首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Aeolianites are integral components of many modern and ancient carbonate depositional systems. Southern Australia contains some of the most impressive and extensive late Cenozoic aeolianites in the modern world. Pleistocene aeolianites on Yorke Peninsula are sculpted into imposing seacliffs up to 60 m high and comprise two distinct imposing complexes of the Late Pleistocene Bridgewater Formation. The lower aeolianite complex, which forms the bulk of the cliffs, is a series of stacked palaeodunes and intervening palaeosols. The diagenetic low Mg‐calcite sediment particles are mostly bivalves, echinoids, bryozoans and small benthic foraminifera. This association is similar to sediments forming offshore today on the adjacent shelf in a warm‐temperate ocean. By contrast, the upper aeolianite complex is a series of mineralogically metastable biofragmental carbonates in a succession of stacked lenticular palaeodunes with impressive interbedded calcretes and palaeosols. Bivalves, geniculate coralline algae and benthic foraminifera, together with sparse peloids and ooids, dominate sediment grains. Fragments of large benthic foraminifera including Marginopora vertebralis, a photosymbiont‐bearing protist, are particularly conspicuous. Palaeocean temperatures are interpreted as having been sub‐tropical, somewhat warmer than offshore carbonate factories in the region today. The older aeolianite complex is tentatively correlated with Marine Isotope Stage 11, whereas the upper complex is equivalent to Marine Isotope Stage 5e. Marine Isotope Stage 5e deposits exposed elsewhere in southern Australia (Glanville Formation) are distinctive with a subtropical biota, including Marginopora vertebralis. Thus, in this example, palaeodune sediment faithfully records the nature of the adjacent inner neritic carbonate factory. By inference, aeolianites are potential repositories of information about the nature of long‐vanished marine systems that have been removed due to erosion, tectonic obliteration or are inaccessible in the subsurface. Such information includes not only the nature of marine environments themselves but also palaeoceanography.  相似文献   

2.
Patterns of sediment composition of Jamaican fringing reef facies   总被引:1,自引:0,他引:1  
Recent carbonate sediments from Jamaican north coast fringing reefs were collected along three parallel traverses in the vicinity of Discovery Bay. Each traverse extended from near shore across the back reef, reef crest, and fore reef to a depth of 75 m. Relative abundances of the biotic constituents vary between sites, reflecting general patterns of reef community composition. The sediment is dominated by highly comminuted coral fragments (27·1% to 63·1%), plates of the calcareous green alga Halimeda (0·4% to 38·7%), coralline algae (4·7% to 16·2%) and the encrusting foraminiferan Homotrema rubrum (0·7% to 9·5%), with lesser amounts of other taxonomic groups (non-encrusting foraminifera 1·3–5·5%; molluscs 1·4–7·0%; echinoderms 0·9–5·0%). Coral fragments, coralline algae and particles of Homotrema rubrum dominate the sediments of the shallow portions of the fore reef (5–15 m), whereas plates of Halimeda are most abundant in sediments from the back reef and deeper portions of the fore reef ( 24 m). Q-mode cluster analysis, using sediment constituent data, resulted in the delineation of four reef biofacies over the depth range of this study (1–75 m).  相似文献   

3.
Coastal dune systems consisting of allochemical grains are important sedimentary archives of Pleistocene age in both of the hemispheres between the latitudes of 20° to 40°. The south Saurashtra coast in western India exhibits a large section of Middle Pleistocene aeolianites in the form of coastal cliffs, which is famous as ‘Miliolite’. Miliolites of Gopnath in south‐east Saurashtra are the oldest known coastal aeolianite deposits (age >156 ka which corresponds to Marine Isotope Stage 6) in western India. Aeolian deposits of similar ages have also been reported from the Thar Desert in north‐west India and from Southern Arabia which were largely controlled by the south‐west monsoon wind system that affects the entire belt corresponding to Sahara–Sahel, the Arabian Peninsula and north‐western India. Miliolite deposits in Gopnath are characterized by grainfall, grainflow and wind ripple laminations. At least three types of aeolian bounding surfaces have been identified. Five major facies have been identified which represent the dune and interdune relationship within the coastal aeolian system. The major dune bodies are identified as transverse dune types. The Gopnath aeolianites were deposited under dominantly dry aeolian conditions. Facies association reveals two different phases of aeolian accumulation, namely initiation of aeolian sedimentation after a prolonged hiatus and the establishment of a regularized aeolian sedimentation system. While initiation of aeolian sedimentation is marked by vast stretches of sheet sand with occasional dune bodies, the overlying thick, tabular, laterally extensive cross‐stratified units manifest regular aeolian sedimentation. However, the dune building events in Gopnath were interrupted by development of laterally extensive palaeosol horizons. Eustasy and climate exerted the major allogenic controls on the aeolian sedimentation by affecting the sediment budget as well as influencing the sedimentation pattern.  相似文献   

4.
Autochthonous red algal structures known as coralligène de plateau occur in the modern warm‐temperate Mediterranean Sea at water depths from 20 to 120 m, but fossil counterparts are not so well‐known. This study describes, from an uplifted coastal section at Plimiri on the island of Rhodes, a 450 m long by 10 m thick Late Pleistocene red algal reef (Coralligène Facies), interpreted as being a coralligène de plateau, and its associated deposits. The Coralligène Facies, constructed mainly by Lithophyllum and Titanoderma, sits unconformably upon the Plio‐Pleistocene Rhodes Formation and is overlain by a Maerl Facies (2 m), a Mixed Siliciclastic‐Carbonate Facies (0·2 m) and an Aeolian Sand Facies (2·5 m). The three calcareous facies, of Heterozoan character, are correlated with established members in the Lindos Acropolis Formation in the north of the island, while the aeolian facies is assigned to the new Plimiri Aeolianite Formation. The palaeoenvironmental and genetic‐stratigraphic interpretations of these mixed siliciclastic‐carbonate temperate water deposits involved consideration of certain characteristics associated with siliciclastic shelf and tropical carbonate shelf models, such as vertical grain‐size trends and the stratigraphic position of zooxanthellate coral growths. Integration of these results with electron spin resonance dates of bivalve shells indicates that the Coralligène Facies was deposited during Marine Isotope Stage 6 to 5e transgressive event (ca 135 to 120 ka), in water depths of 20 to 50 m, and the overlying Maerl Facies was deposited during regression from Marine Isotope Stage 5e to 5d (ca 120 to 110 ka), at water depths of 25 to 40 m. The capping Aeolian Sand Facies, involving dual terrestrial subunits, is interpreted as having formed during each of the glacial intervals Marine Isotope Stages 4 (71 to 59 ka) and 2 (24 to 12 ka), with soil formation during the subsequent interglacial periods of Marine Isotope Stages 3 and 1, respectively. Accumulation rates of about 0·7 mm year?1 are estimated for the Coralligène Facies and minimum accumulation rates of 0·2 mm year?1 are estimated for the Maerl Facies. The existence of older red algal reefs in the Plimiri region during at least Marine Isotope Stages 7 (245 to 186 ka) and 9 (339 to 303 ka) is inferred from the occurrence of reworked coralligène‐type lithoclasts in the basal part of the section and from the electron spin resonance ages of transported bivalve shells.  相似文献   

5.
Calcareous aeolianites are an integral part of many carbonate platforms and ramps. Such limestones are particularly common in heterozoan, Late Cenozoic carbonate systems, and it has been postulated that they could contain a particularly sensitive record of their offshore source. This hypothesis is tested herein by documenting and interpreting part of the most extensive and temporally longest such system in the modern world. The deposits are a combination of extraclasts and biofragments. Extraclasts are detrital quartz, relict allochems, older Pleistocene particles and Oligocene–Miocene limestone clasts. Biofragments are penecontemporaneous coralline algae, echinoderms, small benthic foraminifera, molluscs and bryozoans. The aeolianites differ in composition from distant, open shelf sediments because they contain more mollusc fragments and many fewer bryozoans. This difference is interpreted to be due to (i) most sediment was derived from near‐shore seagrass meadows and macroalgal reefs; (ii) all sediments were modified by hydrodynamics in near‐shore and beach environments; and (iii) fragments of infaunal, beach‐dwelling bivalves were added to the sediment at the strandline. Extraclasts should be expected in older Pleistocene and Cenozoic heterozoan deposits, because the limestones are poorly lithified, largely due to the lack of meteoric cementation, and so easily eroded. Thus, cool‐water aeolianites ought to contain more extraclasts than their warm‐water, tropical cousins. Seagrasses in temperate environments are more productive than in the tropics and thus potentially might contribute many more particles to the beach and dunes than do tropical systems. Although particle breakage in the surf zone cannot be proven, herein the abundance of whole benthic foraminifera and delicate bryozoans implies that suspension and flotsam shoreward transport was an essential process. The similarity of Pleistocene aeolianites over such a long time period herein suggests that the combination of postulated sedimentological, biogenic and hydrodynamic processes could be universally important.  相似文献   

6.
During Integrated Ocean Drilling Program Expedition 325, 34 holes were drilled along five transects in front of the Great Barrier Reef of Australia, penetrating some 700 m of late Pleistocene reef deposits (post‐glacial; largely 20 to 10 kyr bp ) in water depths of 42 to 127 m. In seven holes, drilled in water depths of 42 to 92 m on three transects, older Pleistocene (older than last glacial maximum, >20 kyr bp ) reef deposits were recovered from lower core sections. In this study, facies, diagenetic features, mineralogy and stable isotope geochemistry of 100 samples from six of the latter holes were investigated and quantified. Lithologies are dominated by grain‐supported textures, and were to a large part deposited in high‐energy, reef or reef slope environments. Quantitative analyses allow 11 microfacies to be defined, including mixed skeletal packstone and grainstone, mudstone‐wackestone, coral packstone, coral grainstone, coralline algal grainstone, coral‐algal packstone, coralline algal packstone, Halimeda grainstone, microbialite and caliche. Microbialites, that are common in cavities of younger, post‐glacial deposits, are rare in pre‐last glacial maximum core sections, possibly due to a lack of open framework suitable for colonization by microbes. In pre‐last glacial maximum deposits of holes M0032A and M0033A (>20 kyr bp ), marine diagenetic features are dominant; samples consist largely of aragonite and high‐magnesium calcite. Holes M0042A and M0057A, which contain the oldest rocks (>169 kyr bp ), are characterized by meteoric diagenesis and samples mostly consist of low‐magnesium calcite. Holes M0042A, M0055A and M0056A (>30 kyr bp ), and a horizon in the upper part of hole M0057A, contain both marine and meteoric diagenetic features. However, only one change from marine to meteoric pore water is recorded in contrast with the changes in diagenetic environment that might be inferred from the sea‐level history. Values of stable isotopes of oxygen and carbon are consistent with these findings. Samples from holes M0032A and M0033A reflect largely positive values (δ18O: ?1 to +1‰ and δ13C: +1 to +4‰), whereas those from holes M0042A and M0057A are negative (δ18O: ?4 to +2‰ and δ13C: ?8 to +2‰). Holes M0055A and M0056A provide intermediate values, with slightly positive δ13C, and negative δ18O values. The type and intensity of meteroric diagenesis appears to have been controlled both by age and depth, i.e. the time available for diagenetic alteration, and reflects the relation between reef deposition and sea‐level change.  相似文献   

7.
Carbonate aeolian deposits are common along arid to semiarid, wind-exposed, present-day coastlines bordered by productive carbonate ramps. Lithified carbonate dunes (aeolianites) have been described around the world in marine terraces of Quaternary age, but these deposits have seldom been identified in the Pre-Quaternary record. Several authors have suggested that this scarcity reflects that these deposits form and are preserved only during icehouse periods characterized by high-amplitude sea-level changes. Others [e.g. McKee and Ward Carbonate Depositional Environments (1983) , AAPG Memoirs, Vol. 33, pp. 131–170] suggest that the scarcity of aeolianites in the Pre-Quaternary record could reflect the ‘great difficulty in recognising wind blown carbonate deposits and in differentiating between them [aeolianites] and other carbonate sands of nearshore environments’. It has been considered that carbonate shoreface/foreshore deposits are very difficult to discriminate petrographically from backshore deposits. This petrographic study of recent sediments from the shoreface to backshore along the northern coast of Chrissi Island, Crete, confirms that carbonate aeolian sands can be very easily misinterpreted as shoreface deposits. Textural examination of thin sections by image analysis techniques indicates, however, that grain orientation patterns differ between facies. Shoreface deposits exhibit a unimodal distribution of grain orientation (flat rose diagram), whereas backshore deposits show a tendency towards a bimodal distribution with a significant proportion of vertical grains. This observation has been confirmed in Pleistocene aeolianites from Tunisia and Western Australia. Grain verticality thus seems to be a reliable criterion for discriminating wind-lain carbonate bodies from shoreface deposits. Vertical grains in aeolian carbonate deposits could reflect gravity effects (e.g. reorientation of grains because of meteoric water percolation and air pull-up). Laboratory experiments conducted on carbonate sands under the action of percolating waters confirm this hypothesis. This reorganization process is preferentially developed in recently deposited and loosely packed sands resulting from grainfall and/or grainflow. In addition, this suggests that the presence of vertical grain orientation might be an indicator of the frequency and intensity of rainfalls during deposition.  相似文献   

8.
S.J. MAZZULLO 《Sedimentology》2006,53(5):1015-1047
Lithostratigraphy, depositional facies architecture, and diagenesis of upper Pliocene to Holocene carbonates in northern Belize are evaluated based on a ca 290 m, continuous section of samples from a well drilled on Ambergris Caye that can be linked directly to outcrops of Pleistocene limestone, and of overlying Holocene sediments. Upper Pliocene outer‐ramp deposits are overlain unconformably by Pleistocene and Holocene reef‐rimmed platforms devoid of lowstand siliciclastics. Tectonism controlled the location of the oldest Pleistocene platform margin and coralgal barrier reef, and periodically affected deposition in the Holocene. A shallow, flat‐topped, mostly aggradational platform was maintained in the Holocene by alternating periods of highstand barrier‐reef growth and lowstand karstification, differential subsidence, and the low magnitude of accommodation space increases during highstands. Facies in Pleistocene rocks to the lee of the barrier reef include: (i) outer‐shelf coralgal sands with scattered coral patch reefs; (ii) a shoal–water transition zone comprising nearshore skeletal and oolitic sands amidst scattered islands and tidal flats; and (iii) micritic inner‐shelf deposits. Four glacio‐eustatically forced sequences are recognized in the Pleistocene section, and component subtidal cycles probably include forced cycles and autocycles. Excluding oolites, Holocene facies are similar to those in the Pleistocene and include mud‐mounds, foraminiferal sand shoals in the inner shelf, and within the interiors of Ambergris and surrounding cayes, mangrove swamps, shallow lagoons, and tidal and sea‐marginal flats. Meteoric diagenesis of Pliocene and Pleistocene rocks is indicated by variable degrees of mineralogic stabilization, generally depleted whole‐rock δ18O and δ13C values, and meniscus and whisker‐crystal cements. Differences in the mineralogy and geochemistry of the Pliocene and Pleistocene rocks are attributed to variable extent of meteoric alteration. Dolomitization in the Pliocene carbonates may have begun syndepositionally and continued into the marine shallow‐burial environment. Positive dolomite δ18O and δ13C values suggest precipitation from circulating, near‐normal marine fluids that probably were modified somewhat by methanogenesis. Sedimentologic and diagenetic attributes of the Pliocene–Pleistocene rocks in the study area are similar to those in the Bahamas with which they share a common history of sea‐level fluctuations and climate change.  相似文献   

9.
Granular carbonate deposits of Late Pleistocene to Early Holocene age, commonly referred to as ‘miliolite limestone’, occur in a linear belt, parallel to the southern coast of Saurashtra, India. In the present study area these carbonate deposits are found in select valleys between ridges and mounds of pyroclastic material present in the Deccan trap plateau. Two different depositional histories have been proposed for these sediments. The presence of marine bioclasts led to the postulation of a marine origin for these deposits. The second school of thought propounded redeposition of the coastal sediments by aeolian processes. Although a few features could not be explained by the proposed aeolian model, critical comparison of these two views favoured the aeolian origin. The mode of occurrence, lithological and structural attributes, and microscopic evidence presented here, also support a possible aeolian origin for these deposits. Experimental observation indicates that these carbonate aeolianites represent backflow deposits, which accumulated because of the flow separation caused by the presence of topographic highs. The conspicuous concave‐up geometry of the deposit conformed to the shape of the separation bulb. In view of the inferred depositional mechanism, the disposition of the deposits and the signature of the palaeoflow direction suggest that the carbonate particles were derived from the north‐western coast of Saurashtra by strong south‐easterly winds. Massive granular carbonates with outsized basement clasts appear to be the product of avalanching of granular material from the higher contours because of oversteepening of the primary deposit.  相似文献   

10.
Pleistocene fibrous aragonite fabrics, including crusts and spherules, occur in the Danakil Depression (Afar, Ethiopia) following the deposition of two distinctive Middle and Late Pleistocene coralgal reef units and pre‐dating the precipitation of evaporites. Crusts on top of the oldest reef unit (Marine Isotope Stage 7) cover and fill cavities within a red algal framework. The younger aragonite crusts directly cover coralgal bioherms (Marine Isotope Stage 5) and associated deposits. Their stratigraphic position between marine and evaporitic deposits, and their association to euryhaline molluscs, suggest that the crusts and spherules formed in restricted semi‐enclosed conditions. The availability of hard substrate controls crust formation with crusts more often found on steep palaeo‐slopes, from sea level up to at least 80 m depth, while spherules mainly occur associated with mobile substrate. Crusts reach up to 30 cm in thickness and can be microdigitate, columnar (branching and non‐branching) or non‐columnar, with laminated and non‐laminated fabrics. Two different lamination types are found within the crystalline fabrics: (i) isopachous lamination; and (ii) irregular lamination. These two types of lamination can be distinguished by the organization of the aragonite fibres, as well as the lateral continuity of the laminae. Scanning electron microscopy with energy dispersive X‐ray spectroscopy analyses on well‐preserved samples revealed the presence of Mg‐silicate laminae intercalated with fibrous aragonite, as well as Mg‐silicate aggregates closely associated with the fibrous aragonite crusts and spherules. The variety of observed fabrics results from a continuum of abiotic and microbial processes and, thus, reflects the tight interaction between microbially mediated and abiotic mineralization mechanisms. These are the youngest known isopachously laminated, digitate and columnar branching fibrous crusts associated with a transition from marine to evaporitic conditions. Understanding the context of formation of these deposits in Afar can help to better interpret the depositional environment of the widespread Precambrian sea‐floor precipitates.  相似文献   

11.
Holocene fringing reef development around Bora Bora is controlled by variations in accommodation space (as a function of sea‐level and antecedent topography) and exposure to waves and currents. Subsidence ranged from 0 to 0·11 m kyr?1, and did not create significant accommodation space. A windward fringing reef started to grow 8·7 kyr bp , retrograded towards the coast over a Pleistocene fringing reef until ca 6·0 kyr bp , and then prograded towards the lagoon after sea‐level had reached its present level. The retrograding portion of the reef is dominated by corals, calcareous algae and microbialite frameworks; the prograding portion is largely detrital. The reef is up to 13·5 m thick and accreted vertically with an average rate of 3·12 m kyr?1. Lateral growth amounts to 13·3 m kyr?1. Reef corals are dominated by an inner Pocillopora assemblage and an outer Acropora assemblage. Both assemblages comprise thick crusts of coralline algae. Palaeobathymetry suggests deposition in 0 to 10 m depth. An underlying Pleistocene fringing reef formed during the sea‐level highstand of Marine Isotope Stage 5e, and is also characterized by the occurrence of corals, coralline algal crusts and microbialites. A previously investigated, leeward fringing reef started to form contemporaneously (8·78 kyr bp ), but is thicker (up to 20 m) and solely prograded throughout the Holocene. A shallow Pocillopora assemblage and a deeper water Montipora assemblage were identified, but detrital facies dominate. At the Holocene reef base, only basalt was recovered. The Holocene windward–leeward differences are a consequence of less accommodation space on the eastern island side that eventually led to a more complex reef architecture. As a result of higher rates of exposure and flushing, the reef framework on the windward island side is more abundant and experienced stronger cementation. In the Pleistocene, the environmental conditions on the leeward island side were presumably unfavourable for fringing reef growth.  相似文献   

12.
The Belize barrier and atoll reefs represent one of the largest reef structures in the Atlantic Ocean. The southern shelf of Belize is a classic location of a modern mixed carbonate–siliciclastic system. Whereas knowledge of the Holocene deposits in the area is extensive, data on the Pleistocene system are fragmentary. Open questions include: (i) the nature of the reef foundations (carbonate versus siliciclastics); (ii) the ages of the deposits including the initiation of the barrier reef; and (iii) the response of the mixed system to sea‐level fluctuations. The results of a study of borings on the southern Belize shelf are presented here. Six, up to 105 m long borings were made to better understand the history of this important mixed system. Uranium‐series dating in the Pleistocene was not possible because of diagenetic alteration; however, lithostratigraphy, strontium isotopes and calcareous nannofossil biostratigraphy were used to constrain stratigraphic ages. Results support the contention that the Quaternary development in Belize was quite similar to that of other major barrier reefs such as the Florida Reef Tract and, further afield, the Great Barrier and the New Caledonian Barrier Reefs. All of these barrier reefs are mixed carbonate–siliciclastic systems and significant reef growth only began after the onset of high‐amplitude, eccentricity‐controlled sea‐level changes and as late as during the exceptionally long and warm marine isotope stage 11, some 400 ka. In Belize, Early Pleistocene sections at bases of borings include mollusc‐rich wackestones, rare coral packstones and marls, which were deposited under low to moderate energy conditions in a ramp setting before ca 900 ka, during the high sea‐levels of marine isotope stage 25 and possibly earlier (marine isotope stage 31 or 37). The Belize shelf was subaerially exposed for most of the mid‐Pleistocene and was dominated by siliciclastic sedimentation, possibly during marine isotope stages 24 to 12 when highstands were comparatively low. Continuous reefs at the shelf margin were developing during highstands. In the Late Pleistocene, beginning with the long and high highstand of marine isotope stage 11 (some 400 ka), the southern shelf was flooded entirely and carbonates started to dominate once more. Reefs developed on top of siliciclastic deposits on the shelf. A continuous barrier reef came into existence and largely developed on top of carbonates at the shelf margin. During Late Pleistocene lowstands, siliciclastics presumably no longer reached the shelf margin because of the topographic high of the barrier reef platform. The Quaternary Belize example may serve as a model for reconstructing ancient mixed systems in icehouse worlds, however, any extrapolations are limited by the fact that fast‐growing Scleractinian reef‐builders had not yet evolved in the Palaeozoic.  相似文献   

13.

Holocene sediments from southern Spencer Gulf are cool‐water carbonate‐rich gravels and sands, dominated by molluscs and Bryozoa. Five sedimentary fades are recognized: (i) molluscan gravel; (ii) branching coralline‐algal gravel, associated with shallow partially protected environments; (iii) molluscan‐biyozoan sand; (iv) mixed bioclastic sand, representative of the deeper central region of the lower gulf; and (v) bryozoan gravel, an isolated fades developed in a semi‐protected micro‐environment. The southern gulf is characterized by complex oceanographic conditions together with variations in water depth and substrate. The sediments share the characteristics of both the southern shelf and upper Spencer Gulf. Grain‐size distribution and sedimentary facies are controlled by a combination of all the above processes. Past sea level fluctuations are recognized from sea floor strand‐line deposits. The relic component of the palimpsest sediments has eroded from the Pleistocene aeolianite dunes. The sediments, therefore, reflect both the modern marine and past environments.  相似文献   

14.
Elmejdoub, N., Mauz, B. & Jedoui, Y. 2010: Sea‐level and climatic controls on Late Pleistocene coastal aeolianites in the Cap Bon peninsula, northeastern Tunisia. Boreas, 10.1111/j.1502‐3885.2010.00162.x. ISSN 0300‐9483. The chronology of coastal dunes (aeolianites) along the western littoral of the Cap Bon peninsula (northeastern Tunisia) was investigated using an optical dating technique to examine their tentative correlation with the Marine Isotope Stage (MIS) record. These dunes, formed under a northwesterly wind regime and supplied by sand from the shore, are an indicator of sea‐level and climate changes. We obtained optically stimulated luminescence ages for these aeolianites ranging from 112±10 to 53±2 ka and clustering around the last interglacial period (~125–75 ka), implying that the former stratigraphic allocation of these dunes is inaccurate. The optical chronology suggests dune formation during MIS 5 in association with a sea level lower than today but higher than the glacial sea‐level lowstand.  相似文献   

15.
A multi‐disciplinary approach was followed to investigate two thick palaeosol strata that alternate with wind‐blown dominated deposits developed along the Alghero coast (North‐west Sardinia, Italy). Optically stimulated luminescence ages reveal that both palaeosols were developed during cooler drier periods: the first one at around 70 ka Marine Isotope Stage 4 and the latter around 50 ka (Marine Isotope Stage 3). In contrast, the pedological features indicate that the palaeosols underwent heavy weathering processes under warm humid to sub‐humid conditions, characteristic of the Sardinian climate during the last interglacial stage (Marine Isotope Stage 5e). To reconcile this apparent data discrepancy, a range of sedimentological and pedological analyses were conducted. These analyses reveal that the palaeosols possess a complex history, with accumulation and weathering occurring during Marine Isotope Stage 5e, and erosion, colluviation and final deposition taking place during the following cold stages. Thus, even if these reddish palaeosols were last formed during the glacial period, the sediments building up these strata probably record the climate of the last interglacial stage (Marine Isotope Stage 5e). Trace element and X‐ray diffraction analyses, together with scanning electron microscope images, reveal the presence of Saharan dust in the parent material of the palaeosols. However, no evidence of any far‐travelled African dust has been observed in the Marine Isotope Stage 4–3 aeolian deposits. It is possible to conclude that in the West Mediterranean islands, Saharan dust input, even if of modest magnitude, is preserved preferentially in soils accumulated and weathered during interglacial stages.  相似文献   

16.

Elizabeth and Middleton Reefs are atoll-like structures that have developed on top of volcanic edifices and are close to the southern environmental limit of reef development in the southwest Pacific. Reef morphology and vertical accretion rates during the Holocene appear similar to those on other more tropical reefs. Sediment samples were collected from the lagoon of both reefs and around the flanks of Middleton Reef. A distinctly chlorozoan assemblage was observed with coral, molluscs, Halimeda, coralline algae and foraminifers being the dominant sediment constituents. Lagoon sediment samples show little variation within or between reefs, lacking the concentric zonation characteristic of larger atolls. Samples collected from the flanks of Middleton Reef, and subsurface material from vibrocores, differ compositionally from the surficial lagoon sand and were typically more tropical in character. A comparison of the sediment constituents from these reefs with those of samples from within a fringing reef and from the shelf around Lord Howe Island, further south, indicated regional patterns in sediment composition. Halimeda rapidly decreased in abundance with increased latitude, and appeared confined to deeper water, whereas coralline red algae increased significantly. The rapid change in these major sediment contributors is coincident with the general decrease in coral growth rates with latitude. This reinforces the notion that the latitudinal limit of reef development is constrained by factors other than coral growth alone.  相似文献   

17.
Due to difficulties in correlating aeolian deposits with coeval marine facies, sequence stratigraphic interpretations for arid coastal successions are debated and lack a unifying model. The Pennsylvanian record of northern Wyoming, USA, consisting of mixed siliciclastic–carbonate sequences deposited in arid, subtropical conditions, provides an ideal opportunity to study linkages between such environments. Detailed facies models and sequence stratigraphic frameworks were developed for the Ranchester Limestone Member (Amsden Formation) and Tensleep Formation by integrating data from 16 measured sections across the eastern side of the Bighorn Basin with new conodont biostratigraphic data. The basal Ranchester Limestone Member consists of dolomite interbedded with thin shale layers, interpreted to represent alternating deposition in shallow marine (fossiliferous dolomite) and supratidal (cherty dolomite) settings, interspersed with periods of exposure (pedogenically modified dolomites and shales). The upper Ranchester Limestone Member consists of purple shales, siltstones, dolomicrites and bimodally cross‐bedded sandstones in the northern part of the basin, interpreted as deposits of mixed siliciclastic–carbonate tidal flats. The Tensleep Formation is characterized by thick (3 to 15 m) aeolian sandstones interbedded with peritidal heteroliths and marine dolomites, indicating cycles of erg accumulation, preservation and flooding. Marine carbonates are unconformably overlain by peritidal deposits and/or aeolian sandstones interpreted as lowstand systems tract deposits. Marine transgression was often accompanied by the generation of sharp supersurfaces. Lags and peritidal heteroliths were deposited during early stages of transgression. Late transgressive systems tract fossiliferous carbonates overlie supersurfaces. Highstand systems tract deposits are lacking, either due to non‐deposition or post‐depositional erosion. The magnitude of inferred relative sea‐level fluctuations (>19 m), estimated by comparison with analogous modern settings, is similar to estimates from coeval palaeotropical records. This study demonstrates that sequence stratigraphic terminology can be extended to coastal ergs interacting with marine environments, and offers insights into the dynamics of subtropical environments.  相似文献   

18.
This paper records the findings at a temporary exposure at Thorpe St Andrew near Norwich, Norfolk, UK in Early and early Middle Pleistocene Crag deposits. The British Geological Survey (BGS) describes the particular formation exposed as Norwich Crag consisting of Early Pleistocene shallow marine sediments. The section shows a succession of sorted sands and gravels overlain by a sandy diamicton. Based on field evidence and clast analysis, the sands and gravels are interpreted as the product of point bar and overbank sedimentation and represent the product of a river cutting into and aggrading within the more widespread shallow marine deposits. Composition of the sediments indicates derivation, primarily from Wroxham Crag Formation, with a contribution from Norwich Crag. The sandy diamicton is interpreted as late Middle Pleistocene Corton Till that is recorded in the area. A distinct pattern of colour changes at the top of the sands and gravels is interpreted as a soil that developed on the fluvial sediments before being overridden by the glacier that deposited the Corton Till. The existence of the fluvial sediments within the regional shallow marine deposits suggests that a fall of sea-level, possibly due to climate cooling, while the elevation of the sediments and the adjacent Crag implies that the site has been uplifted since sedimentation. This is the first observation of terrestrial sediments within the shallow marine Crag. The paper also makes a contribution to understanding the diagenetic processes that give deposits within this region some distinctive colour and sediment patterns.  相似文献   

19.
The Great Barrier Reef (GBR) shelf contains a range of coral reefs on the highly turbid shallow inner shelf, where interaction occurs with terrigenous sediments. The modern hydrodynamic and sedimentation regimes at Paluma Shoals, a shore‐attached ‘turbid‐zone’ coral reef, and at Phillips Reef, a fringing reef located 20 km offshore, have been studied to document the mechanisms controlling turbidity. At each reef, waves, currents and near‐bed turbidity were measured for a period of ≈1 month. Bed sediments were sampled at 135 sites. On the inner shelf, muddy sands are widespread, with admixed terrigenous and carbonate gravel components close to the reefs and islands, except on their relatively sheltered SW side, where sandy silty clays occur. At Paluma Shoals, the coral assemblage is characteristic of inner‐shelf or sheltered habitats on the GBR shelf (dominated by Galaxea fascicularis, up to >50% coral cover) and is broadly similar to that at Phillips Reef, further offshore and in deeper water. The sediments of the Paluma Shoals reef flats consist of mixed terrigenous and calcareous gravels and sands, with intermixed silts and clays, whereas the reef slope is dominated by gravelly quartz sands. The main turbidity‐generating process is wave‐driven resuspension, and turbidity ranges up to 175 nephelometric turbidity units (NTU). In contrast, at Phillips Reef, turbidity is <15 NTU and varies little. At Paluma Shoals, turbidity of >40 NTU probably occurs for a total of >40 days each year, and relatively little time is spent at intermediate turbidities (15–50 NTU). The extended time spent at either low or high turbidities is consistent with the biological response of some species of corals to adopt two alternative mechanisms of functioning (autotrophy and heterotrophy) in response to different levels of turbidity. Sedimentation rates over periods of hours may reach the equivalent of 10 000 times the mean global background terrigenous flux (BTF) of sediment to the sea floor, i.e. 10 000 BTF, over three orders of magnitude greater than the Holocene average for Halifax Bay of <3 BTF. As elsewhere along the nearshore zone of the central GBR, dry‐season hydrodynamic conditions form a primary control upon turbidity and the distribution of bed sediments. The location of modern nearshore coral reefs is controlled by the presence of suitable substrates, which in Halifax Bay are Pleistocene and early Holocene coarse‐grained (and relatively stable) alluvial deposits.  相似文献   

20.
The marine geology of Port Phillip is described in detail, based on data from seismic profiling, vibrocoring and grab sampling. Three major unconsolidated facies can be distinguished: sands and muddy sands peripheral to the present coastline, muds covering the major central region, and channel fills of muds and sands. The first two facies units result from an increase in wave sorting towards the coast, reworking of Tertiary and Quaternary sandstone outcrops around the coast, and a dominant mud supply from river sources into the central area. The distribution and thicknesses of the unconsolidated facies have been augmented by a shallow‐seismic program that reveals the thicknesses of the modern sediments overlying an older surface comprised of consolidated clays and sandy clays of Pleistocene or older age. In central Port Phillip, muds and sands up to 27 m‐thick have infilled Pleistocene channels cut into underlying consolidated units. Sediments immediately above the channel bases show characteristic seismic patterns of fluvial deposition. The presence of peat deposits together with gas phenomena in the water column suggest organic breakdown of channel‐fill deposits is releasing methane into the bay waters. Outside the channel areas, carbon‐14 dating indicates that the unconsolidated sediments largely post‐date the last glaciation sea‐level rise (<6500 a BP), with an early Holocene period of rapid deposition, similar to other Australian estuaries. Stratigraphic and depositional considerations suggest that the undated channel‐fill sequences correlate with the formation of cemented quartz‐carbonate aeolianite and barrier sands on the Nepean Peninsula at the southern end of Port Phillip. Previous thermoluminescence dating of the aeolianites suggests that channel‐fill sequences B, C and D may have been deposited as fluvial and estuarine infills over the period between 57 and 8 ka. The eroded surface on the underlying consolidated sediments is probably the same 118 ka age as a disconformity within the Nepean aeolianites. Further estuarine and aeolianite facies extend below the disconformity to 60 m below sea‐level, and may extend the Quaternary depositional record to ca 810 ka. Pliocene and older Tertiary units progressively subcrop below the Quaternary northwards up the bay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号