首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Early Palaeozoic Orogen of SE China consists of three litho-tectonic elements, from top to bottom: a sedimentary Upper Unit, a metamorphic Lower Unit and a gneissic basement. The boundaries between these units are flat lying, south directed, ductile decollements. The lower one is coeval with an amphibolite facies metamorphism (M1). The belt is reworked by migmatite–granite domes, high-temperature metamorphism (M2) and granitic plutons related to post-orogenic crustal melting. We date here the syn-M1 ductile shearing at 453 ± 7 Ma by U-Th/Pb method on monazite. Previous ages and our new 40Ar/39Ar ages of biotites and muscovites show that the metamorphic rocks experienced syn-M2 exhumation from 440 to 400 Ma. The Early Palaeozoic Orogen of SE China is an intracontinental belt in which decollements accommodated the north-directed subduction of the Cathaysian continent. This orogen is an example of intracontinental subduction that was not preceded by oceanic subduction.  相似文献   

2.
Timing constraints on shear zones can provide an insight into the kinematic and exhumation evolution of metamorphic belts. In the Musgrave Block, central Australia, granulite facies gneisses have been affected, to varying degrees, by mylonitic deformation, some of which attained eclogite facies. The Davenport Shear Zone is a dominant strike-slip system that formed at eclogite facies conditions ( T  ≈650  °C and P ≈12.0  kbar). Sm–Nd mineral isochrons obtained from equilibrated high-pressure assemblages, as well as 40Ar–39Ar data, show that the eclogite and greenschist facies high-strain overprints were coeval, at c .  550  Ma. Mylonitic processes do not appear to have reset the U–Pb system in zircon, but may have partially disturbed it. The thermal gradient in the Musgrave Block crust at c .  550  Ma was c .  16  °C  km−1 and at c .  535  Ma was c .  18  °C  km−1, based on P – T  estimates of eclogite and greenschist facies shear zones, respectively. These estimates are similar to present-day geothermal gradients in many stable continental shield areas, suggesting that the region did not undergo a significant transient perturbation of the geotherm. Therefore, in the Musgrave Block, cooling subsequent to eclogite facies metamorphism appears to have been controlled by exhumation, rather than by the removal of a heat source. Estimated exhumation rates in the range 0.2 to ≥1.5  mm year−1 are comparable with other orogenic belts, rather than cratonic areas elsewhere.  相似文献   

3.
Abstract Two blueschist belts in the North Qilian Mountains occur in Middle Cambrian and Lower Ordovician strata and strike N30–35°W for about 500 km along the Caledonian fold belt on the south-west margin of the Sino-Korean plate. The styles of metamorphism and deformation are quite different in the two belts. The Middle Cambrian to Ordovician rocks in the high-grade belt are mainly blueschists and C-type eclogites in which six phases of lower and upper crustal deformation have been recognized. The rocks contain glaucophane, phengite, epidote, clinozoisite, chlorite, garnet, stilpnomelane, piedmontite, albite, titanite and quartz. The estimated P–T conditions of eclogites are 340 ± 10°C, 8 ± 1 kbar and, of blueschist, >380°C, 6–7 kbar. The Ordovician rocks in the low-grade belt are characterized by ductile to brittle deformation in the middle to upper crust. The low-grade blueschists contain glaucophane, lawsonite, pumpellyite, aragonite, albite and chlorite. The estimated P–T conditions are 150–250°C and 4–7 kbar.
K–Ar and 39Ar/40Ar geochronology on glaucophane and phengite from the high-grade blueschist belt suggest two stages of metamorphism at 460–440 and 400–380 Ma, which may represent the times of subduction and orogeny. The subduction metamorphism of the northern low-grade blueschist belt took place approximately at the end of the Ordovician.  相似文献   

4.
New 40Ar/39Ar ages are presented from the giant Sulu ultrahigh-pressure (UHP) terrane and surrounding areas. Combined with U-Pb ages, Sm-Nd ages, Rb-Sr ages, inclusion relationships, and geological relationships, they help define the orogenic events before, during and after the Triassic collision between the Sino–Korean and Yangtze Cratons. In the Qinling microcontinent, tectonism occurred between 2.0 and 1.4 Ga. The UHP metamorphism occurred in the Yangtze Craton between 240 and 222 Ma; its thermal effect on the Qinling microcontinent was limited to partial resetting of K-feldspar 40Ar/39Ar ages. Subsequent unroofing at rates of 5–25 km Myr−1 brought the UHP terrane to crustal levels where it underwent a relatively short amphibolite facies metamorphism. The end of that metamorphism is marked by 40Ar/39Ar ages in the 219–210 Ma range, implying cooling at crustal depths at rates of 50–200 °C Myr−1. Ages in the 210–170 Ma range may reflect protracted cooling or partial resetting by Jurassic or Cretaceous magmatism. Jurassic 166–149 Ma plutonism was followed by cooling at rates of c. 15 °C Myr−1, suggesting relatively deep crustal conditions, whereas Cretaceous 129–118 Ma plutonism was succeeded by cooling at rates of c. 50 C Myr−1, suggesting relatively shallow crustal depths.  相似文献   

5.
The Scandinavian Caledonides comprise nappe stacks of far-travelled allochthons that record closure of the Iapetus Ocean and subsequent continental collision of Baltica and Laurentia. The Seve Nappe Complex (SNC) of the Scandinavian Caledonides includes relics of the outermost Baltoscandian passive margin that were subducted to mantle depths. The earliest of the deep subduction events has been dated to ca. 500–480 Ma. Evidence of this event has been reported from the northern exposures of the SNC. Farther south in the central and southern segments of the SNC, (ultra)high-pressure rocks have yielded younger ages in the range of ca. 470–440 Ma.This study provides the first record of the early Caledonian event in the southern SNC. The evidence has been obtained by depth profiling of zircon grains that were extracted from the Tväråklumparna microdiamond-bearing gneiss. These zircon grains preserve eclogite facies overgrowths that crystallized at 482.6 ± 3.8 Ma. A second, chemically-distinct zircon overgrowth records granulite facies metamorphism at 439.3 ± 3.6 Ma, which corroborates previous geochronological evidence for granulite facies metamorphism at this time. Based on these results, we propose that the entire outer margin of Baltica was subducted in the late Cambrian to early Ordovician, but the record of this event may be almost entirely eradicated in the vast majority of lithologies by pervasive late Ordovician to early Silurian metamorphism.  相似文献   

6.
Ultrahigh‐pressure metamorphism (UHPM) has recently been discovered in far‐travelled allochthons of the Scandinavian Caledonides, including finding of diamond in the Seve Nappe Complex. This UHPM of Late Ordovician age is older and less recognized than that in the Western Gneiss Region of southwestern Norway, which was related to terminal collision between Baltica and Laurentia. Here we report new evidence of UHPM in the Lower Seve Nappe, recorded by eclogite and garnet pyroxenite from the area of Stor Jougdan in northern Jämtland, central Sweden. Peak‐metamorphic assemblage of eclogite, garnet + omphacite + phengite + rutile + coesite? yields P–T conditions of 2.8–4.0 GPa and 750–900 °C, constrained by conventional geothermobarometry and thermodynamic modelling in the NCKFMTASH system. The prograde metamorphic evolution of the eclogite is inferred from inclusions of zoisite and amphibole in garnet, which are stable at lower pressure, whereas the retrograde evolution is recorded by formation of diopsidic clinopyroxene + plagioclase symplectites after omphacite, growth of amphibole replacing these symplectites, and of titanite around rutile. In garnet pyroxenite the peak‐metamorphic assemblage consists of garnet + orthopyroxene + clinopyroxene + olivine. P–T conditions of 2.3–3.8 GPa and 810–960 °C have been derived based on the conventional geothermobarometry and thermodynamic modelling in the CFMASH and CFMAS systems. Retrograde evolution has been recognized from replacement of pyroxene and garnet by amphibole. The results show that eclogite was metamorphosed during deep subduction of continental crust, most probably derived from the continental margin of Baltica, whereas the origin and tectonic setting of the garnet pyroxenite is ambiguous. The studied pyroxenite/peridotite of Baltican subcontinental affinity could have been metamorphosed as a part of the subducting plate and exhumed due to the downward extraction of a forearc lithospheric block.  相似文献   

7.
向华  张利  钟增球  周汉文  曾雯 《地球科学进展》2007,23(12):1258-1267
榍石在各类岩石中普遍存在,其稳定性受全岩成分、氧逸度和水活度以及温度和压力等因素影响。它在岩浆岩中主要存在于高Ca/Al比值的岩石中,在变质岩中常见于绿片岩相、蓝片岩相和角闪岩相岩石,在钙质变质岩中其稳定范围可达榴辉岩相或高压麻粒岩相。一般榍石结构中U含量较高,且具有高达高角闪岩相上限的U Pb同位素体系封闭温度,是理想的U-Pb定年矿物。由于榍石的组成元素均为岩石中的主要元素,很容易与其它矿物、熔体及流体发生反应,所以榍石的U-Pb年龄记录的更可能是结晶年龄,而不是简单的扩散重置年龄;也因为它容易反应,变质榍石复杂的U Pb体系可能记录了岩石的整个变质历史信息。通过与榍石平衡共生的矿物组合或利用榍石Zr温压计可确定岩石的P T条件,结合相关的榍石年龄信息即可建立变质过程的P T t轨迹。利用SHRIMP、LA MC ICP MS以及LA ICP MS方法可对不均一榍石颗粒内部进行原位微区分析得到有意义的U Pb年龄;利用榍石中Zr含量对温度,尤其是对压力比较敏感,可建立榍石Zr含量温压计。  相似文献   

8.
The alkalic Scituate Granite was emplaced into crystalline sequences within the New England Esmond–Dedham terrane in the Late Devonian ( c. 370 Ma). Variably recrystallized amphibole (iron-rich, hastingsite–hastingsitic hornblende) from four variably deformed samples of the pluton record south-westerly younging 40Ar/39Ar plateau ages ranging between 276 and 263 Ma. These are interpreted to date diachronous cooling through temperatures appropriate for intracrystalline retention of argon following late Palaeozoic orogenic activity. Iron-rich biotite concentrates from the samples record only slightly younger ages, and therefore suggest relatively rapid post-metamorphic cooling. The 40Ar/39Ar ages indicate that the late Palaeozoic tectonothermal overprint was much more regionally pervasive than was previously considered. The apparent timing of this activity is similar to previous estimates for the chronology of high-grade metamorphism throughout the adjacent Hope Valley terrane and for phases of ductile movement on the intervening Lake Char–Honey Hill fault system.  相似文献   

9.
In the Shackleton Range of East Antarctica, garnet-bearing ultramafic rocks occur as lenses in supracrustal high-grade gneisses. In the presence of olivine, garnet is an unmistakable indicator of eclogite facies metamorphic conditions. The eclogite facies assemblages are only present in ultramafic rocks, particularly in pyroxenites, whereas other lithologies – including metabasites – lack such assemblages. We conclude that under high-temperature conditions, pyroxenites preserve high-pressure assemblages better than isofacial metabasites, provided the pressure is high enough to stabilize garnet–olivine assemblages (i.e. ≥18–20 kbar). The Shackleton Range ultramafic rocks experienced a clockwise P–T path and peak conditions of 800–850 °C and 23–25 kbar. These conditions correspond to ∼70 km depth of burial and a metamorphic gradient of 11–12 °C km−1 that is typical of a convergent plate-margin setting. The age of metamorphism is defined by two garnet–whole-rock Sm–Nd isochrons that give ages of 525 ± 5 and 520 ± 14 Ma corresponding to the time of the Pan-African orogeny. These results are evidence of a Pan-African suture zone within the northern Shackleton Range. This suture marks the site of a palaeo-subduction zone that likely continues to the Herbert Mountains, where ophiolitic rocks of Neoproterozoic age testify to an ocean basin that was closed during Pan-African collision. The garnet-bearing ultramafic rocks in the Shackleton Range are the first known example of eclogite facies metamorphism in Antarctica that is related to the collision of East and West Gondwana and the first example of Pan-African eclogite facies ultramafic rocks worldwide. Eclogites in the Lanterman Range of the Transantarctic Mountains formed during subduction of the palaeo-Pacific beneath the East Antarctic craton.  相似文献   

10.
Laser ablation inductively coupled plasma mass spectrometry analyses of U–Pb isotopes and trace elements in zircon and titanite were carried out on epoxy mounts and thin sections for ultrahigh‐pressure (UHP) eclogite in association with paragneiss in the Dabie orogen. The results provide a direct link between metamorphic ages and temperatures during continental subduction‐zone metamorphism. Zircon U–Pb dating gives two groups of concordant ages at 242 ± 2 to 239 ± 5 Ma and 226 ± 2 to 224 ± 6 Ma, respectively. The Triassic zircon U–Pb ages are characterized by flat heavy rare earth element (HREE) patterns typical of metamorphic growth. Ti‐in‐zircon thermometry for the two generations of metamorphic zircon yields temperatures of 697 ± 27 to 721 ± 8 °C and 742 ± 19 to 778 ± 34 °C, respectively. We interpret that the first episode of zircon growth took place during subduction prior to the onset of UHP metamorphism, whereas the second episode in the stage of exhumation from UHP to HP eclogite facies regime. Thus, the continental subduction‐zone metamorphism of sedimentary protolith is temporally associated with two episodes of fluid activity, respectively, predating and postdating the UHP metamorphic phase. The significantly high Ti‐in‐zircon temperatures for the younger zircon at lower pressures indicate the initial ‘hot’ exhumation after the peak UHP metamorphism. There are two types of titanite. One exhibits light rare earth element (LREE) enrichment, steep MREE–HREE patterns and no Eu anomalies, and yields Zr‐in‐titanite temperatures of 551 to 605 °C at 0.5 GPa, and the other shows LREE depletion and flat MREE–HREE patterns, and gives Zr‐in‐titanite temperatures of 782–788 °C at 2.0 GPa. The former is amenable for U–Pb dating, yielding a discordia lower intercept age of 252 ± 3 Ma. Thus, the first type of titanite is interpreted to have grown in the absence of garnet and plagioclase and thus in the early stage of subduction. In contrast, the second one occurs as rims surrounding rutile cores and thus grew in the presence of garnet during the ‘hot’ exhumation. Therefore, there is multistage growth of zircon and titanite during the continental subduction‐zone metamorphism. The combined studies of chronometry and thermobarometry provide tight constraints on the P–T–t path of eclogites during the continental collision. It appears that the mid‐T/UHP eclogite facies zone would not only form by subduction of the continental crust in a P–T path slightly below the wet granite solidus, but also experience decompression heating during the initial exhumation.  相似文献   

11.
Direct absolute dating of the Penninic Frontal Thrust tectonic motion is achieved using the 40Ar/39Ar technique in the Pelvoux Crystalline Massif (Western Alps). The dated phengites were formed syn-kinematically in shear zones. They underline the brittle-ductile stretching lineation, pressure-shadow fibres and slickensides consistent with underthrusting of the European continental slab below the propagating Penninic Thrust. Chlorite–phengite thermobarometry yields 10–15 km and T ∼280 °C, while 40Ar/39Ar phengite ages mainly range between 34 and 30 Ma, with one younger age at 27 Ma. This Early Oligocene age range matches a major tectonic rearrangement of the Alpine chain. Preservation of prograde 40Ar/39Ar ages is ascribed to passive exhumation of the Pelvoux shear zone network, sandwiched between more external thrusts and the Penninic Front reactivated as an E-dipping detachment fault. Partial resetting in the Low Temperature part of argon spectra below 24 Ma is ascribed to brittle deformation and alteration of phengites.  相似文献   

12.
Abstract Concordant U–Pb ages of c. 530–510 Ma and c. 470–420 Ma on titanite from calcsilicate, orthogneiss and amphibolite rocks constrain the age of high‐T metamorphism in the Early Palaeozoic mobile belt at the western margin of Proterozoic Gondwana (Argentina, 26–29°S). The U–Pb ages document the time of titanite formation at high‐T conditions according to the stable mineral paragenesis and occurrence of titanite in the metamorphic fabric. The presence of migmatite at all sample sites indicates temperatures were > c. 650 °C. Titanite formed at similar metamorphic conditions at different times on the regional and on the outcrop scale. The titanite crystals preserved their U–Pb isotopic signatures and chemical composition under ongoing upper amphibolite to granulite facies temperatures. Different thermal peaks or deformations are only detected by the different U–Pb ages and not by changes in the mineral paragenesis or metamorphic fabric of the samples. The range of U–Pb ages, e.g. in the Ordovician and Silurian (c. 470, 460, 440, 430, 420 Ma), is interpreted as the effect polyphase deformation with deformation‐enhanced recrystallization of titanite and/or different thermal peaks during a long‐standing, geographically fixed, high‐T regime in the mid‐crust of a continental magmatic arc. A clear correlation of the different ages with distinct tectonic events, e.g. collision of terranes, is not possible based on the present knowledge of the region.  相似文献   

13.
New U–Pb detrital zircon ages from Triassic metasandstones of the Torlesse Terrane in New Zealand are compared with 40Ar/39Ar muscovite data and together, reveal four main source components: (i) major, Triassic–Permian (210–270 Myr old) and (ii) minor, Permian–Carboniferous (280–350 Myr old) granitoids (recorded in zircon and muscovite data); (iii) minor, early middle Palaeozoic, metamorphic rocks, recorded mainly by muscovite, 420–460 Myr old, and (iv) minor, Late Precambrian–Cambrian igneous and metamorphic complexes, 480–570 Myr old, recorded by zircon only. There are also Proterozoic zircon ages with no clear grouping (580–1270 Myr). The relative absence of late Palaeozoic (350–420 Myr old) components excludes granitoid terranes in the southern Lachlan Fold Belt (Australia) and its continuation into North Victoria Land (East Antarctica) and Marie Byrd Land (West Antarctica) as a potential source for the Torlesse. The age data are compatible with derivation from granitoid terranes of the northern New England Orogen (and hinterland) in NE Australia. This confirms that the Torlesse Terrane of New Zealand is a suspect terrane, that probably originated at the NE Australian, Permian–Triassic, Gondwanaland margin and then (200–120 Ma) moved 2500 km southwards to its present New Zealand position by the Late Cretaceous (90 Ma). This sense of movement is analogous to that suggested for Palaeozoic Mesozoic terranes at the North American Pacific margin.  相似文献   

14.
The Seve Nappe Complex of the Scandinavian Caledonides is thought to be derived from the distal passive margin of Baltica which collided with Laurentia in the Scandian Phase of the Caledonian Orogeny at 430–400 Ma. Parts of the Seve Nappe Complex were affected by pre-Scandian high- and ultrahigh-pressure metamorphism, in a tectonic framework that is still unclear, partly due to uncertainties about the exact timing. Previous age determinations yielded between ~ 505 and ~ 446 Ma, with a general trend of older ages in the North (Norrbotten) than in the South (Jämtland). New age determinations were performed on eclogite and garnet–phengite gneiss at Tjeliken in northern Jämtland. Thermodynamic modelling yielded peak metamorphic conditions of 25–27 kbar/680–760 °C for the garnet–phengite gneiss, similar to published peak metamorphic conditions of the eclogite (25–26 kbar/650–700 °C). Metamorphic rims of zircons from the garnet–phengite gneiss were dated using secondary ion mass spectrometry and yielded a concordia age of 458.9 ± 2.5 Ma. Lu–Hf garnet-whole rock dating yielded 458 ± 1.0 Ma for the eclogite. Garnet in the eclogite shows prograde major-element zoning and concentration of Lu in the cores, indicating that this age is related to garnet growth during pressure increase, i.e. subduction. The identical ages from both rock types, coinciding with published Sm–Nd ages from the eclogite, confirm subduction of the Seve Nappe Complex in Northern Jämtland during the Middle Ordovician in a fast subduction–exhumation cycle.  相似文献   

15.
Garnet peridotites occur as lenses, blocks or layers within granulite–amphibolite facies gneiss in the Dabie-Sulu ultra-high-pressure (UHP) terrane and contain coesite-bearing eclogite. Two distinct types of garnet peridotite were identified based on mode of occurrence and petrochemical characteristics. Type A mantle-derived peridotites originated from either: (1) the mantle wedge above a subduction zone, (2) the footwall mantle of the subducted slab, or (3) were ancient mantle fragments emplaced at crustal depths prior to UHP metamorphism, whereas type B crustal peridotite and pyroxenite are a portion of mafic–ultramafic complexes that were intruded into the continental crust as magmas prior to subduction. Most type A peridotites were derived from a depleted mantle and exhibit petrochemical characteristics of mantle rocks; however, Sr and Nd isotope compositions of some peridotites have been modified by crustal contamination during subduction and/or exhumation. Type B peridotite and pyroxenite show cumulate structure, and some have experienced crustal metasomatism and contamination documented by high 87Sr/86Sr ratios (0.707–0.708), low εNd( t ) values (−6 to −9) and low δ18O values of minerals (+2.92 to +4.52). Garnet peridotites of both types experienced multi-stage recrystallization; some of them record prograde histories. High- P–T  estimates (760–970 °C and 4.0–6.5±0.2 GPa) of peak metamorphism indicate that both mantle-derived and crustal ultramafic rocks were subducted to profound depths >100 km (the deepest may be ≥180–200 km) and experienced UHP metamorphism in a subduction zone with an extremely low geothermal gradient of <5 °C km−1.  相似文献   

16.
The 5-km deep Chinese Continental Scientific Drilling Main Hole penetrated a sequence of ultrahigh pressure (UHP)-metamorphic rocks consisting mainly of eclogite, gneiss and garnet-peridotite with minor schist and quartzite. Zircon separates taken from thin layers of schist and gneiss within eclogite were investigated. Cathodoluminescence images of zircon grains show that they have oscillatory zoned magmatic cores and unzoned to patchy zoned metamorphic rims. Zircon rims contain rare coesite and calcite inclusions whereas cores contain inclusions of both low- P minerals (e.g. feldspar, biotite and quartz) and coesite and other eclogite-facies minerals such as phengite and jadeite. The zircon cores give highly variable 206Pb/238U ages ranging from 760 to 431 Ma for schist and from 698 to 285 Ma for gneiss, and relatively high but variable Th/U ratios (0.16–1.91). We suggest that the coesite and other eclogite facies mineral inclusions in zircon cores were not magmatic but formed through metasomatic processes caused by fluids during UHP metamorphism, and that the fluids contain components of SiO2, Al2O3, K2O, FeO, MgO, Na2O and H2O. Metasomatism of the Sulu UHP rocks during continental subduction to mantle depths has partly altered magmatic zircon cores and reset isotopic systems. This study provides key evidence that mineral inclusions within magmatic zircon domains are not unequivocal indicators of the formation conditions of the respective domain. This finding leads us to conclude that the routine procedure for dating of metamorphic events solely based on the occurrence of mineral inclusions in zoned zircon could be misleading and the data should be treated with caution.  相似文献   

17.
The transfer of fluid and elements from subducting crust to the overlying mantle wedge is a fundamental process affecting arc magmatism and the chemical differentiation of the Earth. While the production of fluid by breakdown of hydrous minerals is well understood, the liberation of trace elements remains generally unconstrained. In this paper, we evaluate the behaviour of trace elements during prograde metamorphism and dehydration using samples of high-pressure, low-temperature metamorphic rocks from New Caledonia. Samples examined include mafic and pelitic rock-types that range in grade from lawsonite blueschist to eclogite facies, and represent typical lithologies of subducting crust. Under lawsonite blueschist facies conditions, the low temperatures of metamorphism inhibit equilibrium partitioning between metamorphic minerals and allow for the persistence of igneous and detrital minerals. Despite this, the most important hosts for trace-elements include lawsonite, (REE, Pb, Sr), titanite (REE, Nb, Ta), allanite (LREE, U, Th), phengite (LILE) and zircon (Zr, Hf). At epidote blueschist to eclogite facies conditions, trace-element equilibrium may be attained and epidote (REE, Sr, Th, U, Pb), garnet (HREE), rutile (Nb, Ta), phengite (LILE) and zircon (Zr, Hf) are the major trace-element hosts. Chlorite, albite, amphibole and omphacite contain very low concentrations of the investigated trace elements. The comparison of mineral trace-element data and bulk-rock data at different metamorphic grades indicates that trace elements are not liberated in significant quantities by prograde metamorphism up to eclogite facies. Combining our mineral trace-element data with established phase equilibria, we show that the trace elements considered are retained by newly-formed major and accessory minerals during mineral breakdown reactions to depths of up to 150 km. In contrast, significant volumes of fluid are released by dehydration reactions. Therefore, there is a decoupling of fluid release and trace element release in subducting slabs. We suggest that the flux of trace elements from the slab is not simply linked to mineral breakdown, but results from complex fluid-rock interactions and fluid-assisted partial melting in the slab.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00410-003-0495-5.Editorial responsibility: J. Hoefs  相似文献   

18.
Abstract CO2-bearing fluid inclusions in strongly lineated but weakly foliated late Precambrian gneisses within the Hope Valley Shear zone of Connecticut and Rhode Island are of mixed composition ( X co2± 0.1; 7 wt% NaCl equivalent) and variable density (0.59–0.86 g/ml) and occur mainly as isolated inclusions. Also present are dilute (3 wt% NaCl equivalent) aqueous inclusions which occur on healed fractures related to greenschist facies retrograde metamorphism. Isochores for dense isolated CO2-bearing inclusions indicate pressures of 7.5–9 kbar at 500–600° C, the estimated temperature conditions of peak metamorphism. Published 40Ar/39Ar hornblende plateau age spectra indicate cooling through about 500° C at 265 ± 5 Ma. Isochores for low-density CO2-bearing inclusions and aqueous inclusions intersect at the conditions of retrograde metamorphism (325–400° C) and indicate pressures of 3–4 kbar. Published 40Ar/39Ar biotite plateau ages indicate cooling through about 300° C at 250 ± 5 Ma. These data define a P–T uplift curve for the region which is convex towards the temperature axis and indicate uplift rates between 0.4 and 3.3 mm/year in Permian time. Exhumation of basement gneisses was coeval with normal (west-down) motion along the regional basement–cover contact (Honey Hill–Lake Char–Willimantic fault system), and is interpreted as due to post-orogenic extensional collapse of the Alleghanian orogeny.  相似文献   

19.
40Ar/39Ar single-grain laserprobe dating of detrital white micas from early Oligocene to middle Miocene (31–14 Ma) sedimentary rocks of the central Swiss Molasse basin reveals three distinct clusters of cooling ages for the hinterland. Two Palaeozoic age clusters reflect cooling after the Variscan orogeny with only limited reheating during the Alpine orogeny. The third Tertiary age cluster reflecting late Alpine cooling is restricted to sediments younger than 20 Myr old. Micas with cooling ages < 30 Myr are interpreted to originate from the footwall of the Simplon detachment fault, thus representing formerly exposed upper levels of the present-day Lepontine metamorphic dome. Erosion of these levels is reflected by an increase of low-grade metamorphic lithic grains in the sandstones. This interpretation puts constraints on the timing of exhumation as well as on the evolution of the drainage pattern of the Central Alps.  相似文献   

20.
Calcsilicate granulites of probable Middle Proterozoic age ( c .1000–1100  Ma) in the vicinity of Battye Glacier, northern Prince Charles Mountains, East Antarctica, contain prograde metamorphic assemblages comprising various combinations of wollastonite, scapolite, clinopyroxene, An-rich plagioclase, calcite, quartz, titanite and, rarely, orthoclase, ilmenite, phlogopite and graphite. Comparison of the prograde assemblages with calculated and experimentally determined phase relations in the simple CaO–Al2O3–SiO2–CO2–H2O system suggests peak metamorphism at ≥835 °C in the presence (in wollastonite-bearing assemblages at least) of a CO2-bearing fluid ( X CO≥0.3) at a probable pressure of 6–7  kbar.
Well-preserved retrograde reaction textures represent: (1) breakdown of scapolite to anorthite+calcite±quartz; (2) formation of grossular–andradite garnet and, locally, (3) epidote, both principally by reactions involving scapolite breakdown products and clinopyroxene; (4) local coupled replacement of clinopyroxene and ilmenite by hornblende and titanite, respectively; and finally (5) local sericitization of prograde and retrograde plagioclase. These retrograde reactions are interpreted to be the result of cooling and variable infiltration by H2O-rich fluids, possibly derived from crystallizing pegmatitic intrusions and segregations that may be partial melts, which are common throughout the area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号