首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A mineralogic geobarometer based on the reaction garnet+clinopyroxene+quartz=2 orthopyroxene+anorthite is proposed. The geobarometric formulations for the Fe- and Mg- end member equilibria are $$\begin{gathered} P_{({\text{Fe}})} {\text{ }}({\text{bars}}){\text{ = 32}}{\text{.097 }}T{\text{ }} - {\text{ 26385 }} - {\text{ 22}}{\text{.79 (}}T - 848 - T1{\text{n(}}T/848{\text{))}} \hfill \\ {\text{ }} - (3.655 + 0.0138T){\text{ }}\left( {\frac{{{\text{(}}T - 848{\text{)}}^{\text{2}} }}{T}} \right) \hfill \\ {\text{ }} - {\text{(3}}{\text{.123) }}T1{\text{n }}\frac{{(a_{a{\text{n}}}^{{\text{Plag}}} )(a_{{\text{fs}}}^{{\text{P}}\ddot u{\text{x}}} )^2 }}{{(a_{{\text{alm}}}^{{\text{Gt}}} )(a_{{\text{hed}}}^{{\text{Opx}}} )}} \hfill \\ P_{({\text{Mg}})} {\text{ (bars) = 9}}{\text{.270 }}T + 4006 - 0.9305{\text{ }}(T - 848 - T1{\text{n (}}T/848{\text{)}}) \hfill \\ {\text{ }} - (1.1963{\text{ }} - {\text{ }}6.0128{\text{ x 10}}^{ - {\text{3}}} T)\left( {\frac{{(T - 848)^2 }}{T}} \right) \hfill \\ {\text{ }} - 3.489{\text{ }}T1{\text{n }}\frac{{(a_{an}^{{\text{Plag}}} ){\text{ }}(a_{{\text{ens}}}^{{\text{Opx}}} )}}{{{\text{(}}a_{{\text{pyr}}}^{{\text{Gt}}} {\text{) (}}a_{{\text{diop}}}^{{\text{Cpx}}} {\text{)}}}}. \hfill \\ \end{gathered}$$ The end member thermodynamic data have been taken from the data base of Helgeson et al. (1978) and Saxena and Erikson (1983). The activities of pyroxene components and anorthite in plagioclase have been modelled after Wood and Banno (1973) and Newton (1983) respectively. The activities of pyrope and almandine are calculated from the binary interaction parameters for garnet solid solutions proposed by Saxena and Erikson (1983). Pressures computed from these equations for fifty sets of published mineral data from several granulite areas are comparable with those obtained from dependable geobarometers. The pressure values determined from the Fe-end member equilibrium appear to be more reasonable than those from the Mg-end member reaction. It is likely that the difference in pressures computed from the Fe- and Mg-end members, ΔP *, have been caused by non-ideal mixing in the phases, especially in garnets.  相似文献   

2.
The reaction chlorite+dolomite=spinel+ forsterite+calcite+CO2+H2O has been studied with hydrothermal equipment technique in a C-O-H fluid at P fluid=1,000, 2,000 and 3,000 bars and fo2 controlled by NB or QFM buffer. The equilibrium conditions for the reaction has been determined as log K=–57,119/T+95.77+0.9860(P-1)/T(bar,°K). The mineral mixtures had an excess of dolomite. The composition of the chlorite among the reaction products has been analysed and found to have a higher Al/Si ratio than clinochlore.  相似文献   

3.
Hydrothermal experiments with mixtures of synthetic minerals have shown the reversibility of the reaction 5 phlogopite + 6 calcite + 24 quartz = 3 tremolite + 5 K-feldspar + 2 H2O + 6 CO2. In an isobaric T – diagram the equilibrium curve reaches a maximum at = 0,75. The P, T-values for this maximum are: 2 kb-523°; 4 kb-585°; 6 kb-625°; P±5%, T±10° C. These results give a first approximation of the P, T conditions responsible for a similar mineral reaction which has been recorded from natural metamorphic assemblages.

Herrn Prof. H. G. F. Winkler danke ich für anregende Diskussionen, desgleichen Herrn Dr. D. Puhan für wichtige Hinweise und Mitteilung seiner exp. Daten. Herrn Prof. V. Trommsdorff und Herrn P. H. Thompson bin ich für petrographische Angaben zu Dank verpflichtet. Der Aufbau der Hydrothermalanlage und die Finanzierung der laufenden Untersuchungen wurde aus den Mitteln des Fonds zur Förderung der wissenschaftlichen Forschung ermöglicht. Für diese Unterstützung gilt daher mein besonderer Dank.  相似文献   

4.
The reaction 2 epidote+2 calcite+3 wollastonite3 grossular-andraditess+ 2 CO2+1 H2O has been explored by hydrothermal experiments at a total fluid pressure of 1000 bars. For a grossular-andraditess of andradite 25 composition, the isobaric univariant curve passes through the points 458°C: XCO2=0.00; 521°C: XCO2=0.026; 523°C: XCO2=0.052; 526°C: 0.088; 528°C: XCO2=0.104. This curve intersects the isobaric univariant curve of the reaction calcite+quartz+[H2O] wollastonite+CO2+[H2O] at the isobaric invariant point around 528°C and XCO2=0.12. At higher values of XCO2, this reaction is replaced by another one, namely: 2 epidote+5 calcite+3 quartz3 grossular-andraditess+5 CO2+ 1 H2O. It is demonstrated that both the reactions do actually take place during the metamorphism of calcareous rocks. The petrologic significance of contrasted sequence of reactions within this system observed by various workers is also discussed.  相似文献   

5.
Stoichiometric mixtures of tremolite and dolomite were heated to 50° C above equilibrium temperatures to form forsterite and calcite. The pressure of the CO2-H2O fluid was 5 Kb and \(X_{{\text{CO}}_{\text{2}} }\) varied from 0.1 to 0.6. The extent of the conversion was determined by the amount of CO2 produced. The resulting mixtures of unreacted tremolite and dolomite and of newly-formed forsterite and calcite were examined with a scanning electron microscope. All tremolite and dolomite grains showed obvious signs of dissolution. At fluid compositions with \(X_{{\text{CO}}_{\text{2}} }\) less than about 0.4, the forsterite and calcite crystals are randomly distributed throughout the charges, indicating that surfaces of the reactants are not a controlling factor with respect to the sites of nucleation of the products. A change is observed when \(X_{{\text{CO}}_{\text{2}} }\) is greater than about 0.4; the forsterite and calcite crystals now nucleate and grow at the surface of the dolomite grains, thus indicating a change in mechanism at medium CO2 concentrations. As the reaction progresses, the dolomite grains become more and more surrounded by forsterite and calcite, finally forming armoured relics of dolomite. Under experimental conditions this characteristic texture can only be formed if the CO2-concentration is greater than about 40 mole %. These findings make it possible to estimate the CO2-concentration from the texture of the dolomite+tremolite+forsterite+calcite assemblage. The results suggest a dissolution-precipitation mechanism for the reaction investigated. In a simplified form it consists of the following 4 steps:
  1. Dissolution of the reactants tremolite and dolomite.
  2. Diffusion of the dissolved constituents in the fluid.
  3. Heterogeneous nucleation of the product minerals.
  4. Growth of forsterite and calcite from the fluid.
Two possible explanations are discussed for the development of the amoured texture at \(X_{{\text{CO}}_{\text{2}} }\) above 0.4. The first is based upon the assumption that dolomite has a lower rate of dissolution than tremolite at high \(X_{{\text{CO}}_{\text{2}} }\) values resulting in preferential calcite and forsterite nucleation and growth on the dolomite surface. An alternative explanation is the formation of a raised CO2 concentration around the dolomite grains at high \(X_{{\text{CO}}_{\text{2}} }\) values, leading to product precipitation on the dolomite crystals.  相似文献   

6.
Summary The crystal structure of cornetite, Cu3(PO4)(OH)3, orthorhombic, a = 10.854(1), b = 14.053(3), c = 7.086(2), Å, V = 1080.8(3) Å3, Z = 8, space group Pbca, has been refined to an R-index of 3.9% for 1231 observed reflections (I > 3I), measured with MoK X-radiation on an automated four-circle diffractometer. The structure consists of edge sharing zig-zag chains of distorted octahedra, cross-linked by edge-sharing octahedral dimers into complex octahedral layers. Adjacent layers are corner-linked together by neighbouring octahedra and PO4 tetrahedra into a densely-packed heteropolyhedral framework, in which the phosphate tetrahedra share edges with the octahedral dimers. The polyhedral layers exhibit a commensurate modulation that results from the interaction between local relaxation of Jahn-Teller distorted octahedra and the long-range requirements of translational periodicity.
Cornetit: Ein moduliertes, dicht gepacktes Oxosalz des zweiwertigen Kupfers
Zusammenfassung Die Kristallstruktur des Cornetits, Cu3(PO4)(OH)3, orthorhombisch, a = 10,854(1), b = 14,053(3), c = 7,086(2,) Å, V = 1080,8(3) Å3, Z = 8, Raumgruppe Pbca, wurde mit 1231 beobachteten Röntgenreflexen (I > 3I), die mit MoK-Strahlung auf einem automatischen Vierkreis-Diffraktometer gesammelt worden waren, auf einen R-Wert von 3,9% verfeinert. Die Struktur besteht aus kantenverknüpften Zickzack-Ketten verzerrter Oktaeder, die über kantenverknüfte Oktaeder-Dimere zu komplizierten Oktaederschichten verbunden sind. Benachbarte Schichten sind über Ecken durch benachbarte Oktaeder und PO4-Tetraeder zu einem dichtgepackten, heteropolyedrischen Gerüst verknüpft, in welchem die Phosphattetraeder mit den Oktaeder-Dimeren Kanten gemeinsam haben. Die Polyederschichten zeigen eine kommensurable Modulierung, die aus der Wechselwirkung zwischen der lokalen Relaxation von Jahn-Teller-verzerrten Oktaedern und den Forderungen der translatorischen Periodizität über größere Entfernungen resultiert.


With 5 Figures  相似文献   

7.
Reversals for the reaction 2 annite+3 quartz=2 sanidine+3 fayalite+2 H2O have been experimentally determined in cold-seal pressure vessels at pressures of 2, 3, 4 and 5?kbar, limiting annite +quartz stability towards higher temperatures. The equilibrium passes through the temperature intervals 500–540°?C (2?kbar), 550–570°?C (3?kbar), 570–590°?C (4?kbar) and 590–610°?C (5?kbar). Starting materials for most experiments were mixtures of synthetic annite +fayalite+sanidine+quartz and in some runs annite+quartz alone. Microprobe analyses of the reacted mixtures showed that the annites deviate slightly from their ideal Si/Al ratio (Si per formula unit ranges between 2.85 and 2.92, AlVI between 0.06 and 0.15). As determined by Mössbauer spectroscopy, the Fe3+ content of annite in the assemblage annite+fayalite +sanidine+quartz is around 5–7%. The experimental data were used to extract the thermodynamic standard state enthalpy and entropy of annite as follows: H 0 f,?Ann =?5125.896±8.319 [kJ/mol] and S 0 Ann=432.62±8.89 [J/mol/K] (consistent with the Holland and Powell 1990 data set), and H 0 f,Ann =?5130.971±7.939 [kJ/mol] and S 0 Ann=424.02±8.39 [J/mol/K] (consistent with the TWEEQ data base, Berman 1991). The preceeding values are close to the standard state properties derived from hydrogen sensor data of the redox reaction annite=sanidine+magnetite+H 2 (Dachs 1994). The experimental half-reversal of Eugster and Wones (1962) on the annite +quartz breakdown reaction could not be reproduced experimentally (formation of annite from sanidine+fayalite+quartz at 540°?C/1.035?kbar/magnetite-iron buffer) and probable reasons for this discrepancy remain unclear. The extracted thermodynamic standard state properties of annite were used to calculate annite and annite+quartz stabilities for pressures between 2 and 5?kbar.  相似文献   

8.
The mechanism of the reaction 1 tremolite +3 calcite+2 quartz=5 diopside+3 CO2+1 H2O was investigated at 2 and 5 kb, , using powder experiments lasting from 14 to 170 days. Because experiments were at high ratios of fluid to solids, the study identified the mechanism under surface-control conditions and thus establishes which reactant surface determines the kinetics. To achieve a diopside nucleation rate high enough to gain detectable reaction in the time of experimentation, the equilibrium boundary had to be overstepped by 30°–60° C at 5 kb. Experiments in which diopside successfully nucleated show that the reaction proceeds by a dissolution-crystallization mechanism. Experimentally-produced textures are presented in a series of SEM images and demonstrate that diopside nucleates and grows topotactically exclusively on tremolite. The mechanism of the forward reaction is modeled by a simplified scheme consisting of three processes, each comprising formation, transport and incorporation of 1) the Ca-, 2) the Mg-, and 3) the Si-bearing species in the fluid in response to dissolution of the reactants and crystallization of diopside. Using the dependence of the overall-reaction rate on the surface area of the reactants, it was experimentally determined that process 2) (dissolution of tremolite, transport of the Mg-bearing species in the fluid and crystallization of diopside) will be rate-limiting in most cases where metamorphism occurs in an internally controlled system. Due to the experimental design chosen, the dissolution of tremolite at the beginning of process 2) is rate-limiting in the experiments. The magnitude of the probable temperature-overstep necessary to achieve a significant nucleation rate during metamorphism is discussed on the basis of the experimental evidence and a simple nucleation rate model.  相似文献   

9.
Metapelites containing muscovite, cordierite, staurolite and biotite (Ms+Crd+St+Bt) are relatively rare but have been reported from a number of low-pressure (andalusite–sillimanite) regional metamorphic terranes. Paradoxically, they do not occur in contact aureoles formed at the same low pressures, raising the question as to whether they represent a stable association. A stable Ms+Crd+St+Bt assemblage implies a stable Ms+Bt+Qtz+Crd+St+Al2SiO5+Chl+H2O invariant point (IP1), the latter which has precluded construction of a petrogenetic grid for metapelites that reconciles natural phase relations at high and low pressure. Petrogenetic grids calculated from internally consistent thermodynamic databases do not provide a reliable means to evaluate the problem because the grid topology is sensitive to small changes in the thermodynamic data. Topological analysis of invariant point IP1 places strict limits on possible phase equilibria and mineral compositions for metamorphic field gradients at higher and lower pressure than the invariant point. These constraints are then compared with natural data from contact aureoles and reported Ms+Crd+St+Bt occurrences. We find that there are numerous topological, textural and compositional incongruities in reported natural assemblages that lead us to argue that Ms+Crd+St+Bt is either not a stable association or is restricted to such low pressures and Fe-rich compositions that it is rarely if ever developed in natural rocks. Instead, we argue that reported Ms+Crd+St+Bt assemblages are products of polymetamorphism, and, from their textures, are useful indicators of P–T  paths and tectonothermal processes at low pressure. A number of well-known Ms+Crd+St+Bt occurrences are discussed within this framework, including south-central Maine, the Pyrenees and especially SW Nova Scotia.  相似文献   

10.
Interdiffusion coefficients of Al + Al vs. Mg + Si in the gehlenite–åkermanite system of melilite were determined by coupled annealing of synthesized end-member single crystals. The observed diffusion coefficients for a couple-annealed sample vary for about 2 orders of magnitude, showing strong dependence on the gehlenite–åkermanite composition: diffusion coefficient observed at 1350 °C, for example, is 3 × 10?13 cm2 s?1 at 5 mol% åkermanite composition (Ak5), increases to 2 × 10?11 cm2 s?1 at Ak80, and then decreases to 1 × 10?12 cm2 s?1 at Ak95. The diffusion coefficient–temperature relation indicates high activation energy of diffusion of about 420 kJ mol?1 for gehlenite-rich melilite. The observed diffusion coefficient–composition relation may be explained by a combination of (1) the diffusion coefficient–melting temperature relation (Flynn's rule) and (2) the feasibility of local charge compensation, which can possibly be maintained more easily in the intermediate chemical composition. The high activation energy value for gehlenitic melilite appears to correspond to the complex diffusion mechanism. The observed highly variable diffusion coefficients suggest that gehlenite–åkermanite zoning in the melilite crystals in Ca, Al-rich inclusions in the carbonaceous meteorites may provide a sensitive indicator for the thermal history of the inclusions.  相似文献   

11.
Equilibria between plagioclase, calcic amphibole and quartz can be described, in part, by the relation among mineral components: NaAlSi3O8+Ca2Mg5Si8O22(OH)2 = NaCa2Mg5AlSi7O22(OH)2+4SiO2; this relation governs the partitioning of Na between plagioclase and the A-site of coexisting amphibole. Data from natural amphibolites reveal that this partitioning is systematic and sensitive to metamorphic grade. The ideal portion of the equilibrium constant (K id = X Na, A/X, A · X Ab) derived from natural samples is sensitive to bulk composition, inasmuch as both plagioclase and amphibole are highly non-ideal. Samples from a single outcrop have values ranging from 0.5 (X Ab=0.74) to 4.1 (X Ab=0.10). The continuous reaction, NaAlSi3O8+Ca2Mg5Si8O22(OH)2 = NaCa2Mg5AlSi7O22(OH)2+4SiO2, proceeds to the right with increasing grade of metamorphism and for a given bulk composition, K id increases with increasing temperature. Two related discontinuous reactions, actinolite+albite=hornblende+oligoclase+quartz and actinolite+oligoclase=hornblende+anorthite+quartz, also proceed to the right with increasing metamorphic grade and result in changes in the topology of a phase diagram that describes the partitioning of Na between plagioclase and amphibole A-site. A Schreinemakers' net is presented that is consistent with natural occurrences. The results of this study should aid in the delineation of metamorphic facies within amphibolites.  相似文献   

12.
Six equilibria among quartz, plagioclase, biotite, muscovite, and garnet were empirically calibrated using mineral composition data from 43 samples having the assemblage quartz+muscovite+biotite+garnet+plagioclase+Al2SiO5 (sillimanite or kyanite). Pressures and temperatures in the data set used for calibration were determined through the simultaneous application of garnet-biotite geothermometry and garnet-quartz-plagioclase-Al2SiO5 geobarometry. Thermodynamic expressions for four of the six equilibria incorporate interaction parameters that model non-ideality in the mixing of cations in the octahedral sites of both muscovite and biotite. With pressure chosen as the dependent variable, multiple regression was used to solve for unknowns in the equilibrium thermodynamic expressions. The regressions yielded multiple correlation coefficients ranging from 0.983 to 0.999, with corresponding standard deviations of 338 and 92 bars in the residuals. The standard deviations in the residuals may be explained largely or entirely by the propagation of errors associated with electron microprobe analysis. These equilibria enable the determination of pressures from equilibrium assemblages of quartz+garnet+plagioclase+muscovite+biotite, and give results closely comparable to the experimentally calibrated garnet-quartz-plagioclase-Al2SiO5 geobarometer. Geobarometric applications should be restricted to rocks in which equilibrium constants and compositional variables fall within the same ranges as those used for calibration.  相似文献   

13.
The equilibrium curve for the reaction 3 dolomite + 1 K-feldspar + 1 H2O=1 phlogopite + 3 calcite + 3 CO2 was determined experimentally at a total gas pressure of 2000 bars using two different methods.
  1. In the first case water alone was added to the reactants. The CO2 component of the gas phase was producted solely by the reaction under favourable P-T conditions. This manner of carrying out the reaction is called the “water method”. With this method sufficient time must be allowed for the gas phase to attain a constant composition (see Fig. 1). Reverse reactions were carried out using reaction products of the forward reaction.
  2. In the second case silver oxalate + water were added to the reactants. Breakdown of the silver oxalate leads to formation of a CO2-H2O gasphase of definite composition. At constant temperature and gas pressure the \(X_{{\text{CO}}_{\text{2}} } \) determines whether the reaction products will be phlogopite + calcite or dolomite + K-feldspar. In this case it is not necessary to wait for equilibrium to be attained. This method is abbreviated the “oxalate method”. Reactants for reverse reactions are not identical with the products of the forward reaction.
At high temperatures the results of the two different methods agree well (see Tables 1 and 2). Equilibrium was attained in one case at 490° C and \(X_{{\text{CO}}_{\text{2}} } \) of approximately 0.77, and in the other case at 520° C and \(X_{{\text{CO}}_{\text{2}} } \) of 0.90. At lower temperatures there are considerable differences in the results. With the water method an \(X_{{\text{CO}}_{\text{2}} } \) of about 0.25 was reached at 450° C. With the oxalate method dolomite K-feldspar and water still react with each other at even higher \(X_{{\text{CO}}_{\text{2}} } \) values. Phlogopite, calcite and CO2 are formed together with metastable talc. There are no criteria to indicate which of the methods is the correct one at lower temperatures and in Fig. 2, therefore, both equilibrium curves are plotted.  相似文献   

14.
15.
何涛 《铀矿地质》2002,18(5):318-320
本介绍了用VC++对MAPGIS进行二次开发的方法和基本函数以及软件开发实例。  相似文献   

16.
The blue-green color of amazonite has been assigned by various authors to ions Pb+ (6 s)2 (6 p) and/or Pb3+ (6 s) in site of K+ of microcline. Owing to the complex which forms between the ion Pb3+ and the lone pairs of the oxygen atoms surrounding it, the peripheral electron of Pb3+ passes on the levels (6 p) of the latter, which results in a great similarity of the spectra of Pb+ and Pb3+ in amazonite (the transition energies are multiplied by a factor greater than 1), whereas, in the isolated state, these spectra are completely different from one another. An analytical development of the crystal field around a site K+ is established. Under the effect of the crystal field, the transition 2 P 1/22 P 3/2 (6 p) is split into two double transitions. The lower transition only falls in the visible domain (1.6–1.8 eV for Pb+), the second in U−V. The green color would arise from the ion Pb+, whereas the blue one would be attributed to the ion Pb3+. Received: 23 January 1997 / Revised, accepted: 10 September 1997  相似文献   

17.
Summary Room-temperature Mössbauer spectra of five iron-bearing tourmalines were measured and analyzed. The Fe2+/Fe3+ ratio and the iron occupancy of the Y and Z positions could be assigned to all samples, with the help of two previously well characterized samples, from Mexico and Madagascar. Ferric or ferrous ions or both partially occupy the Z as well as the Y octahedra. This fact of observation is interpreted as the chemical response, during crystal growth, to the requirement of size matching for the edge-sharing Y and Z oxygen octahedra. It accounts for the inexistence of solid solution between the Mg and (Li, Al) tourmalines.
Die Verteilung von Fe2+ und Fe3+ in eisenhaltigen Turmalinen: Eine Mössbauer-Untersuchung
Zusammenfassung Mössbauer-Spektren von fünf eisenhaltigen Turmalinen wurden gemessen und analysiert. Das Verhältnis Fe2+/Fe3+ und die Eisenverteilung konnten mit Hilfe von zwei gut identifizierten Turmalin-Kristallen von Mexiko und Madagascar für die Y-und Z-Lagen aller Exemplare bestimmt werden. Zweiwertiges sowie dreiwertiges Eisen findet sich sowohl in der Z-als auch in der Y-Lage. Da sich die Y-und Z-Oktaeder in einer gemeinsamen Kante treffen, wird diese Beobachtung als chemische Antwort des Kristalles auf die erforderte Größenanpassung der Y-und Z-Oktaeder während seines Wachstums erklärt. Die Abwesenheit der festen Lösung zwischen Dravit und Elbait kann somit erklärt werden.


With 4 Figures  相似文献   

18.
Subsolidus Mg-Fe2+ exchange between olivine and spinel is governed by Mg-Fe2+ interdiffusion. Incomplete exchange results in Mg-Fe2+ heterogeneity in both olivine and spinel, which provides information on the thermal histories of the host rocks. A composite sphere model has been developed to obtain quantitative cooling rates or heating duration from the Mg-Fe2+ heterogeneity. The model assumes that a spherical core of spinel and a surrounding semi-infinite spherical shell of olivine interact by diffusion-controlled exchange of Mg and Fe2+. The differential equations describing the model are solved numerically by finite difference approximations. The numerical solution reveals that cooling rates or heating duration can be estimated from the relationship between the grain size of spinel and temperature calculated from the chemical compositions of the core of a spinel grain and of olivine far away from it. The calculated temperature is employed in place of Mg(Mg + Fe2+) at the center of spinel to obtain the absolute temperature of thermal events.This olivine-spinel geospeedometer has been applied to peridotites. gabbro, and picrites from some ophiolite complexes in Japan to estimate their cooling rates. The estimated cooling rates for the peridotites range from 10?4 to 10?1 °C/yr, and those for the picrites from 103 to 104 °C/yr. The geospeedometer has been extended to estimate the heating duration of lherzolite xenoliths in basalt from the Ichinomegata crater, northeast Japan. The estimated heating duration of the xenoliths is less than one day.  相似文献   

19.
Our earlier joint analysis of light curves for the blazar 0059+581 at 4.8, 8, 14.5, 22, and 37 GHz with high-resolution VLBI images led us to suggest that the activity in this source develops in cycles, or periods, with a duration of about four years, with a “typical scenario” for the development of the source’s activity taking place over a cycle. Based on this analysis, we predicted in 2002 that a new superluminal component would be ejected from the core of this source in a structural position angle ~170° no later than by the end of 2003. A 43-GHz VLBI image obtained on September 14, 2003, as part of a program to monitor the structure of reference sources used for a radio astronomical coordinate system, convincingly confirms the correctness of this prediction. This is the first time in the history of radio astronomy that a new superluminal component has been detected at a predicted time and in a predicted structural position angle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号