived from an anomalous potential which combines a satellite-only model up to degree 200 and a high-resolution global model above 200. The point is to show that in this last combination the indirect effects of the height biases are negligible. To this aim, an error budget analysis is performed. The biases of the high frequency part are proved to be irrelevant, so that an accuracy of 5 cm per individual GNSS station is found. This seems to be a promising practical method to solve the problem.  相似文献   

11.
 Four different implementations of Stokes' formula are employed for the estimation of geoid heights over Sweden: the Vincent and Marsh (1974) model with the high-degree reference gravity field but no kernel modifications; modified Wong and Gore (1969) and Molodenskii et al. (1962) models, which use a high-degree reference gravity field and modification of Stokes' kernel; and a least-squares (LS) spectral weighting proposed by Sj?berg (1991). Classical topographic correction formulae are improved to consider long-wavelength contributions. The effect of a Bouguer shell is also included in the formulae, which is neglected in classical formulae due to planar approximation. The gravimetric geoid is compared with global positioning system (GPS)-levelling-derived geoid heights at 23 Swedish Permanent GPS Network SWEPOS stations distributed over Sweden. The LS method is in best agreement, with a 10.1-cm mean and ±5.5-cm standard deviation in the differences between gravimetric and GPS geoid heights. The gravimetric geoid was also fitted to the GPS-levelling-derived geoid using a four-parameter transformation model. The results after fitting also show the best consistency for the LS method, with the standard deviation of differences reduced to ±1.1 cm. For comparison, the NKG96 geoid yields a 17-cm mean and ±8-cm standard deviation of agreement with the same SWEPOS stations. After four-parameter fitting to the GPS stations, the standard deviation reduces to ±6.1 cm for the NKG96 geoid. It is concluded that the new corrections in this study improve the accuracy of the geoid. The final geoid heights range from 17.22 to 43.62 m with a mean value of 29.01 m. The standard errors of the computed geoid heights, through a simple error propagation of standard errors of mean anomalies, are also computed. They range from ±7.02 to ±13.05 cm. The global root-mean-square error of the LS model is the other estimation of the accuracy of the final geoid, and is computed to be ±28.6 cm. Received: 15 September 1999 / Accepted: 6 November 2000  相似文献   

12.
抗差估计是一种可以有效抵制粗差影响的平差方法。但权因子函数的临界值定值问题较为困难,若选取不当,会造成法方程系数阵秩亏或粗差观测值的影响未能完全消除,从而导致平差无法进行或抗差不彻底。针对上述问题提出了一种改进型抗差估计法一双步抗差估计法,并通过对一边角网和一实测GPS向量网进行的试算,验证了双步抗差估计的优越性。  相似文献   

13.
Geoid determination using one-step integration   总被引:1,自引:1,他引:0  
P. Novák 《Journal of Geodesy》2003,77(3-4):193-206
A residual (high-frequency) gravimetric geoid is usually computed from geographically limited ground, sea and/or airborne gravimetric data. The mathematical model for its determination from ground gravity is based on the transformation of observed discrete values of gravity into gravity potential related to either the international ellipsoid or the geoid. The two reference surfaces are used depending on height information that accompanies ground gravity data: traditionally orthometric heights determined by geodetic levelling were used while GPS positioning nowadays allows for estimation of geodetic (ellipsoidal) heights. This transformation is usually performed in two steps: (1) observed values of gravity are downward continued to the ellipsoid or the geoid, and (2) gravity at the ellipsoid or the geoid is transformed into the corresponding potential. Each of these two steps represents the solution of one geodetic boundary-value problem of potential theory, namely the first and second or third problem. Thus two different geodetic boundary-value problems must be formulated and solved, which requires numerical evaluation of two surface integrals. In this contribution, a mathematical model in the form of a single Fredholm integral equation of the first kind is presented and numerically investigated. This model combines the solution of the first and second/third boundary-value problems and transforms ground gravity disturbances or anomalies into the harmonically downward continued disturbing potential at the ellipsoid or the geoid directly. Numerical tests show that the new approach offers an efficient and stable solution for the determination of the residual geoid from ground gravity data.  相似文献   

14.
The GEOID96 high-resolution geoid height model for the United States   总被引:4,自引:0,他引:4  
The 2 arc-minute × 2 arc-minute geoid model (GEOID96) for the United States supports the conversion between North American Datum 1983 (NAD 83) ellipsoid heights and North American Vertical Datum 1988 (NAVD 88) Helmert heights. GEOID96 includes information from global positioning system (GPS) height measurements at optically leveled benchmarks. A separate geocentric gravimetric geoid, G96SSS, was first calculated, then datum transformations and least-squares collocation were used to convert from G96SSS to GEOID96. Fits of 2951 GPS/level (ITRF94/NAVD 88) benchmarks to G96SSS show a 15.1-cm root mean square (RMS) around a tilted plane (0.06 ppm, 178 azimuth), with a mean value of −31.4 cm (15.6-cm RMS without plane). This mean represents a bias in NAVD 88 from global mean sea level, remaining nearly constant when computed from subsets of benchmarks. Fits of 2951 GPS/level (NAD 83/NAVD 88) benchmarks to GEOID96 show a 5.5-cm RMS (no tilts, zero average), due primarily to GPS error. The correlated error was 2.5 cm, decorrelating at 40 km, and is due to gravity, geoid and GPS errors. Differences between GEOID96 and GEOID93 range from −122 to +374 cm due primarily to the non-geocentricity of NAD 83. Received: 28 July 1997 / Accepted: 2 September 1998  相似文献   

15.
In order to study the Baltic Sea Level change and to unify national height systems a two week GPS campaign was performed in the region in Autumn 1990. Parties from Denmark, Finland, Germany, Poland and Sweden carried out GPS measurements at 26 tide gauges along the Baltic sea and 8 VLBI and SLR fiducial stations with baseline lengths ranging from 230 km to 1600 km. The observations were processed in the network mode with the Bernese version 3.3 software using orbit improvement techniques. To get rid of the scale error introduced by the ionospheric refraction from single-frequency data, the local models of the ionosphere were estimated using L4 observations. The tropospheric zenith corrections were also considered. The preliminary results show average root mean square (RMS) errors of about ±3 cm in the horizontal position and ±7 cm in the vertical position relative to the Potsdam SLR station in ITRF89 system. After transformation of the GPS results to geoid heights using the levelled heights, an absolute comparison with gravimetric geoid heights using the least squares modification of Stokes' formula (LSMS), the modified Molodensky and the NKG Scandinavian geoid 1989 (NGK-89) models gives a standard deviation of the difference of ±7cm to ±9cm for the NKG-89 model and of ±9cm to ±30cm for the LSMS and the modified Molodensky model. The Swedish height system is found to be about 8-37cm higher than those of the other Baltic countries for NKG-89 model.  相似文献   

16.
In this paper we address the problem of estimating the short term precision of the geocentric radial coordinate of a GPS receiver placed on the Earth crust using a non-fiducial approach. The network used in our analysis contains 35 receivers distributed globally. We have analyzed the data with two different strategies: global and regional. In the global strategy the results obtained, which are compatible with those of Heflin et al. (1992) and Blewitt et al. (1992), provide a weighted root mean square of the residuals (wrms) one order of magnitude larger than the formal errors of the individual estimates. Our regional strategy is based on the assumption that errors in the orbit determination induce errors in the receiver positions, correlated up to large scales. This approach allows us to obtain a significant agreement between the wrms and the formal errors.  相似文献   

17.
基于VRS的GPS测量误差分析   总被引:1,自引:0,他引:1  
系统误差包括卫星轨道误差、卫星钟差、接收机钟差及大气折射误差等。是GPS测量的主要误差源。但系统误差通常可以采用适当的方法来减弱或消除,如建立误差改正模型对观测值进行改正,或选择良好的观测条件,采用适当地观测方法,进行线性差分等.本文介绍了基于VRS的GPS测量要解决的一个主要问题即在系统运行中产生的各种误差进行改正,使之减小或者消除。并就影响VRS精度的各种误差予以分析  相似文献   

18.
Errors are introduced in orthometric height computations by the use of standard formulas to estimate mean gravity along the plumb line. Direct measurements of gravity between the Earth’s surface and sea level from bore hole gravimetry were used to determine the magnitude of these errors. For the seven cases studied, errors in orthometric height, due to the use of the Helmert method for computing mean gravity along the plumb line, were generally small (<2 cm). However, in one instance the error was substantial, being9.6 cm. The results verified the general validity of the Poincaré-Prey approach to estimation of gravity along the plumb line and demonstrated that the suggestion byVanicek (1980) that the air gradient is more appropriate is incorrect. With sufficient topographic information to compute terrain corrections, and density estimates from surface gravity, errors in mean gravity along the plumb line should contribute no more than 3cm to orthometric height computation.  相似文献   

19.
在滑坡段数据的参数平差模型的基础上,通过在模型中增加表示模型误差或系统误差的非参数分量,将半参数模型的估计理论应用到滑坡段参数估计与预测中,分离出数据中的系统误差,给出了滑坡稳定系数的预测公式;并以云阳-奉节长江顺层岸滑坡段实测数据为例,将半参数估计方法与最小二乘方法进行了比较分析,验证了半参数估计方法应用到估计和预测滑坡段数据的可行性和有效性。  相似文献   

20.
An approach to improve orbital state vectors by orbit error estimates derived from residual phase patterns in synthetic aperture radar interferograms is presented. For individual interferograms, an error representation by two parameters is motivated: the baseline error in cross-range and the rate of change of the baseline error in range. For their estimation, two alternatives are proposed: a least squares approach that requires prior unwrapping and a less reliable gridsearch method handling the wrapped phase. In both cases, reliability is enhanced by mutual control of error estimates in an overdetermined network of linearly dependent interferometric combinations of images. Thus, systematic biases, e.g., due to unwrapping errors, can be detected and iteratively eliminated. Regularising the solution by a minimum-norm condition results in quasi-absolute orbit errors that refer to particular images. For the 31 images of a sample ENVISAT dataset, orbit corrections with a mutual consistency on the millimetre level have been inferred from 163 interferograms. The method itself qualifies by reliability and rigorous geometric modelling of the orbital error signal but does not consider interfering large scale deformation effects. However, a separation may be feasible in a combined processing with persistent scatterer approaches or by temporal filtering of the estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号