首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
We evaluate the capacity of a regional climate model to simulate the statistics of extreme events, and also examine the effect of differing horizontal resolution, at the scale of individual hydrological basins in the topographically complex province of British Columbia, Canada. Two climate simulations of western Canada (WCan) were conducted with the Canadian Regional Climate Model (version 4) at 15 (CRCM15) and 45?km (CRCM45) horizontal resolution driven at the lateral boundaries by global reanalysis over the period 1973–1995. The simulations were evaluated with ANUSPLIN, a daily observational gridded surface temperature and precipitation product and with meteorological data recorded at 28 stations within the upper Peace, Nechako, and upper Columbia River basins. In this work, we focus largely on a comparison of the skill of each model configuration in simulating the 90th percentile of daily precipitation (PR90). The companion paper describes the results for a wider range of temperature and precipitation extremes over the entire WCan domain.

Over all three watersheds, both simulations exhibit cold biases compared with observations, with the bias exacerbated at higher resolution. Although both simulations generally display wet biases in median precipitation, CRCM15 features a reduced bias in PR90 in all three basins in summer and throughout the year in the upper Columbia River basin. However, the higher resolution model is inferior to CRCM45 with respect to rarer heavy precipitation events and also displays high spatial variability and lower spatial correlations with ANUSPLIN compared with the coarser resolution model. A reduction in the range of PR90 biases over the upper Columbia basin is noted when the 15?km results are averaged to the 45?km grid. This improvement is partly attributable to the averaging of errors between different elevation data used in the gridded observations and CRCM, but the sensitivity of CRCM15 to resolved topography is also clear from spatial maps of seasonal extremes. At the station scale, modest but systematic reductions in the bias of PR90 relative to ANUSPLIN are again found when the CRCM15 results are averaged to the 45?km grid. Furthermore, the annual cycle of inter-station spatial variance in the upper Columbia River basin is well reproduced by CRCM15 but not by ANUSPLIN or CRCM45. The former result highlights the beneficial effect of spatial averaging of small-scale climate variability, whereas the latter is evidently a demonstration of the added value at high resolution vis-à-vis the improved simulation of precipitation at the resolution limit of the model.  相似文献   

2.
Abstract

A þrst climate simulation performed with the novel Canadian Regional Climate Model (CRCM) is presented. The CRCM is based on fully elastic non‐hydrostatic þeld equations, which are solved with an efþcient semi‐implicit semi‐Lagrangian (SISL) marching algorithm, and on the parametrization package of subgrid‐scale physical effects of the second‐generation Canadian Global Climate Model (GCMII). Two 5‐year integrations of the CRCM nested with GCMII simulated data as lateral boundary conditions are made for conditions corresponding to current and doubled CO2 scenarios. For these simulations the CRCM used a grid size of 45 km on a polar‐stereographic projection, 20 scaled‐height levels and a time step of 15 min; the nesting GCMII has a spectral truncation of T32, 10 hybrid‐pressure levels and a time step of 20 min. These simulations serve to document: (1) the suitability of the SISL numerical scheme for regional climate modelling, (2) the use of GCMII physics at much higher resolution than in the nesting model, (3) the ability of the CRCM to add realistic regional‐scale climate information to global model simulations, and (4) the climate of the CRCM compared to that of GCMII under two greenhouse gases (GHG) scenarios.  相似文献   

3.
This study presents a combined weighting scheme which contains five attributes that reflect accuracy of climate data, i.e. short-term (daily), mid-term (annual), and long-term (decadal) timescales, as well as spatial pattern, and extreme values, as simulated from Regional Climate Models (RCMs) with respect to observed and regional reanalysis products. Southern areas of Quebec and Ontario provinces in Canada are used for the study area. Three series of simulation from two different versions of the Canadian RCM (CRCM4.1.1, and CRCM4.2.3) are employed over 23?years from 1979 to 2001, driven by both NCEP and ERA40 global reanalysis products. One series of regional reanalysis dataset (i.e. NARR) over North America is also used as reference for comparison and validation purpose, as well as gridded historical observed daily data of precipitation and temperatures, both series have been beforehand interpolated on the CRCM 45-km grid resolution. Monthly weighting factors are calculated and then combined into four seasons to reflect seasonal variability of climate data accuracy. In addition, this study generates weight averaged references (WARs) with different weighting factors and ensemble size as new reference climate data set. The simulation results indicate that the NARR is in general superior to the CRCM simulated precipitation values, but the CRCM4.1.1 provides the highest weighting factors during the winter season. For minimum and maximum temperature, both the CRCM4.1.1 and the NARR products provide the highest weighting factors, respectively. The NARR provides more accurate short- and mid-term climate data, but the two versions of the CRCM provide more precise long-term data, spatial pattern and extreme events. Or study confirms also that the global reanalysis data (i.e. NCEP vs. ERA40) used as boundary conditions in the CRCM runs has non-negligible effects on the accuracy of CRCM simulated precipitation and temperature values. In addition, this study demonstrates that the proposed weighting factors reflect well all five attributes and the performances of weighted averaged references are better than that of the best single model. This study also found that the improvement of WARs’ performance is due to the reliability (accuracy) of RCMs rather than the ensemble size.  相似文献   

4.
Using an ensemble of four high resolution (~25 km) regional climate models, this study analyses the future (2021–2050) spatial distribution of seasonal temperature and precipitation extremes in the Ganges river basin based on the SRES A1B emissions scenario. The model validation results (1989–2008) show that the models simulate seasonality and spatial distribution of extreme temperature events better than precipitation. The models are able to capture fine topographical detail in the spatial distribution of indices based on their ability to resolve processes at a higher regional resolution. Future simulations of extreme temperature indices generally agree with expected warming in the Ganges basin, with considerable seasonal and spatial variation. Significantly warmer summers in the central part of the basin along with basin-wide increase in night temperature are expected during the summer and monsoon months. An increase in heavy precipitation indices during monsoon, coupled with extended periods without precipitation during the winter months; indicates an increase in the incidence of extreme events.  相似文献   

5.
This study presents the evaluation of simulations from two new Canadian regional climate models (RCMs), CanRCM4 and CRCM5, with a focus on the models’ skill in simulating daily precipitation indices and the Standardized Precipitation Index (SPI). The evaluation was carried out over the past two decades using several sets of gridded observations that partially cover North America. The new Canadian RCMs were also compared with four reanalysis products and six other RCMs. The different configurations of the Canadian RCM simulations also permit evaluation of the impact of different spatial resolutions, atmospheric drivers, and nudging conditions. The results from the new Canadian models show some improvement in precipitation characteristics over the previous Canadian RCM (CRCM4), but these differ with the seasons. For winter, CanRCM4 and CRCM5 have better skill than most other models over all of North America. For the summer, CRCM5 0.44° performs best over the United States, while CRCM4 has the best skill over Canada. Good skill is exhibited by CanRCM4 and CRCM4 in simulating the 6-month SPI over the Prairies and the western US Corn Belt. In general, differences are small between runs with or without large-scale spectral nudging; differences are small when different boundary conditions are used.  相似文献   

6.
Following the CORDEX experimental protocol, climate simulations and climate-change projections for Africa were made with the new fifth-generation Canadian Regional Climate Model (CRCM5). The model was driven by two Global Climate Models (GCMs), one developed by the Max-Planck-Institut für Meteorologie and the other by the Canadian Centre for Climate Modelling and Analysis, for the period 1950–2100 under the RCP4.5 emission scenario. The performance of the CRCM5 simulations for current climate is discussed first and compared also with a reanalysis-driven CRCM5 simulation. It is shown that errors in lateral boundary conditions and sea-surface temperature from the GCMs have deleterious consequences on the skill of the CRCM5 at reproducing specific regional climate features such as the West African Monsoon and the annual cycle of precipitation. For other aspects of the African climate however the regional model is able to add value compared to the simulations of the driving GCMs. Climate-change projections for periods until the end of this century are also analysed. All models project a warming throughout the twenty-first century, although the details of the climate changes differ notably between model projections, especially for precipitation changes. It is shown that the climate changes projected by CRCM5 often differ noticeably from those of the driving GCMs.  相似文献   

7.
The fourth-generation Canadian Regional Climate Model’s (CRCM4) precipitable water is evaluated and compared with observational data and ERA-Interim reanalysis data over five Canadian basins with simulations driven by ERA-Interim (two) and global climate models (two). Considering the 22 years of data available in the observations, we analyze precipitable water’s behaviour through its annual cycle, its daily distribution, and its annual daily maxima. For the simulations driven by reanalyses, differences in annual daily maximum values and their correlations with observations are examined. In general, the values for precipitable water simulated by CRCM4 are similar to those observed, and the model reproduces both the interannual and inter-basin variabilities. The simulation at 15 km resolution produces higher extreme values than simulations performed at 45 km resolution and higher than the observations taken at coarser resolution (1°), without much influence on the mean behaviour. Some underestimation is found with the simulation driven by the Canadian Centre for Climate Modelling and Analysis Model, version 3, a sign of a cold and dry bias, whereas the run driven by the European Centre Hamburg Model, version 5, is much closer to the observations, pointing to the importance of closely considering the regional–global model combination. Overall, CRCM4's ability to reproduce the major characteristics of observed precipitable water makes it a possible tool for providing precipitable water data that could serve as a basis for probable maximum precipitation and probable maximum flood studies at the basin scale.  相似文献   

8.
A complete picture of changes in climate extremes has been presented for Shanxi Province, China using data from all 61 available stations. The results reveal large spatial coherence of trends for the majority of extremes, especially for temperature extremes. Significant and symmetric increasing trends of the annual mean maximum and mean minimum temperatures (TXam, TNam) are detected over the past 50 years. Significant positive trends are detected for warm days and nights (TX90p, TN90p), the highest and lowest maximum and minimum temperatures (TXx, TXn, TNx, TNn), and the growing season length (GSL). Significant negative trends are revealed for cold days and nights (TX10p, TN10p) and frost days (FD). Significant decreases are found in the number of heavy precipitation days (R10mm) and wet day precipitation (PRCPTOT). Although Shanxi and the northern half of North China Plain (NNCP) have been grouped into the North China region and assessed together in previous studies for China, the changes in climate extremes in the NNCP have some pronounced differences in comparison with Shanxi. Noticeably, the increase of the TNam is at a rate nearly three times that of the TXam during 1959–2008 over the NNCP. The warming for the nighttime indices TN90p, TN10p, TNx, and TNn is stronger, but the warming for the daytime indices TX10p, TX90p, and TXx is weaker in the NNCP. There is no significant decrease for R10mm and PRCPTOT in the NNCP.  相似文献   

9.
Future climate projections of extreme events can help forewarn society of high-impact events and allow the development of better adaptation strategies. In this study a non-stationary model for Generalized Extreme Value (GEV) distributions is used to analyze the trend in extreme temperatures in the context of a changing climate and compare it with the trend in average temperatures.

The analysis is performed using the climate projections of the Canadian Regional Climate Model (CRCM), under an IPCC SRES A2 greenhouse gas emissions scenario, over North America. Annual extremes in daily minimum and maximum temperatures are analyzed. Significant positive trends for the location parameter of the GEV distribution are found, indicating an expected increase in extreme temperature values. The scale parameter of the GEV distribution, on the other hand, reveals a decrease in the variability of temperature extremes in some continental regions. Trends in the annual minimum and maximum temperatures are compared with trends in average winter and summer temperatures, respectively. In some regions, extreme temperatures exhibit a significantly larger increase than the seasonal average temperatures.

The CRCM projections are compared with those of its driving model and framed in the context of the Coupled Model Intercomparison Project, phase 3 (CMIP3) Global Climate Model projections. This enables us to establish the CRCM position within the CMIP3 climate projection uncertainty range. The CRCM is validated against the HadEX2 dataset in order to assess the CRCM representation of temperature extremes in the present climate. The validation is also framed in the context of CMIP3 validation results. The CRCM cold extremes validate better and are closer to the driving model and CMIP3 projections than the hot extremes.  相似文献   


10.
基于RCP4.5情景下6.25 km高分辨率统计降尺度数据,使用国际上通用的极端气候事件指数,分析雄安新区及整个京津冀地区未来极端气候事件的可能变化。首先对当代模拟结果进行评估,结果表明,集合平均模拟可以较好地再现大部分极端气候事件指数的分布,且对与气温有关的极端气候事件指数模拟效果较好。但也存在一定偏差,特别是对连续干旱日数(CDD)的模拟效果相对较差。集合平均的预估结果表明,未来在全球变暖背景下,雄安新区及整个京津冀地区均表现为极端暖事件增多,极端冷事件减少,连续干旱日数减少,极端强降水事件增多。具体来看,到21世纪末期,日最高气温最高值(TXx)和日最低气温最低值(TNn)在整个区域上都是增加的,大部分地区增加值分别超过2.4℃和3.2℃;夏季日数(SU)和热带夜数(TR)也都表现为增加,但两者的变化分布基本相反,其中SU在山区增加幅度较大,平原地区增加幅度较小,而TR在平原地区的增加值较山区更显著,两个指数未来增加值分别为20~40 d和5~40 d;霜冻日数(FD)和冰冻日数(ID)都表现为减少,减少值分别超过10 d和5 d;与降水有关的极端气候事件指数,CDD、降雨日数(R1mm)和中雨日数(R10mm)的变化均以减少为主,但数值较小,一般都在?10%~0之间;最大5 d降水量(RX5day)、降水强度(SDII)和大雨日数(R20mm)主要表现为增加,增加值一般在0~25%之间。从区域平均的变化来看,与气温有关的极端气候事件指数的变化趋势较为显著,与降水有关的极端气候事件指数变化趋势较小。两个区域对比来看,雄安新区模式间的不确定性更大,反映出模式对较小区域模拟的不足。  相似文献   

11.
Six approaches for downscaling climate model outputs for use in hydrologic simulation were evaluated, with particular emphasis on each method's ability to produce precipitation and other variables used to drive a macroscale hydrology model applied at much higher spatial resolution than the climate model. Comparisons were made on the basis of a twenty-year retrospective (1975–1995) climate simulation produced by the NCAR-DOE Parallel ClimateModel (PCM), and the implications of the comparison for a future(2040–2060) PCM climate scenario were also explored. The six approaches were made up of three relatively simple statistical downscaling methods – linear interpolation (LI), spatial disaggregation (SD), and bias-correction and spatial disaggregation (BCSD) – each applied to both PCM output directly(at T42 spatial resolution), and after dynamical downscaling via a Regional Climate Model (RCM – at 1/2-degree spatial resolution), for downscaling the climate model outputs to the 1/8-degree spatial resolution of the hydrological model. For the retrospective climate simulation, results were compared to an observed gridded climatology of temperature and precipitation, and gridded hydrologic variables resulting from forcing the hydrologic model with observations. The most significant findings are that the BCSD method was successful in reproducing the main features of the observed hydrometeorology from the retrospective climate simulation, when applied to both PCM and RCM outputs. Linear interpolation produced better results using RCM output than PCM output, but both methods (PCM-LI and RCM-LI) lead to unacceptably biased hydrologic simulations. Spatial disaggregation of the PCM output produced results similar to those achieved with the RCM interpolated output; nonetheless, neither PCM nor RCM output was useful for hydrologic simulation purposes without a bias-correction step. For the future climate scenario, only the BCSD-method (using PCM or RCM) was able to produce hydrologically plausible results. With the BCSD method, the RCM-derived hydrology was more sensitive to climate change than the PCM-derived hydrology.  相似文献   

12.
The performance of reanalysis-driven Canadian Regional Climate Model, version 5 (CRCM5) in reproducing the present climate over the North American COordinated Regional climate Downscaling EXperiment domain for the 1989–2008 period has been assessed in comparison with several observation-based datasets. The model reproduces satisfactorily the near-surface temperature and precipitation characteristics over most part of North America. Coastal and mountainous zones remain problematic: a cold bias (2–6 °C) prevails over Rocky Mountains in summertime and all year-round over Mexico; winter precipitation in mountainous coastal regions is overestimated. The precipitation patterns related to the North American Monsoon are well reproduced, except on its northern limit. The spatial and temporal structure of the Great Plains Low-Level Jet is well reproduced by the model; however, the night-time precipitation maximum in the jet area is underestimated. The performance of CRCM5 was assessed against earlier CRCM versions and other RCMs. CRCM5 is shown to have been substantially improved compared to CRCM3 and CRCM4 in terms of seasonal mean statistics, and to be comparable to other modern RCMs.  相似文献   

13.
吴婕  高学杰  徐影 《大气科学》2018,42(3):696-705
基于CSIRO-Mk3-6-0、EC-EARTH、HadGEM2-ES和MPI-ESM-MR共4个全球气候模式,分别驱动区域气候模式RegCM4,所进行的RCP4.5(典型浓度路径)中等排放情景下25 km较高水平分辨率东亚区域21世纪气候变化模拟结果,针对雄安新区及周边区域,在对当代(1986~2005)气候进行检验的基础上,进行了该区域未来气候变化的多模拟集合预估,并给出了模拟间的差别。结果表明:RegCM4可以较好地模拟出分析区域当代平均气温和降水的分布及年内月循环变化特征;对与气温相关的极端气候事件指数,日最高气温最高值(TXx)和日最低气温最低值(TNn),以及和降水相关的指数日最大降水量(RX1day)也有较好的模拟能力。雄安及周边区域未来平均气温、TXx和TNn将不断上升,高温热浪事件在增加的同时,低温事件将减少。未来分析区域平均降水量有所增加;而RX1day的增加更明显,且模拟间的一致性较好,不确定性相对较低,暴雨和洪涝事件的频率和强度均将增大。同时由于气温升高导致的潜在蒸发量相对于降水更大的增加,将使得区域水资源相对不足的现象加重。  相似文献   

14.
The study examines future scenarios of precipitation extremes over Central Europe in an ensemble of 12 regional climate model (RCM) simulations with the 25-km resolution, carried out within the European project ENSEMBLES. We apply the region-of-influence method as a pooling scheme when estimating distributions of extremes, which consists in incorporating data from a ‘region’ (set of gridboxes) when fitting an extreme value distribution in any single gridbox. The method reduces random variations in the estimates of parameters of the extreme value distribution that result from large spatial variability of heavy precipitation. Although spatial patterns differ among the models, most RCMs simulate increases in high quantiles of precipitation amounts when averaged over the area for the late-twenty-first century (2070–2099) climate in both winter and summer. The sign as well as the magnitude of the projected change vary only little for individual parts of the distribution of daily precipitation in winter. In summer, on the other hand, the projected changes increase with the quantile of the distribution in all RCMs, and they are negative (positive) for parts of the distribution below (above) the 98% quantile if averaged over the RCMs. The increases in precipitation extremes in summer are projected in spite of a pronounced drying in most RCMs. Although a rather general qualitative agreement of the models concerning the projected changes of precipitation extremes is found in both winter and summer, the uncertainties in climate change scenarios remain large and would likely further increase considerably if a more complete ensemble of RCM simulations driven by a larger suite of global models and with a range of possible scenarios of the radiative forcing is available.  相似文献   

15.
We investigate how well the variability of extreme daily precipitation events across the United Kingdom is represented in a set of regional climate models and the E-OBS gridded data set. Instead of simply evaluating the climatologies of extreme precipitation measures, we develop an approach to validate the representation of physical mechanisms controlling extreme precipitation variability. In part I of this study we applied a statistical model to investigate the influence of the synoptic scale atmospheric circulation on extreme precipitation using observational rain gauge data. More specifically, airflow strength, direction and vorticity are used as predictors for the parameters of the generalised extreme value (GEV) distribution of local precipitation extremes. Here we employ this statistical model for our validation study. In a first step, the statistical model is calibrated against a gridded precipitation data set provided by the UK Met Office. In a second step, the same statistical model is calibrated against 14 ERA40 driven 25?km resolution RCMs from the ENSEMBLES project and the E-OBS gridded data set. Validation indices describing relevant physical mechanisms are derived from the statistical models for observations and RCMs and are compared using pattern standard deviation, pattern correlation and centered pattern root mean squared error as validation measures. The results for the different RCMs and E-OBS are visualised using Taylor diagrams. We show that the RCMs adequately simulate moderately extreme precipitation and the influence of airflow strength and vorticity on precipitation extremes, but show deficits in representing the influence of airflow direction. Also very rare extremes are misrepresented, but this result is afflicted with a high uncertainty. E-OBS shows considerable biases, in particular in regions of sparse data. The proposed approach might be used to validate other physical relationships in regional as well as global climate models.  相似文献   

16.
The atmospheric water holding capacity will increase with temperature according to Clausius-Clapeyron scaling and affects precipitation.The rates of change in future precipitation extremes are quantified with changes in surface air temperature.Precipitation extremes in China are determined for the 21st century in six simulations using a regional climate model,RegCM4,and 17 global climate models that participated in CMIP5.First,we assess the performance of the CMIP5 models and RCM runs in their simulation of extreme precipitation for the current period(RF:1982-2001).The CMIP5 models and RCM results can capture the spatial variations of precipitation extremes,as well as those based on observations:OBS and XPP.Precipitation extremes over four subregions in China are predicted to increase in the mid-future(MF:2039-58)and far-future(FF:2079-98)relative to those for the RF period based on both the CMIP5 ensemble mean and RCM ensemble mean.The secular trends in the extremes of the CMIP5 models are predicted to increase from 2008 to 2058,and the RCM results show higher interannual variability relative to that of the CMIP5 models.Then,we quantify the increasing rates of change in precipitation extremes in the MF and FF periods in the subregions of China with the changes in surface air temperature.Finally,based on the water vapor equation,changes in precipitation extremes in China for the MF and FF periods are found to correlate positively with changes in the atmospheric vertical wind multiplied by changes in surface specific humidity(significant at the p<0.1 level).  相似文献   

17.
To study the impacts of climate change on water resources in the western U.S., global climate simulations were produced using the National Center for Atmospheric Research/Department of Energy (NCAR/DOE) Parallel Climate Model (PCM). The Penn State/NCAR Mesoscale Model (MM5) was used to downscale the PCM control (20 years) and three future(2040–2060) climate simulations to yield ensemble regional climate simulations at 40 km spatial resolution for the western U.S. This paper describes the regional simulations and focuses on the hydroclimate conditions in the Columbia River Basin (CRB) and Sacramento-San Joaquin River (SSJ) Basin. Results based on global and regional simulations show that by mid-century, the average regional warming of 1 to 2.5 °C strongly affects snowpack in the western U.S. Along coastal mountains, reduction in annual snowpack was about70% as indicated by the regional simulations. Besides changes in mean temperature, precipitation, and snowpack, cold season extreme daily precipitation increased by 5 to 15 mm/day (15–20%) along theCascades and the Sierra. The warming resulted in increased rainfall at the expense of reduced snowfall, and reduced snow accumulation (or earlier snowmelt) during the cold season. In the CRB, these changes were accompanied by more frequent rain-on-snow events. Overall, they induced higher likelihood of wintertime flooding and reduced runoff and soil moisture in the summer. Changes in surface water and energy budgets in the CRB and SSJ basin were affected mainly by changes in surface temperature, which were statistically significant at the 0.95 confidence level. Changes in precipitation, while spatially incoherent, were not statistically significant except for the drying trend during summer. Because snow and runoff are highly sensitive tospatial distributions of temperature and precipitation, this study shows that (1) downscaling provides more realistic estimates of hydrologic impacts in mountainous regions such as the western U.S., and (2) despite relatively small changes in temperature and precipitation, changes in snowpack and runoff can be much larger on monthly to seasonal time scales because the effects of temperature and precipitation are integrated over time and space through various surface hydrological and land-atmosphere feedback processes. Although the results reported in this study were derived from an ensemble of regional climate simulations driven by a global climate model that displays low climate sensitivity compared with most other models, climate change was found to significantly affect water resources in the western U.S. by the mid twenty-first century.  相似文献   

18.
In order to fulfill the society demand for climate information at the spatial scale allowing impact studies, long-term high-resolution climate simulations are produced, over an area covering metropolitan France. One of the major goals of this article is to investigate whether such simulations appropriately simulate the spatial and temporal variability of the current climate, using two simulation chains. These start from the global IPSL-CM4 climate model, using two regional models (LMDz and MM5) at moderate resolution (15–20 km), followed with a statistical downscaling method in order to reach a target resolution of 8 km. The statistical downscaling technique includes a non-parametric method that corrects the distribution by using high-resolution analyses over France. First the uncorrected simulations are evaluated against a set of high-resolution analyses, with a focus on temperature and precipitation. Uncorrected downscaled temperatures suffer from a cold bias that is present in the global model as well. Precipitations biases have a season- and model-dependent behavior. Dynamical models overestimate rainfall but with different patterns and amplitude, but both have underestimations in the South-Eastern area (Cevennes mountains) in winter. A variance decomposition shows that uncorrected simulations fairly well capture observed variances from inter-annual to high-frequency intra-seasonal time scales. After correction, distributions match with analyses by construction, but it is shown that spatial coherence, persistence properties of warm, cold and dry episodes also match to a certain extent. Another aim of the article is to describe the changes for future climate obtained using these simulations under Scenario A1B. Results are presented on the changes between current and mid-term future (2021–2050) averages and variability over France. Interestingly, even though the same global climate model is used at the boundaries, regional climate change responses from the two models significantly differ.  相似文献   

19.
We analyze a set of nine regional climate model simulations for the period 1961–2000 performed at 25 and 50 km horizontal grid spacing over a European domain in order to determine the effects of horizontal resolution on the simulation of precipitation. All of the models represent the seasonal mean spatial patterns and amount of precipitation fairly well. Most models exhibit a tendency to over-predict precipitation, resulting in a domain-average total bias for the ensemble mean of about 20% in winter (DJF) and less than 10% in summer (JJA) at both resolutions, although this bias could be artificially enhanced by the lack of a gauge correction in the observations. A majority of the models show increased precipitation at 25 km relative to 50 km over the oceans and inland seas in DJF, JJA, and ANN (annual average), although the response is strongest during JJA. The ratio of convective precipitation to total precipitation decreases over land for most models at 25 km. In addition, there is an increase in interannual variability in many of the models at 25 km grid spacing. Comparison with gridded observations indicates that a majority of models show improved skill in simulating both the spatial pattern and temporal evolution of precipitation at 25 km compared to 50 km during the summer months, but not in winter or on an annual mean basis. Model skill at higher resolution in simulating the spatial and temporal character of seasonal precipitation is found especially for Great Britain. This geographic dependence of the increased skill suggests that observed data of sufficient density are necessary to capture fine-scale climate signals. As climate models increase their horizontal resolution, it is thus a key priority to produce high quality fine scale observations for model evaluation.  相似文献   

20.
The results of the MM5 regional meteorological model are compared with the station data. The simulations are carried out for the central part of the East European Plain for summer with a horizontal grid resolution of 15 km (24 × 34 grid points) and 24 vertical σ-levels, the upper level corresponding to 100 hPa. The MM5 model reliably reproduces information at a spatial scale of about 100 km, systematically overestimating temperature by about 1.5°C and underestimating daily precipitation totals by about 1 mm. The distribution functions for model and observed temperatures coincide with the Gaussian distribution function. The precipitation distribution functions are rather similar and have a form of the χ2-distribution with one degree of freedom. Station and model temperature extremes generally coincide in time. Extremes of daily precipitation totals are slightly underestimated by MM5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号